Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 101: 485-493, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29501770

RESUMEN

Although the beneficial effects of quercetin on oligodendrocyte precursor cell (OPCs) population has been evaluated in-vitro, there are few studies about the effects of quercetin on myelin repair in the context of demyelination. The aim of this study was to investigate the effects of querectin on functional recovery and myelin repair of optic chiasm in lysolecithin (LPC)-induced demyelination model. Demyelination was induced by local injection of LPC 1% (2 µl) into rat optic chiasm. Querectin at doses 25 or 50 mg/kg was administrated daily by oral gavage for 7 or 14 days post LPC. Visual evoked potential (VEPs) recordings were used to assess the functional property of the optic pathway. Immunostaining and myelin staining were performed on brain sections 7 or 14 days post lesion. Electrophysiological data indicated that LPC injection increased the latency of VEPs waves and quercetin effectively reduced the delay of visual signals. The level of glial activation was alleviated in animals under treatment of quercetin compared to vehicle group. Furthermore, quercetin treatment decreased the extent of demyelination areas and increased the remyelination process following LPC injection. Overall, our findings indicate that quercetin could remarkably improve the functional recovery of the optic pathway by its protective effects on myelin sheath and attenuation of glial activation.


Asunto(s)
Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Lecitinas/farmacología , Vaina de Mielina/efectos de los fármacos , Quiasma Óptico/efectos de los fármacos , Quercetina/farmacología , Animales , Modelos Animales de Enfermedad , Potenciales Evocados Visuales/efectos de los fármacos , Masculino , Ratas , Ratas Wistar
2.
J Surg Res ; 192(1): 206-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24948541

RESUMEN

BACKGROUND: Neuroinflammation has been proven to play a crucial role in early brain injury pathogenesis and represents a target for treatment of subarachnoid hemorrhage (SAH). Astaxanthin (ATX), a dietary carotenoid, has been shown to have powerful anti-inflammation property in various models of tissue injury. However, the potential effects of ATX on neuroinflammation in SAH remain uninvestigated. The goal of this study was to investigate the protective effects of ATX on neuroinflammation in a rat prechiasmatic cistern SAH model. METHODS: Rats were randomly distributed into multiple groups undergoing the sham surgery or SAH procedures, and ATX (25 mg/kg or 75 mg/kg) or equal volume of vehicle was given by oral gavage at 30 min after SAH. All rats were sacrificed at 24 h after SAH. Neurologic scores, brain water content, blood-brain barrier permeability, and neuronal cell death were examined. Brain inflammation was evaluated by means of expression changes in myeloperoxidase, cytokines (interleukin-1ß, tumor necrosis factor-α), adhesion molecules (intercellular adhesion molecule-1), and nuclear factor kappa B DNA-binding activity. RESULTS: Our data indicated that post-SAH treatment with high dose of ATX could significantly downregulate the increased nuclear factor kappa B activity and the expression of inflammatory cytokines and intercellular adhesion molecule-1 in both messenger RNA transcription and protein synthesis. Moreover, these beneficial effects lead to the amelioration of the secondary brain injury cascades including cerebral edema, blood-brain barrier disruption, neurological dysfunction, and neuronal degeneration. CONCLUSIONS: These results indicate that ATX treatment is neuroprotective against SAH, possibly through suppression of cerebral inflammation.


Asunto(s)
Neuritis/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Hemorragia Subaracnoidea/tratamiento farmacológico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/inmunología , Edema Encefálico/metabolismo , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Masculino , FN-kappa B/metabolismo , Neuritis/inmunología , Neuritis/metabolismo , Quiasma Óptico/efectos de los fármacos , Quiasma Óptico/inmunología , Quiasma Óptico/metabolismo , Ratas Sprague-Dawley , Hemorragia Subaracnoidea/inmunología , Hemorragia Subaracnoidea/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Xantófilas/farmacología
3.
Biol Reprod ; 56(6): 1544-9, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9166708

RESUMEN

In the present study we have identified a site of action of estradiol in the inhibition of LH secretion during anestrus in the ewe. In the first experiment, we studied six sites: the medial preoptic area, the lateral preoptic area, the ventromedial hypothalamus, the ventrolateral hypothalamus, the retrochiasmatic area (RCh), and the periventricular posterior hypothalamus. We compared the changes in parameters of pulsatile LH secretion (interpulse interval, mean nadir, mean amplitude, and mean area under curve) during three 6-h sampling periods: before and 30-36 h and 9 days after intracerebral implantation of crystalline estradiol. Animals that received estradiol in the RCh (n = 5) showed a significantly greater increase in both the intervals between pulses of LH (up 116%, p < 0.03) and the area under the curve (up 180%, p < 0.01) than any of the other groups of 7 animals. In the second experiment, implantation of estradiol in the RCh (n = 6) induced an increase in the intervals between pulses of LH (p < 0.03), whereas receiving an empty implant (n = 6) had no effect, showing that estradiol specifically induced increases in the intervals between pulses. Thus, estradiol appears to act in the RCh where the dopaminergic A15 nucleus, known to inhibit pulsatile LH release, is located.


Asunto(s)
Anestro/efectos de los fármacos , Anestro/fisiología , Estradiol/farmacología , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Hormona Luteinizante/metabolismo , Quiasma Óptico/efectos de los fármacos , Quiasma Óptico/fisiología , Animales , Implantes de Medicamentos , Estradiol/administración & dosificación , Femenino , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/fisiología , Hipotálamo Posterior/efectos de los fármacos , Hipotálamo Posterior/fisiología , Ovariectomía , Área Preóptica/efectos de los fármacos , Área Preóptica/fisiología , Estaciones del Año , Ovinos , Núcleo Hipotalámico Ventromedial/efectos de los fármacos , Núcleo Hipotalámico Ventromedial/fisiología
5.
Brain Res ; 202(1): 165-82, 1980 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-7427732

RESUMEN

Injections of kainic acid (KA) into the lateral hypothalamus (LH) produce neuronal loss in this region without apparent damage to medial forebrain bundle fibers passing through the area. Cellular destruction is not limited to the LH; the neuronal loss in the thalamic reticular nucleus, the subthalamic nucleus and zona incerta is more extensive than that in the LH. Since all of the nuclei of ventral thalamic origin except the ventral lateral geniculate nucleus (VLGN) were destroyed by LH injections of KA, we sought to determine whether this nucleus also is sensitive to KA. Injections directly into the VLGN produce total neuronal loss here as well as in the thalamic reticular nucleus, zona incerta and subthalamic nucleus. Other areas showing cell loss are the dorsal LGN, medial geniculate, lateral portion of the ventrobasal complex and midline thalamic nuclei. Injections of KA into medial hypothalamus adjacent to the suprachiasmatic nucleus produced no neuronal degeneration. In addition, no neuronal loss was noted in medial hypothalamic nuclei lying adjacent to areas of LH in which KA was injected. Therefore, the sensitivity of diencephalic nuclei appears to range from highly sensitive regions such as derivatives of ventral thalamus and midline thalamic nuclei to regions of moderate sensitivity such as the LH, geniculate nuclei and ventrobasal thalamic nucleus, to regions resistant to KA toxicity such as the suprachiasmatic nucleus and other nuclei and areas of medial hypothalamus.


Asunto(s)
Diencéfalo/efectos de los fármacos , Ácido Kaínico/toxicidad , Pirrolidinas/toxicidad , Animales , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Cuerpos Geniculados/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Fibras Nerviosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Norepinefrina/metabolismo , Quiasma Óptico/efectos de los fármacos , Ratas , Receptores Dopaminérgicos/efectos de los fármacos , Núcleo Supraóptico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA