Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.102
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 266(Pt 2): 130943, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522690

RESUMEN

The aim of this study is to evaluate and compare the biological properties of different extracts (methanol, ethanol, and water) obtained from Gypsophila eriocalyx (G. eriocalyx), a medicinal plant traditionally used in Turkey. The components of different extracts were defined using the GC-MS method. The effects of G. eriocalyx extracts on cell proliferation, apoptosis, and cell cycle arrest in MDA-MB-231 breast cancer as well as in vitro antioxidant, enzyme inhibition, and antimicrobial activities were investigated. In accordance with the results obtained, although ethanol and methanol extracts of G. eriocalyx show higher antioxidant activity than G. eriocalyx water extract, enzyme inhibition activities of the extracts were not found to be significant compared to the reference drug. The methanol and ethanol extract of G. eriocalyx exhibited moderate antimicrobial activity against Staphylococcus aureus and methanol extract showed significant antimicrobial activity against Bacillus cereus. In addition, both extracts significantly inhibited cell viability in a dose-dependent manner in breast cancer cells. The cell growth inhibition by methanol and ethanol extracts induced S phase cell-cycle arrest and apoptosis in MDA-MB-231 cells. Lastly, in order to compare the activities of the chemicals found in Gypsophila eriocalyx plant extract, their activities against various proteins that are breast cancer protein (PDB ID:1A52 and 1JNX), antioxidant protein (PDB ID: 1HD2), AChE enzyme protein (PDB ID: 4M0E), BChE enzyme protein (PDB ID: 5NN0), and Escherichia coli protein (PDB ID: 4PRV)were compared. Then, ADME/T analysis calculations were made to examine the effects of molecules with high activity on human metabolism. Eventually, G. eriocalyx is thought to be a potent therapeutic herb that can be considered as an alternative and functional therapy for the management of diseases of a progressive nature related to oxidative damage such as infection, diabetes, cancer, and Alzheimer's disease.


Asunto(s)
Antioxidantes , Apoptosis , Proliferación Celular , Extractos Vegetales , Plantas Medicinales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Plantas Medicinales/química , Línea Celular Tumoral , Turquía , Antioxidantes/farmacología , Antioxidantes/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Caryophyllaceae/química , Supervivencia Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química
2.
Phytomedicine ; 128: 155316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518635

RESUMEN

BACKGROUND: Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE: To explore the efficacy and potential mechanism of PTE in treating GC. METHODS: We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS: Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION: Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.


Asunto(s)
Movimiento Celular , Proliferación Celular , Janus Quinasa 2 , Ratones Desnudos , Factor de Transcripción STAT3 , Transducción de Señal , Estilbenos , Neoplasias Gástricas , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Estilbenos/farmacología , Animales , Humanos , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Ratones , Antineoplásicos Fitogénicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Farmacología en Red , Masculino , Metástasis de la Neoplasia , Transición Epitelial-Mesenquimal/efectos de los fármacos
3.
Int J Oncol ; 62(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929198

RESUMEN

Lung cancer is the leading cause of cancer­related mortality worldwide. Non­small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer and is associated with low 5­year overall survival rates. Therefore, novel and effective chemotherapeutic drugs are urgently required for improving the survival outcomes of patients with lung cancer. Cyclovirobuxine D (CVB­D) is a natural steroidal alkaloid, used for the treatment of cardiovascular diseases in Traditional Chinese Medicine. Several studies have also demonstrated the antitumor effects of CVB­D. Therefore, in the present study, the therapeutic effects of CVB­D in lung cancer and the underlying mechanisms were investigated using the in vivo xenograft model of NSCLC in nude mice and in vitro experiments with the NSCLC cell lines. Bioinformatics analyses of RNA­sequencing data, and cell­based functional assays demonstrated that CVB­D treatment significantly inhibited in vitro and in vivo NSCLC cell proliferation, survival, invasion, migration, angiogenesis, epithelial­to­mesenchymal transition and G2/M phase cell cycle. CVB­D exerted its antitumor effects by inhibiting the KIF11­CDK1­CDC25C­cyclinB1 G2/M phase transition regulatory oncogenic network and the NF­κB/JNK signaling pathway. CVB­D treatment significantly reduced the sizes and weights and malignancy of xenograft NSCLC tumors in the nude mice. In conclusion, the present study demonstrated that CVB­D inhibited the growth and progression of NSCLC cells by inhibiting the KIF11­CDK1­CDC25C­CyclinB1 G2/M phase transition regulatory network and the NF­κB/JNK signaling pathway. Therefore, CVB­D is a promising drug for the treatment of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Puntos de Control del Ciclo Celular , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Fosfatasas cdc25/metabolismo , División Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Cinesinas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Desnudos , FN-kappa B/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
4.
Molecules ; 27(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35209003

RESUMEN

In recent years, interest in Cannabis sativa L. has been rising, as legislation is moving in the right direction. This plant has been known and used for thousands of years for its many active ingredients that lead to various therapeutic effects (pain management, anti-inflammatory, antioxidant, etc.). In this report, our objective was to optimize a method for the extraction of cannabinoids from a clone of Cannabis sativa L. #138 resulting from an agronomic test (LaFleur, Angers, FR). Thus, we wished to identify compounds with anticancer activity on human pancreatic tumor cell lines. Three static maceration procedures, with different extraction parameters, were compared based on their median inhibitory concentration (IC50) values and cannabinoid extraction yield. As CBD emerged as the molecule responsible for inducing apoptosis in the human pancreatic cancer cell line, a CBD-rich cannabis strain remains attractive for therapeutic applications. Additionally, while gemcitabine, a gold standard drug in the treatment of pancreatic cancer, only triggers cell cycle arrest in G0/G1, CBD also activates the cell signaling cascade to lead to programmed cell death. Our results emphasize the potential of natural products issued from medicinal hemp for pancreatic cancer therapy, as they lead to an accumulation of intracellular superoxide ions, affect the mitochondrial membrane potential, induce G1 cell cycle arrest, and ultimately drive the pancreatic cancer cell to lethal apoptosis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Cannabinoides/farmacología , Cannabis/química , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/química , Antioxidantes/química , Cannabinoides/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Extractos Vegetales/química , Esferoides Celulares , Células Tumorales Cultivadas
5.
Chem Biol Interact ; 355: 109849, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35150652

RESUMEN

A phytochemical investigation of cytotoxic extract and fractions of Cnidoscolus quercifolius Pohl led to isolation of five terpenoids, including three lupane-type triterpenes (1-3) and two bis-nor-diterpenes (4-5). Compounds 4 (phyllacanthone) and 5 (favelanone) are commonly found in this species and have unique chemical structure. Although their cytotoxic activity against cancer cells has been previously reported, the anticancer potential of these molecules remains poorly explored. In this paper, the antimelanoma potential of phyllacanthone (PHY) was described for the first time. Cell viability assay showed a promising cytotoxic activity (IC50 = 40.9 µM) against chemoresistant human melanoma cells expressing the BRAF oncogenic mutation (A2058 cell line). After 72 h of treatment, PHY inhibited cell migration and induced apoptosis and cell cycle arrest (p < 0.05). Immunofluorescence assay showed that the pro-apoptotic effect of PHY is probably associated with tubulin depolymerization, resulting in cytoskeleton disruption of melanoma cells. Molecular docking investigation confirmed this hypothesis given that satisfactory interaction between PHY and tubulin was observed, particularly at the colchicine binding site. These results suggest PHY from C. quercifolius could be potential leader for the design of new antimelanoma drugs.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Diterpenos/química , Euphorbiaceae/química , Proteínas Proto-Oncogénicas B-raf/genética , Tubulina (Proteína)/metabolismo , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/metabolismo , Sitios de Unión , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular , Colchicina/química , Colchicina/metabolismo , Diterpenos/metabolismo , Diterpenos/farmacología , Euphorbiaceae/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patología , Simulación del Acoplamiento Molecular , Mutación , Corteza de la Planta/química , Corteza de la Planta/metabolismo , Extractos Vegetales/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Tubulina (Proteína)/química
6.
J Ethnopharmacol ; 289: 115094, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35149133

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum bungeanum Maxim (ZBM), a traditional Chinese medicine, is traditionally used for osteoporosis treatment recorded in ancient Chinese medicine work Benjingshuzheng and reported to have the anti-bone loss activity in recent studies. However, the anti-osteoporotic activities of the seed of ZBM have not been elucidated yet. Our previous study found that Zanthoxylum bungeanum Maxim seed oil (ZBSO) was rich in polyunsaturated fatty acids (PUFAs), which were reported to prevent bone loss. Thus, we propose a hypothesis that ZBSO could be a potential natural resource for anti-bone loss. AIM OF THE STUDY: To investigate whether ZBSO could prevent bone loss by targeting osteoclastogenesis and investigate the potential mechanisms in receptor-activator of nuclear factor κB ligand (RANKL)-induced RAW264.7 cells. MATERIALS AND METHODS: RAW264.7 cells were treated with RANKL in the presence or absence of ZBSO. The effect of ZBSO on osteoclast differentiation and bone resorption activity of RAW264.7 cells were evaluated by tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring staining, and bone resorption assay. Differentially expression genes (DEGs) and relevant pathways of different cell groups were obtained from RNA sequencing and protein-protein interaction (PPI) network analysis followed by KEGG pathway enrichment analysis. The effect of ZBSO on the RANKL-induced cell cycle change was analyzed by flow cytometry assay, and the expression of genes and proteins related to the selected pathways was further verified by RT-qPCR and western blot analysis. RESULTS: The inhibitory effects of ZBSO on osteoclast differentiation and bone resorption activity in a dose-dependent manner were demonstrated by TRAP staining, F-actin ring staining, and bone resorption assay in RANKL-induced RAW264.7 cells. Osteoclast differentiation and cell cycle pathways were the most enriched pathways based on DEGs enrichment analysis among different cell groups. The reversion effect of ZBSO on the RANKL-induced RAW264.7 cell cycle arrest at the G1 phase was observed by flow cytometry assay. Western blot results showed that ZBSO markedly decreased RANKL-induced activation of ERK, as well as the phosphorylation of c-JUN and NFATc1 expression, and subsequently suppressed osteoclast-specific genes, such as Ctsk, Trap, and Dc-stamp. CONCLUSIONS: ZBSO exhibited an inhibitory effect on osteoclastogenesis via suppressing the ERK/c-JUN/NFATc1 pathway and regulating cell cycle arrest induced by RANKL, suggesting that ZBSO may serve as a promising agent for anti-bone loss.


Asunto(s)
Osteogénesis/efectos de los fármacos , Aceites de Plantas/farmacología , Zanthoxylum/química , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Factores de Transcripción NFATC/metabolismo , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Aceites de Plantas/administración & dosificación , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ligando RANK/metabolismo , Células RAW 264.7 , Semillas
7.
ACS Appl Mater Interfaces ; 14(5): 6370-6386, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35090345

RESUMEN

Drug-resistant capacity in a small population of tumor-initiating cancer stem cells (tiCSCs) can be due to aberrant epigenetic changes. However, currently available conventional detection methods are inappropriate and cannot be applied to investigate the scarce population (tiCSCs). In addition, selective inhibitor drugs are shown to reverse epigenetic changes; however, each cancer type is discrete. Hence, it is essential to probe the resultant changes in tiCSCs even after therapy. Therefore, we have developed a multimode nanoplatform to investigate tiCSCs, detect epigenetic changes, and subsequently explore their transformation signals following drug therapy. We performed this by developing a surface-enhanced Raman scattering (SERS)-active nanoplatform integrated with n-dopant using an ultrafast laser ionization technique. The dopant functionalization enhances Raman scattering ability and permits label-free analysis of biomarkers in tiCSCs with the resolution down to the cellular level. Here, we investigated epigenetic biomarkers of tiCSCs in pancreatic and lung cancers. An extended study using inhibitor drugs demonstrates an unexpected increase of tiCSCs from lung cancer; this difference can be attributed to transformation changes in lung tiCSC. Thus, our work brings new insight into the differentiation abilities of CSCs upon epigenetic reversal, emphasizing unique perceptions in cancer treatment.


Asunto(s)
Nanoestructuras/química , Células Madre Neoplásicas/metabolismo , Biomarcadores de Tumor/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Decitabina/química , Decitabina/farmacología , Epigénesis Genética , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Rayos Láser , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Nanoestructuras/toxicidad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fósforo/química , Silicio/química , Espectrometría Raman
8.
J Ethnopharmacol ; 288: 114938, 2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-34999144

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Silybum marianum is a traditional Chinese medicine that has been used for treating liver disease. Silybin consisting of silybin A and silybin B, is a member of Silybum marianum, and exerts a therapeutic effect on many diseases. However, the protective effect of silybin on cisplatin-induced neurotoxicity and the stereoisomer contributing to the effect remain unknown. AIM OF THE STUDY: The present study aimed to study the effect of silybin on cisplatin-induced neuronal injury, compare the difference of protective effect between silybin A and silybin B, and the potential mechanism. MATERIALS AND METHODS: High performance liquid chromatography (HPLC) was used to separate silybin A and silybin B. X-ray crystallographic analysis in combination with experimental and calculated ECD were performed to identify the structure of silybin A and silybin B. The toxicity of the silybin or cisplatin against murine hippocampal neuronal HT22 cells was determined through MTT assay. The cell cycle and cell apoptosis were measured by PI staining and Annexin V-FITC/PI staining, respectively, and then subjected to flow cytometry. Western blot analysis was conducted to quantify the expression of proteins related to apoptosis and DNA damage. Immunofluorescence was used to evaluate the expression of DNA damage marker. In vivo experiment, the behavioral analysis was determined through pole test, swimming test and Morris water maze test. The index of superoxide dismutase (SOD), reduced glutathione (GSH), total antioxidant capacity (T-AOC) and lipid peroxidation (LPO) were examined to evaluate the antioxidant capacity in mice brain. Nissl staining and Tunel assay were used to detect the neuronal viability and apoptosis in hippocampus. RESULTS: We successfully separated and identified silybin A and silybin B. We found both silybin A and silybin B alleviated cisplatin-induced apoptosis and cell cycle arrest in HT22 cells, and silybin B was more effective. We chose silybin B for further mechanism investigation, and found silybin B alleviated DNA damage by enhancing phosphorylation of ATR and decreasing expression of γ-H2AX. In the in vivo experiment, we observed that silybin B markedly improved the behavioral abnormalities in cisplatin-treated mice, reduced LPO level while increased SOD, GSH and T-AOC in mice brain tissue. Nissl staining and Tunel assay showed that silybin B alleviated cisplatin-induced hippocampal damage. CONCLUSIONS: These results suggest that silybin B might serve as a promising drug candidate in mitigating cisplatin-induced neural injury in the brain and thereby improving the chemotherapeutic outcomes.


Asunto(s)
Cisplatino/toxicidad , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Silibina/farmacología , Animales , Antineoplásicos/toxicidad , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Cromatografía Líquida de Alta Presión , Daño del ADN/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Silybum marianum/química , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Síndromes de Neurotoxicidad/etiología , Silibina/química , Silibina/aislamiento & purificación
9.
Phytomedicine ; 97: 153923, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35026619

RESUMEN

BACKGROUND: Colorectal cancer ranks among the most common cancers. 5-Fluorouracil (5-FU) based first-line chemotherapy for colorectal cancer treatment often leads to chemoresistance and gastrointestinal mucositis. PURPOSE: This study aimed to find potential therapeutic agents from herbal medicine with anti-colorectal cancer and anti-mucositis activities. METHODS: Chinese medicine theory, network pharmacology analyses, and antioxidant activity coupled with liquid chromatography tandem mass spectrometry analyses were used to identify potential bioactive compounds. HT-29 human colorectal cancer cell culture and xenograft tumor models were employed to study anti-colorectal cancer efficacy. Lipopolysaccharide-induced RAW 264.7 and 5-FU treated Dark Agouti rats were used to evaluate anti-inflammatory and anti-mucositis activities. Histological staining, immunofluorescence imaging, western blots, and flow cytometric analyses were employed to explore the underlying mechanisms. RESULTS: Both Chinese medicine theory and network pharmacology analyses indicated pomegranate peels as a potential anti-colorectal cancer and anti-mucositis agent. Antioxidant activity coupled with liquid chromatography tandem mass spectrometry analyses revealed granatin B and punicalagin as the most potent antioxidant compounds in pomegranate peels. Granatin B and punicalagin demonstrated superior anti-colorectal cancer activities in both cell culture and xenograft tumor models. Granatin B and punicalagin also exhibited strong anti-inflammatory activities in lipopolysaccharide-induced RAW264.7 cells and anti-mucositis activities in 5-FU-treated rats. Mechanistic studies revealed that granatin B and punicalagin induced reactive oxygen species-mediated S-phase cell cycle arrest and apoptosis in HT-29 cells. Moreover, these compounds sensitized HT-29 cells to 5-FU-induced cell death and S-phase cell cycle arrest. CONCLUSION: We report that granatin B and punicalagin exhibit superior anti-colorectal cancer and anti-mucositis activities. To the best of our knowledge, these results are novel and suggest that utilizing phenols from herbal medicine, such as granatin B and punicalagin, to target reactive oxygen species may be an innovative therapy to treat colorectal cancer and intestinal mucositis.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Medicamentos Herbarios Chinos , Células HT29/efectos de los fármacos , Taninos Hidrolizables/farmacología , Granada (Fruta) , Animales , Medicamentos Herbarios Chinos/farmacología , Fluorouracilo/farmacología , Humanos , Ratones , Granada (Fruta)/química , Células RAW 264.7 , Ratas , Especies Reactivas de Oxígeno
10.
Molecules ; 27(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011526

RESUMEN

In vitro anti-proliferative activity of Pinus palustris extract and its purified abietic acid was assessed against different human cancer cell lines (HepG-2, MCF-7 and HCT-116) compared to normal WI-38 cell line. Abietic acid showed more promising IC50 values against MCF-7 cells than pine extract (0.06 µg/mL and 0.11 µM, respectively), with insignificant cytotoxicity toward normal fibroblast WI-38 cells. Abietic acid triggered both G2/M cell arrest and subG0-G1 subpopulation in MCF-7, compared to SubG0-G1 subpopulation arrest only for the extract. It also induced overexpression of key apoptotic genes (Fas, FasL, Casp3, Casp8, Cyt-C and Bax) and downregulation of both proliferation (VEGF, IGFR1, TGF-ß) and oncogenic (C-myc and NF-κB) genes. Additionally, abietic acid induced overexpression of cytochrome-C protein. Furthermore, it increased levels of total antioxidants to diminish carcinogenesis and chemotherapy resistance. P. palustris is a valuable source of active abietic acid, an antiproliferative agent to MCF-7 cells through induction of apoptosis with promising future anticancer agency in breast cancer therapy.


Asunto(s)
Abietanos/farmacología , Antineoplásicos Fitogénicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Pinus/química , Extractos Vegetales/farmacología , Abietanos/química , Antineoplásicos Fitogénicos/química , Antioxidantes/química , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Humanos , Inmunohistoquímica , Células MCF-7 , Extractos Vegetales/química
11.
J Ethnopharmacol ; 283: 114666, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34592338

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ervatamia coronaria, a popular garden plant in India and some other parts of the world is known traditionally for its anti-inflammatory and anti-cancer properties. The molecular bases of these functions remain poorly understood. AIM OF THE STUDY: Efficacies of the existing therapies for colorectal cancer (CRC) are limited by their life-threatening side effects and unaffordability. Therefore, identifying a safer, efficient, and affordable therapeutic is urgent. We studied the anti-CRC activity of an alkaloid-rich fraction of E. coronaria leaf extracts (AFE) and associated underlying mechanism. MATERIALS AND METHODS: Activity guided solvant fractionation was adopted to identify the activity in AFE. Different cell lines, and tumor grown in syngeneic mice were used to understand the anti-CRC effect. Methodologies such as LCMS, MTT, RT-qPCR, immunoblot, immunohistochemistry were employed to understand the molecular basis of its activity. RESULTS: We showed that AFE, which carries about six major compounds, is highly toxic to colorectal cancer (CRC) cells. AFE induced cell cycle arrest at G1 phase and p21 and p27 genes, while those of CDK2, CDK-4, cyclin-D, and cyclin-E genes were downregulated in HCT116 cells. It predominantly induced apoptosis in HCT116p53+/+ cells while the HCT116p53-/- cells under the same treatment condition died by autophagy. Notably, AFE induced upregulation of AMPK phosphorylation, and inhibition of both of the mTOR complexes as indicated by inhibition of phosphorylation of S6K1, 4EBP1, and AKT. Furthermore, AFE inhibited mTOR-driven conversion of cells from reversible cell cycle arrest to senescence (geroconversion) as well as ERK activity. AFE activity was independent of ROS produced, and did not primarily target the cellular DNA or cytoskeleton. AFE also efficiently regressed CT26-derived solid tumor in Balb/c mice acting alone or in synergy with 5FU through inducing autophagy as a major mechanism of action as indicated by upregulation of Beclin 1 and phospho-AMPK, and inhibition of phospho-S6K1 levels in the tumor tissue lysates. CONCLUSION: AFE induced CRC death through activation of both apoptotic and autophagy pathways without affecting the normal cells. This study provided a logical basis for consideration of AFE in future therapy regimen to overcome the limitations associated with existing anti-CRC chemotherapy.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Tabernaemontana/química , Proteínas Quinasas Activadas por AMP/metabolismo , Alcaloides/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Ethnopharmacol ; 287: 114691, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-34597654

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Matrine injection is a complex mixture of plant bioactive substances extracted from Sophora flavescens Aiton and Smilax glabra Roxb. Since its approval by the Chinese Food and Drug Administration (CFDA) in 1995, Matrine injection has been clinically used as a complementary and alternative treatment for various cancers; however, the underlying mechanism of pancreatic cancer treatment is yet to be elucidated. AIM OF THE STUDY: The present study explores the potential mechanism of matrine injection on pancreatic cancer through network pharmacology technique and in vitro experimental validation. MATERIALS AND METHODS: Genes differentially expressed in pancreatic cancer were obtained from the Gene Expression Omnibus (GEO) database (GSE101448). The potential active components of matrine injection were selected following a literature search, and target prediction was performed by the SwissTarget Prediction database. Overlapping genes associated with survival were screened by the Gene Expression Profiling Interactive Analysis (GEPIA) database. In vitro experimental validation was performed with cell counting kit-8 (CCK-8) assay, apoptosis detection, cell cycle analysis, immunoblotting, and co-immunoprecipitation of the identified proteins. RESULTS: One thousand seven hundred genes differentially expressed among pancreatic tumor and non-tumor tissues were screened out. Sixteen active components and 226 predicted target genes were identified in matrine injection. A total of 25 potential target genes of matrine injection for the treatment of pancreatic cancer were obtained. Among them, the prognostic target genes carbonic anhydrase 9 (CA9) and carbonic anhydrase 12 (CA12) based on the GEPIA database are differently expressed in tumors compared to adjacent normal tissue. In vitro experiments, the results of CCK-8 assay, apoptosis and cell cycle analysis, immunoblotting, and co-immunoprecipitation showed that matrine injection inhibited Capan-1 and Mia paca-2 proliferation, arrested the cell cycle at the S phase, and induced apoptosis through up-regulated CA12 and down-regulated CA9. CONCLUSIONS: In this study, bioinformatics and network pharmacology were applied to explore the treatment mechanism on pancreatic cancer with matrine injection. This study demonstrated that matrine injection inhibited proliferation, arrested the cell cycle, and induced apoptosis of pancreatic cancer cells. The mechanism may be related to the induction of CA12 over-expression, and CA9 reduced expression. As novel targets for pancreatic cancer treatment, Carbonic anhydrases require further study.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Anhidrasas Carbónicas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Quinolizinas/farmacología , Sophora/química , Alcaloides/aislamiento & purificación , Antígenos de Neoplasias/genética , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Anhidrasa Carbónica IX/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Farmacología en Red , Neoplasias Pancreáticas/genética , Quinolizinas/aislamiento & purificación , Regulación hacia Arriba/efectos de los fármacos , Matrinas
13.
J Ethnopharmacol ; 284: 114832, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34775036

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum armatum DC is a traditional medicinal plant. It is widely used in clinical treatment and disease prevention in China, India and other regions. Modern studies have reported the phytotoxicity, cytotoxicity and the animal toxicity of Zanthoxylum armatum DC, and the damage of genetic material has been observed in plants, but the detailed mechanism has not been explored. Besides, the toxicity of normal mammalian cells has not been evaluated. AIM OF THE STUDY: To evaluate the effects and underlying mechanism of genetic material damage in BRL 3A cells induced by Zanthoxylum armatum DC. MATERIALS AND METHODS: Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry was used for identification of compounds in methanol extract of Zanthoxylum armatum DC. BRL 3A cells were incubated with different concentrations of methanol extract of Zanthoxylum armatum DC (24 h). The cytotoxicity of extract was assessed with cell viability, LDH release rate, and ROS production. The damage of genetic material was assessed with OTM value of comet cells, cell cycle and the expression levels of p-ATM, p- Chk2, Cdc25A, and CDK2. RESULTS: Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry investigation revealed the presence of compounds belonging to flavonoid, fatty acid and alkaloid groups. The viability of BRL 3A cells was reduced in a time-dose dependent manner treated by methanol extract of Zanthoxylum armatum DC. It increased LDH release rate and ROS production, activated the DNA double strand damage marker of γH2AX and produced comet cells. In addition, methanol extract of Zanthoxylum armatum DC caused ATM-mediated DNA damage, further phosphorylated Chk2, inhibited cell cycle related proteins, and arrested the G1/S cycle. CONCLUSIONS: Methanol extract of Zanthoxylum armatum DC induces DNA damage and further leads G1/S cell cycle arrest by triggering oxidative stress in the BRL 3A cells. This study provides some useful evidences for its development as an antitumor drug via activation of ATM/Chk2.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Quinasa de Punto de Control 2/metabolismo , Daño del ADN/efectos de los fármacos , Extractos Vegetales/farmacología , Zanthoxylum/química , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular , Supervivencia Celular , Quinasa de Punto de Control 2/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Fitoterapia , Extractos Vegetales/química , Ratas , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos
14.
Int J Mol Med ; 49(2)2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34958109

RESUMEN

Ailanthone (AIL) is a major quassinoid extracted from the Chinese medicinal herb, Ailanthus altissima, which has been reported to exert anti­proliferative effects on various cancer cells. The present study aimed to investigate the antitumor effects of AIL on HCT116 and SW620 colon cancer cells, and to analyze the underlying molecular mechanisms. CCK­8 assay was used to detect cell viability. Furthermore, colony formation and Transwell assays, and flow cytometry were used to examine the effects of AIL on cell proliferation, apoptosis and migration. Finally, the expression levels of cell cycle control proteins, and caspase and Bcl­2 family­related proteins involved in the regulation of apoptosis, as well as those of cell migration­ and pathway­related proteins were examined using western blot analysis. Reverse transcription­quantitative PCR was used to quantitatively analyze the changes in the JAK and STAT3 gene levels in each group. The in vitro cell function tests revealed that AIL inhibited the proliferation and migration, and induced the apoptosis and cell cycle arrest of HCT116 and SW620 cells. It was further found exerted these effects via the JAK/STAT3 signaling pathway, as well as through caspase and Bcl­2 family proteins. On the whole, the present study demonstrates that AIL suppresses the activity of colon cancer cells via the STAT3 pathway.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Cuassinas/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Quinasas Janus/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Cuassinas/química , Transducción de Señal/efectos de los fármacos
15.
J Ethnopharmacol ; 287: 114937, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-34958876

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bolbostemma paniculatum (Maxim.) Franquet (BPF), a kind of Chinese medicine, has been traditionally used in treating mastitis, dysentery, phlegm nuclear, and sore swelling poison. AIM OF THE STUDY: In current study, we tried to investigate the possible anti-colorectal cancer (CRC) effects of BPF. MATERIALS AND METHODS: The effects of BPF extract on human colon cancer cells HCT-116 and SW-620, and a colitis associated colorectal cancer (CACC) mouse model were evaluated using the method of experimental pharmacology combined with network pharmacology. RESULTS: The ethyl acetate extract 3 (EA3) of BPF showed the most potent growth inhibitory effect in CRC cells. It could inhibit the clone formation, induce the apoptosis and cell cycle arrest in G1 phase as well as suppress the invasion and migration of CRC cells. And EA3 prevented ICR mice against CACC effectively. Both KEGG and GO analysis indicated that EA3 may inhibit CRC through influencing PI3K/Akt pathway. Results of Western blot analysis and ELISA confirmed that the molecules in the pathway were affected by EA3. CONCLUSIONS: These results demonstrate that EA3 from BPF could suppress the development of CRC through inhibiting the activity of PI3K/Akt pathway.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Colorrectales/prevención & control , Cucurbitaceae/química , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Colitis/complicaciones , Colitis/tratamiento farmacológico , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Células HCT116 , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Farmacología en Red , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Pathol Oncol Res ; 27: 1610048, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955688

RESUMEN

The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is frequently associated to high treatment resistance. Gemcitabine (GEM) alone or in combination is the most used chemotherapy for unresecable PDACs. Here we studied whether modulated electro-hyperthermia (mEHT), a non-invasive complementary treatment, can support the effect of GEM on PDAC cells in vitro. The LD20 for the GEM-resistant Panc1 cells proved to be 200× higher than for the drug-sensitive Capan1. The mEHT alone caused significant apoptosis in Capan1 cultures as confirmed by the elevated SubG1 phase cell fraction and increased number of cleaved Caspase-3 positive cells 48 h after treatment, with an additive effect when GEM was used after hyperthermia. These were accompanied by reduced number of G1, S, and G2/M phase cells and elevated expression of the cyclin-dependent kinase inhibitor p21waf1 protein. In GEM-resistant Panc1 cells, an initial apoptosis was detected by flow cytometry 24 h after mEHT ± GEM treatment, which however diminished by 48 h at persistent number of cleaved Caspase-3 positive tumor cells. Though GEM monotherapy reduced the number of tumor progenitor colonies in Capan1 cell line, an additive colony inhibitory effect of mEHT was observed after mEHT + GEM treatment. The heat shock induced Hsp27 and Hsp70 proteins, which are known to sensitize PDAC cells to GEM were upregulated in both Capan1 and Panc1 cells 24 h after mEHT treatment. The level of E-Cadherin, a cell adhesion molecule, increased in Capan1 cells after mEHT + GEM treatment. In conclusion, in GEM-sensitive PDAC cells mEHT treatment alone induced cell death and cell cycle inhibition and improved GEM efficiency in combination, which effects were milder and short-term up to 24 h in the GEM-resistant Panc1 cells. Our data further support the inclusion of hyperthermia, in particular of mEHT, into the traditional oncotherapy regimens of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/terapia , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos/efectos de los fármacos , Hipertermia Inducida , Neoplasias Pancreáticas/terapia , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Adhesión Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Proteínas de Choque Térmico/metabolismo , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Gemcitabina
17.
PLoS One ; 16(12): e0260545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34914725

RESUMEN

Cellular senescence causes irreversible growth arrest of cells. Prolonged accumulation of senescent cells in tissues leads to increased detrimental effects due to senescence associated secretory phenotype (SASP). Recent findings suggest that elimination of senescent cells has a beneficial effect on organismal aging and lifespan. In this study, using a validated replicative senescent human dermal fibroblasts (HDFs) model, we showed that elimination of senescent cells is possible through the activation of an apoptotic mechanism. We have shown in this replicative senescence model, that cell senescence is associated with DNA damage and cell cycle arrest (p21, p53 markers). We have shown that Silybum marianum flower extract (SMFE) is a safe and selective senolytic agent targeting only senescent cells. The elimination of the cells is induced through the activation of apoptotic pathway confirmed by annexin V/propidium iodide and caspase-3/PARP staining. Moreover, SMFE suppresses the expression of SASP factors such as IL-6 and MMP-1 in senescent HDFs. In a co-culture model of senescent and young fibroblasts, we demonstrated that senescent cells impaired the proliferative capacities of young cells. Interestingly, when the co-culture is treated with SMFE, the cell proliferation rate of young cells is increased due to the decrease of the senescent burden. Moreover, we demonstrated in vitro that senescent fibroblasts trigger senescent process in normal keratinocytes through a paracrine effect. Indeed, the conditioned medium of senescent HDFs treated with SMFE reduced the level of senescence-associated beta-galactosidase (SA-ß-Gal), p16INK4A and SASP factors in keratinocytes compared with CM of senescent HDFs. These results indicate that SMFE can prevent premature aging due to senescence and even reprograms aged skin. Indeed, thanks to its senolytic and senomorphic properties SMFE is a candidate for anti-senescence strategies.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Silybum marianum/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Dermis/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Flores/química , Flores/metabolismo , Humanos , Silybum marianum/metabolismo , Fitoquímicos/análisis , Extractos Vegetales/química , Fenotipo Secretor Asociado a la Senescencia/efectos de los fármacos
18.
Molecules ; 26(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34885992

RESUMEN

Conventional cancer treatments have shown several unfavourable adverse effects, as well as an increase in anticancer drug resistance, which worsens the impending cancer therapy. Thus, the emphasis is currently en route for natural products. There is currently great interest in the natural bioactive components from medicinal plants possessing anticancer characteristics. For example, clove (Syzygium aromaticum L.) (Family Myrtaceae) is a highly prized spice that has been historically utilized as a food preservative and for diverse medical uses. It is reckoned amongst the valued sources of phenolics. It is indigenous to Indonesia but currently is cultivated in various places of the world. Among diverse active components, eugenol, the principal active component of S. aromaticum, has optimistic properties comprising antioxidant, anti-inflammatory, and anticancer actions. Eugenol (4-allyl-2-methoxyphenol) is a musky oil that is mainly obtained from clove. It has long been utilized all over the world as a result of its broad properties like antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Eugenol continues to pique investigators' interest because of its multidirectional activities, which suggests it could be used in medications to treat different ailments. Anticancer effects of eugenol are accomplished by various mechanisms like inducing cell death, cell cycle arrest, inhibition of migration, metastasis, and angiogenesis on several cancer cell lines. Besides, eugenol might be utilized as an adjunct remedy for patients who are treated with conventional chemotherapy. This combination leads to a boosted effectiveness with decreased toxicity. The present review focuses on the anticancer properties of eugenol to treat several cancer types and their possible mechanisms.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antineoplásicos/administración & dosificación , Antioxidantes/administración & dosificación , Eugenol/administración & dosificación , Neoplasias/tratamiento farmacológico , Fitoquímicos/administración & dosificación , Fitoterapia/métodos , Syzygium/química , Animales , Antiinflamatorios/química , Antineoplásicos/química , Antioxidantes/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Aceite de Clavo/química , Eugenol/química , Humanos , Neoplasias/patología , Aceites Volátiles/química , Fitoquímicos/química , Plantas Medicinales/química , Resultado del Tratamiento
19.
Pak J Pharm Sci ; 34(4): 1449-1458, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34799321

RESUMEN

In this research, atractylenolide II (ATR II) on apoptosis, cell cycle cells via ER pathway in breast cancer (MDA-MB-231 and MCF-7) cells are assessed. The effect of ATR II on cell proliferation was detected by MTT assay. Additional flow cytometry, luciferase, the western blot were performed to detect the signaling pathway cytotoxicity of ATR II. We have also carried out autodock measurements to validate our results. Our findings showed ATR II could inhibit breast cancer cell growth by apoptosis mainly through G2/M-phase cell cycle arrest. Besides, the cytotoxicity of ATTR II on breast cancer was also correlated by the regulation of endrogen receptors and promising an anti-inflammatory activity via inhibiting NF-KB signaling pathways. Taking together, ATR II could be a potential anti-cancer drug for breast cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Lactonas/uso terapéutico , Receptores de Estrógenos/efectos de los fármacos , Sesquiterpenos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Lactonas/farmacología , Células MCF-7/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Sesquiterpenos/farmacología
20.
Oxid Med Cell Longev ; 2021: 5529518, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603598

RESUMEN

T-cell malignancies are still difficult to treat due to a paucity of plans that target critical dependencies. Drug-induced cellular senescence provides a permanent cell cycle arrest during tumorigenesis and cancer development, particularly when combined with senolytics to promote apoptosis of senescent cells, which is an innovation for cancer therapy. Here, our research found that wogonin, a well-known natural flavonoid compound, not only had a potential to inhibit cell growth and proliferation but also induced cellular senescence in T-cell malignancies with nonlethal concentration. Transcription activity of senescence-suppression human telomerase reverse transcriptase (hTERT) and oncogenic C-MYC was suppressed in wogonin-induced senescent cells, resulting in the inhibition of telomerase activity. We also substantiated the occurrence of DNA damage during the wogonin-induced aging process. Results showed that wogonin increased the activity of senescence-associated ß-galactosidase (SA-ß-Gal) and activated the DNA damage response pathway mediated by p53. In addition, we found the upregulated expression of BCL-2 in senescent T-cell malignancies because of the antiapoptotic properties of senescent cells. Following up this result, we identified a BCL-2 inhibitor Navitoclax (ABT-263), which was highly effective in decreasing cell viability and inducing apoptotic cell death in wogonin-induced senescent cells. Thus, the "one-two punch" approach increased the sensibility of T-cell malignancies with low expression of BCL-2 to Navitoclax. In conclusion, our research revealed that wogonin possesses potential antitumor effects based on senescence induction, offering a better insight into the development of novel therapeutic methods for T-cell malignancies.


Asunto(s)
Antineoplásicos/farmacología , Senescencia Celular/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Compuestos de Anilina/farmacología , Antineoplásicos/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Flavanonas/farmacología , Flavanonas/uso terapéutico , Heterocromatina/efectos de los fármacos , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Linfoma de Células T/tratamiento farmacológico , Linfoma de Células T/patología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Sulfonamidas/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA