Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.029
Filtrar
Más filtros

Medicinas Tradicionales
Medicinas Complementárias
Intervalo de año de publicación
1.
J Environ Sci (China) ; 143: 148-163, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644013

RESUMEN

Rivers worldwide are under stress from eutrophication and nitrate pollution, but the ecological consequences overlap with climate change, and the resulting interactions may be unexpected and still unexplored. The Po River basin (northern Italy) is one of the most agriculturally productive and densely populated areas in Europe. It remains unclear whether the climate change impacts on the thermal and hydrological regimes are already affecting nutrient dynamics and transport to coastal areas. The present work addresses the long-term trends (1992-2020) of nitrogen and phosphorus export by investigating both the annual magnitude and the seasonal patterns and their relationship with water temperature and discharge trajectories. Despite the constant diffuse and point sources in the basin, a marked decrease (-20%) in nitrogen export, mostly as nitrate, was recorded in the last decade compared to the 1990s, while no significant downward trend was observed for phosphorus. The water temperature of the Po River has warmed, with the most pronounced signals in summer (+0.13°C/year) and autumn (+0.16°C/year), together with the strongest increase in the number of warm days (+70%-80%). An extended seasonal window of warm temperatures and the persistence of low flow periods are likely to create favorable conditions for permanent nitrate removal via denitrification, resulting in a lower delivery of reactive nitrogen to the sea. The present results show that climate change-driven warming may enhance nitrogen processing by increasing respiratory river metabolism, thereby reducing export from spring to early autumn, when the risk of eutrophication in coastal zones is higher.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Eutrofización , Nitrógeno , Fósforo , Ríos , Temperatura , Contaminantes Químicos del Agua , Fósforo/análisis , Nitrógeno/análisis , Ríos/química , Italia , Contaminantes Químicos del Agua/análisis , Estaciones del Año
2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646758

RESUMEN

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Asunto(s)
Oryza , Ríos , Suelo , Humedales , Suelo/química , China , Ríos/química , Oryza/crecimiento & desarrollo , Oryza/química , Monitoreo del Ambiente , Agricultura/métodos , Fósforo/análisis , Fósforo/química , Carbono/análisis , Carbono/química
3.
J Contam Hydrol ; 261: 104287, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38219283

RESUMEN

Semi-arid rivers are particularly vulnerable and responsive to the impacts of industrial contamination. Prompt identification and projection of pollutant dynamics are crucial in the accidental pollution incidents, therefore required the timely informed and effective management strategies. In this study, we collected water quality monitoring data from a typical semi-arid river. By water quality inter-correlation mapping, we identified the regularity and abnormal fluctuations of pollutant discharges. Combining the association rule method (Apriori) and characterized pollutants of different industries, we tracked major industrial pollution sources in the Dahei River Basin. Meanwhile, we deployed the integrated multivariate long and short-term memory network (LSTM) to forecast principal contaminants. Our findings revealed that (1) biological oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen, total phosphorus, and ammonia nitrogen exhibited high inter-correlations in water quality mapping, with lead and cadmium also demonstrating a strong association; (2) The main point sources of contaminant were coking, metal mining, and smelting industries. The government should strengthen the regulation and control of these industries and prevent further pollution of the river; (3) We confirmed 4 key pollutants: COD, ammonia nitrogen, total nitrogen, and total phosphorus. Our study accurately predicted the future changes in this water quality index. The best results were obtained when the prediction period was 1 day. The prediction accuracies reached 85.85%, 47.15%, 85.66%, and 89.07%, respectively. In essence, this research developed effective water quality traceability and predictive analysis methods in semi-arid river basins. It provided an effective tool for water quality surveillance in semi-arid river basins and imparts a scientific scaffold for the environmental stewardship endeavors of pertinent authorities.


Asunto(s)
Aprendizaje Profundo , Contaminantes Químicos del Agua , Calidad del Agua , Monitoreo del Ambiente/métodos , Amoníaco/análisis , Contaminantes Químicos del Agua/análisis , Ríos/química , Nitrógeno/análisis , Fósforo , China , Contaminación del Agua/análisis
4.
Chemosphere ; 352: 141275, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253089

RESUMEN

Priority water pollutants comprising six plasticizers, 18 volatile organic compounds (VOCs), total petroleum hydrocarbon (TPH), 1,4-dioxane, epichlorohydrin, formaldehyde, acrylamide, and cyanides were determined in surface river sediments to assess their distribution patterns and ecological risks. Among these, di (2-ethylhexyl) phthalate (DEHP), toluene, TPH, and acrylamide were frequently found in sediments. The industrial sites had higher concentrations of ∑plasticizers (median 628 ng/g dry weight (dw)), ∑VOCs (median 3.35 ng/g dw), acrylamide (median 0.966 ng/g dw), and TPH (median 152 µg/g dw) in sediments than the mixed and non-industrial areas. The other pollutants did not show the significant differences in levels according to site types because of their relatively low detection frequencies. Volatile and soluble substances as well as hydrophobic pollutants were predominantly detected in surface sediments from industrial areas. Sediment contamination patterns were affected by the size and composition of the industrial zones around the sampling sites. The ecological risks determined using the sediment quality guidelines (DEHP, VOCs, and TPH) and the mean probable effect level quotients (DEHP) were mostly acceptable. However, the two most representative industrial regions (the largest industrial area and the first industrial city) showed risks of concern for DEHP and TPH.


Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Petróleo , Ácidos Ftálicos , Contaminantes Químicos del Agua , Contaminantes del Agua , Ríos/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Plastificantes , Sedimentos Geológicos/química , Acrilamidas , China , Monitoreo del Ambiente
5.
Environ Sci Process Impacts ; 26(2): 247-258, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38270214

RESUMEN

In aquatic systems, dissolved organic matter (DOM) has important ecological and biogeochemical functions, where the molecular composition of DOM has larger-scale implications for climate change and global carbon cycles. However, there is limited information about the relationships between landscape characteristics and human disturbance that influence the molecular composition of DOM changes in watersheds. In this study, we collected water samples from 22 sites across a gradient of topographically characterized agricultural land coverage and community infrastructure development in the Kawartha region in Ontario, Canada. We employed a combination of Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and absorbance spectroscopy to investigate changes in the molecular composition of DOM with increasing agricultural and community development disturbance on the optical and molecular characteristics of DOM. We found that dissolved organic carbon (DOC) concentrations in disturbed (>75%) watersheds ranged from 3.67-32.8 mg L-1 and were significantly higher than in watersheds with more abundant forest coverage (3.78-9.13 mg L-1). In addition, watersheds with higher phosphorus concentrations had more negative nominal oxygenation state of carbon (NOSC) values, suggesting biologically processed DOM correlating with increased phosphorus levels in aquatic systems. To relate the molecular properties of DOM to landscape metrics, we used Spearman's correlation analysis to reveal that agriculturally impacted and community developments enhanced the molecular signature of unsaturated hydrocarbon. In addition, we identified 65 dissolved organic phosphorus (DOP) molecules that significantly increased in abundance with disturbance, likely due to microbial mineralization of existing DOM with the addition of phosphorus to form larger, biologically inaccessible molecules. The overall recalcitrance of the identified molecules can serve as molecular signatures when evaluating the level of disturbance of a watershed.


Asunto(s)
Materia Orgánica Disuelta , Ríos , Humanos , Ríos/química , Agricultura , Bosques , Fósforo
6.
Environ Sci Pollut Res Int ; 31(6): 9565-9581, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191738

RESUMEN

Yangcheng Lake, a typical fishery lake in the middle and lower reaches of the Yangtze River, is threatened by eutrophication. As the main performers of biogeochemical cycles, microorganisms affect the ecological stability of the lake. To study the structural characteristics of the microbial community in Yangcheng Lake and rivers entering Yangcheng Lake and the response relationship with environmental factors, the microbial community was categorized based on the contour of Yangcheng Lake, the major rivers entering Yangcheng Lake, and the pollution sources. The distribution characteristics of seven physicochemical indices were analyzed, including total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), water temperature (WT), pH, dissolved oxygen (DO), and ratio of total nitrogen to total phosphorus (TN/TP). Characterization of microbial community structure based on 16S rRNA high-flux sequencing technology and ANOSIM analysis were used to explore the differences in the relative abundance of microorganisms at each sampling point in the lake and rivers, and redundancy analysis (RDA) was used to analyze the relationship between the microbial community and physicochemical factors. The results showed that the dominant phyla, genera of microorganisms, and the total number of OTUs in the lake and rivers were similar. The dominant phyla included Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Verrucomicrobia; the dominant genera included the hgcI clade, CL500-29 marine group, Microcystis PCC-7914, Chloroplast_norank, Clade III_norank, and Flavobacterium. ANOSIM analyses revealed that the microbial community of Yangcheng Lake exhibited an association with geographical space, while the microbial community in the rivers that was linked to the type of pollution source. Redundancy analysis (RDA) indicated that dissolved oxygen (DO), total nitrogen (TN), and pH were significantly correlated with the dominant phyla in Yangcheng Lake (p < 0.05), while total nitrogen (TN), water temperature(WT), and the ratio of total nitrogen to total phosphorus (TN/TP) were significantly related with the dominant genera in Yangcheng Lake (p < 0.05). Total nitrogen (TN) was also significantly linked to the dominant phyla and genera of the tributaries (p < 0.05). Despite the structural similarities in microbial communities between Yangcheng Lake and its inflowing rivers, environmental factors demonstrated significant associations with these communities, providing crucial data support for pollution prevention and the ecological restoration of Yangcheng Lake.


Asunto(s)
Cianobacterias , Microbiota , Lagos/química , Ríos/química , Monitoreo del Ambiente , Estaciones del Año , ARN Ribosómico 16S , Nitrógeno/análisis , Fósforo/análisis , Agua/análisis , Oxígeno/análisis , China
7.
Environ Sci Pollut Res Int ; 31(2): 2198-2213, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38055174

RESUMEN

This study investigated the concentration and fractionation of phosphorus (P) using sequential P extraction and their influencing factors by introducing the PLS-SEM model (partial least squares structural equation model) along this continuum from the Qinhuai River. The results showed that the average concentrations of inorganic P (IP) occurred in the following order: urban sediment (1499.1 mg/kg) > suburban sediment (846.1-911.9 mg/kg) > rural sediment (661.1 mg/kg) > natural sediment (179.9 mg/kg), and makes up to 53.9-87.1% of total P (TP). The same as the pattern of IP, OP nearly increased dramatically with increasing the urbanization gradient. This spatial heterogenicity of P along a river was attributed mainly to land use patterns and environmental factors (relative contribution affecting the P fractions: sediment nutrients > metals > grain size). In addition, the highest values of TP (2876.5 mg/kg), BAP (biologically active P, avg, 675.7 mg/kg), and PPI (P pollution index, ≥ 2.0) were found in urban sediments among four regions, indicating a higher environmental risk of P release, which may increase the risk of eutrophication in overlying water bodies. Collectively, this work improves the understanding of the spatial dynamics of P in the natural-rural-urban river sediment continuum, highlights the need to control P pollution in urban sediments, and provides a scientific basis for the future usage and disposal of P in sediments.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Ríos/química , Fósforo/análisis , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , China , Medición de Riesgo
8.
Glob Chang Biol ; 29(24): 7145-7158, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37815418

RESUMEN

Human-induced nitrogen-phosphorus (N, P) imbalance in terrestrial ecosystems can lead to disproportionate N and P loading to aquatic ecosystems, subsequently shifting the elemental ratio in estuaries and coastal oceans and impacting both the structure and functioning of aquatic ecosystems. The N:P ratio of nutrient loading to the Gulf of Mexico from the Mississippi River Basin increased before the late 1980s driven by the enhanced usage of N fertilizer over P fertilizer, whereafter the N:P loading ratio started to decrease although the N:P ratio of fertilizer application did not exhibit a similar trend. Here, we hypothesize that different release rates of soil legacy nutrients might contribute to the decreasing N:P loading ratio. Our study used a data-model integration framework to evaluate N and P dynamics and the potential for long-term accumulation or release of internal soil nutrient legacy stores to alter the ratio of N and P transported down the rivers. We show that the longer residence time of P in terrestrial ecosystems results in a much slower release of P to coastal oceans than N. If contemporary nutrient sources were reduced or suspended, P loading sustained by soil legacy P would decrease much slower than that of N, causing a decrease in the N and P loading ratio. The longer residence time of P in terrestrial ecosystems and the increasingly important role of soil legacy nutrients as a loading source may explain the decreasing N:P loading ratio in the Mississippi River Basin. Our study underscores a promising prospect for N loading control and the urgency to integrate soil P legacy into sustainable nutrient management strategies for aquatic ecosystem health and water security.


Asunto(s)
Ecosistema , Suelo , Humanos , Suelo/química , Ríos/química , Fertilizantes , Nutrientes , Fósforo , Nitrógeno/análisis
9.
Environ Sci Pollut Res Int ; 30(54): 115585-115599, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37882928

RESUMEN

Small streams are essential parts of water ecosystems, such as rivers, lakes, and reservoirs, performing vital functions in the attenuation of nutrient pollution. As eutrophication becomes an increasingly severe problem in waters, it is necessary to investigate how to improve nutrient retention potential in streams. In this study, the effect of artificial manipulation was examined on transient storage and nutrient uptake in streams by setting up the stepping stone structures of flying-geese pattern (SG) and the combination mode of SG and bilaterally staggered spur dikes (SG+SD) in the channel. The tracer experiments were performed to confirm the effectiveness of SG and SG+SD in two headwater streams, which are tributaries of the Chaohu Lake basin. Additionally, the transient storage and nutrient uptake potential were assessed by the OTIS (one-dimensional transport with inflow and storage) model and the nutrient spiraling theory. Compared with the control, the implementation of SG in the Banqiao River increased the retention of ammonium (NH4+) and phosphate (PO43). Furthermore, the transient storage capacity and nutrient uptake potential in the Ershibu River were strengthened with the addition of bilaterally staggered spur dikes based on SG. These results highlight the importance of manipulating the geomorphology of the streambed to enhance the nutrient retention potential in streams.


Asunto(s)
Ecosistema , Ríos , Animales , Ríos/química , Gansos , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Nutrientes , Fósforo/análisis
10.
PLoS One ; 18(10): e0292705, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37819935

RESUMEN

The South-to-North Water Diversion East Project (SNWDP-E) is an effective way to realize the optimal allocation of water resources in China. The North Dasha River (NDR) is the reverse recharge section that receives water from the Yufu River to the Wohushan Reservoir transfer project line in the SNWDP. However, the dissolved organic matter (DOM) evolution mechanism of seasonal water transfer projects on tributary waters has not been fully elucidated. In this paper, the NDR is the main object, and the changes in the composition and distribution of spectral characteristics during the winter water transfer period (WT) as well as during the summer non-water transfer period (NWT) are investigated by parallel factor analysis (PARAFAC). The results showed that the water connectivity caused by water transfer reduces the environmental heterogeneity of waters in the basin, as evidenced by the ammonia nitrogen (NH4+-N) and total phosphorus (TP) in the water body were significantly lower (p<0.05, p<0.01) during the water transfer period than the non-water transfer period. In addition, the fluorescence intensity of DOM was significantly lower in the WT than the NWT (p<0.05) and was mainly composed of humic substances generated from endogenous sources with high stability. While the NWT was disturbed by anthropogenic activities leading to significant differences in DOM composition in different functional areas. Based on the redundancy analysis (RDA) and multiple regression analysis, it was found that the evolution of the protein-like components is dominated by chemical oxygen demand (COD) and NH4+-N factors during the WT. While the NWT is mainly dominated by total nitrogen (TN) and TP factors for the evolution of the humic-like components. This study helps to elucidate the impact of water transfer projects on the trunk basin and contribute to the regulation and management of inter-basin water transfer projects.


Asunto(s)
Materia Orgánica Disuelta , Ríos , Humanos , Ríos/química , Agua/análisis , Sustancias Húmicas/análisis , China , Nitrógeno/análisis , Fósforo/análisis , Actividades Humanas , Espectrometría de Fluorescencia
11.
Environ Sci Pollut Res Int ; 30(41): 94205-94217, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37526819

RESUMEN

To reveal the influence of the phosphorus chemical industry (PCI) on regional water environmental quality and safety, the water quality and ecotoxicological effects of a stream near a phosphorus chemical plant (PCP) in Guizhou Province, southwestern China, were investigated based on water samples collected from the stream. The results showed that the average concentrations of NH3-N, TN, P, F-, Hg, Mn, and Ni were 3.14 mg/L, 30.09 mg/L, 3.34 mg/L, 1.18 mg/L, 1.06 µg/L, 45.82 µg/L, and 11.30 µg/L, respectively. The overall water quality of the stream was in the heavily polluted category, and NH3-N, TN, P, F-, and Hg were the main pollution factors. The degree of pollution was in the order of rainy period > transitional period > dry period, and the most polluted sample site was 1100 m from the PCP. After 28 days of exposure to stream water, there was no significant change in the growth parameters of zebrafish. The gills of zebrafish showed a small amount of epithelial cell detachment and a small amount of inflammatory cell infiltration, and the liver tissue displayed a large amount of hepatocyte degeneration with loose and lightly stained cytoplasm. Compared with the control group, the %DNA in tail, tail length, tail moment, and olive tail moment were significantly increased (p < 0.05), indicating that the water sample caused DNA damage in the peripheral blood erythrocytes of zebrafish. The stream water in the PCI area was found to be polluted and exhibited significant toxicity to zebrafish, which could pose a threat to regional ecological security.


Asunto(s)
Industria Química , Ríos , Contaminantes del Agua , Contaminación Química del Agua , Contaminantes del Agua/análisis , Contaminantes del Agua/toxicidad , Calidad del Agua , Pez Cebra/crecimiento & desarrollo , Animales , China , Distribución Aleatoria , Ríos/química , Branquias/efectos de los fármacos , Hígado/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Amoníaco/análisis , Fósforo/análisis , Estaciones del Año
12.
Environ Sci Pollut Res Int ; 30(37): 87398-87411, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37421527

RESUMEN

Small urban and rural rivers usually face heavy metal pollution as a result of urbanization and industrial and agricultural activities. To elucidate the metabolic capacity of microbial communities on nitrogen and phosphorus cycle in river sediments under different heavy metal pollution backgrounds, this study collected samples in situ from two typical rivers, Tiquan River and Mianyuan River, with different heavy metal pollution levels. The microbial community structure and metabolic capacity of nitrogen and phosphorus cycles of sediment microorganisms were analyzed by high-throughput sequencing. The results showed that the major heavy metals in the sediments of the Tiquan River were Zn, Cu, Pb, and Cd with the contents of 103.80, 30.65, 25.95, and 0.44 mg/kg, respectively, while the major heavy metals in the sediments of the Mianyuan River were Cd and Cu with the contents of 0.60 and 27.81 mg/kg, respectively. The dominant bacteria Steroidobacter, Marmoricola, and Bacillus in the sediments of the Tiquan River had positive correlations with Cu, Zn, and Pb while are negatively correlated with Cd. Cd had a positive correlation with Rubrivivax, and Cu had a positive correlation with Gaiella in the sediments of the Mianyuan River. The dominant bacteria in the sediments of the Tiquan River showed strong phosphorus metabolic ability, and the dominant bacteria in the sediments of the Mianyuan River showed strong nitrogen metabolic ability, corresponding to the lower total phosphorus content in the Tiquan River and the higher total nitrogen content in the Mianyuan River. The results of this study showed that resistant bacteria became dominant bacteria due to the stress of heavy metals, and these bacteria showed strong nitrogen and phosphorus metabolic ability. It can provide theoretical support for the pollution prevention and control of small urban and rural rivers and have positive significance for maintaining the healthy development of rivers.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes Químicos del Agua , Ríos/química , Cadmio , Nitrógeno/análisis , Plomo , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Fósforo/análisis , China , Medición de Riesgo
13.
Bull Environ Contam Toxicol ; 110(6): 103, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37284960

RESUMEN

Hydrophyte debris decomposition may contribute to phosphorus (P) release from the sediments in riverine systems, but the transport and transformation of organic phosphorus during this process has not been studied well. Here, a ubiquitous hydrophyte in southern China (Alternanthera philoxeroides, A. philoxeroides) was selected to identify the processes and mechanisms of sedimentary P release in late autumn or early spring by laboratory incubation. The results showed that the physio-chemical interactions changed quickly during the beginning of the incubation, where the redox potential and dissolved oxygen at the water-sediment interface decreased rapidly, reaching reducing (299 mV) and anoxic (0.23 mg∙L-1) conditions, respectively. Soluble reactive P, dissolved total P and total P concentrations in overlying water all increased with time from 0.011, 0.025 and 0.169 mg∙L-1 to 0.100, 0.100 and 0.342 mg∙L-1 on average, respectively. Furthermore, the decomposition of A. philoxeroides induced sedimentary organic P release to overlying water, including phosphate monoester (Mono-P), and orthophosphate diesters (Diesters-P). The proportions of Mono-P and Diesters-P were higher at 3 to 9 days than at 11 to 34 days, being 29.4% and 23.3 for Mono-P, 6.3% and 5.7% for Diesters-P, respectively. Orthophosphate (Ortho-P) increased from 63.6 to 69.7% during these timeframes, which indicated the transformations of both Mono-P and Diester-P to bio-available orthophosphate (Ortho-P), causing the rising P concentration in the overlying water. Our results revealed that hydrophyte debris decomposition in river systems might lead to autochthonous P contribution even without external P import from the watershed, accelerating the trophic state of receiving waterbodies.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Fósforo/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Fosfatos/análisis , Agua , China , Lagos/química
14.
Chemosphere ; 337: 139286, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37379974

RESUMEN

The Ecuadorian Amazon has experienced a significant land use change due to the demographic increase and the expansion of the agricultural frontier. Such changes in land use have been associated to water pollution problems, including the emission of untreated urban wastewater and pesticides. Here we provide the first report on the influence of urbanization and intensive agriculture expansion on water quality parameters, pesticide contamination and the ecological status of Amazonian freshwater ecosystems of Ecuador. We monitored 19 water quality parameters, 27 pesticides, and the macroinvertebrate community in 40 sampling locations of the Napo River basin (northern Ecuador), including a nature conservation reserve and sites in areas influenced by African palm oil production, corn production and urbanization. The ecological risks of pesticides were assessed using a probabilistic approach based on species sensitivity distributions. The results of our study show that urban areas and areas dominated by African palm oil production have a significant influence on water quality parameters, affecting macroinvertebrate communities and biomonitoring indices. Pesticide residues were detected in all sampling sites, with carbendazim, azoxystrobin, diazinon, propiconazole and imidacloprid showing the largest prevalence (>80% of the samples). We found a significant effect of land use on water pesticide contamination, with residues of organophosphate insecticides correlating with African palm oil production and some fungicides with urban areas. The pesticide risk assessment indicated organophosphate insecticides (ethion, chlorpyrifos, azinphos-methyl, profenofos and prothiophos) and imidacloprid as the compounds posing the largest ecotoxicological hazard, with pesticide mixtures potentially affecting up to 26-29% of aquatic species. Ecological risks of organophosphate insecticides were more likely to occur in rivers surrounded by African palm oil plantations, while imidacloprid risks were identified in corn crop areas as well as in natural areas. Future investigations are needed to clarify the sources of imidacloprid contamination and to assess its effects for Amazonian freshwater ecosystems.


Asunto(s)
Cloropirifos , Insecticidas , Plaguicidas , Contaminantes Químicos del Agua , Plaguicidas/análisis , Ecuador , Insecticidas/análisis , Calidad del Agua , Ecosistema , Aceite de Palma , Urbanización , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agricultura , Agua Dulce , Ríos/química
15.
Environ Geochem Health ; 45(8): 6693-6711, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37355494

RESUMEN

The direct discharge of wastewater can cause severe damage to the water environment of the surface water. However, the influence of dissolved organic matter (DOM) present in wastewater on the allocation of DOM, nitrogen (N), and phosphorus (P) in rivers remains largely unexplored. Addressing the urgent need to monitor areas affected by direct wastewater discharge in a long-term and systematic manner is crucial. In this paper, the DOM of overlying water and sediment in the WWTPs-river-integrated area was characterized by ultraviolet-visible absorption spectroscopy (UV-vis), three-dimensional excitation-emission matrix combined with parallel factor (PARAFAC) method. The effects of WWTPs on receiving waters were investigated, and the potential link between DOM and N, P pollution was explored. The pollution risk was fitted and predicted using a spectral index. The results indicate that the improved water quality index (IWQI) is more suitable for the WWTPs-river integration zone. The DOM fraction in this region is dominated by humic-like matter, which is mainly influenced by WWTPs drainage as well as microbial activities. The DOM fractions in sediment and overlying water were extremely similar, but fluorescence intensity possessed more significant spatial differences. The increase in humic-like matter facilitates the production and preservation of P and also inhibits nitrification, thus affecting the N cycle. There is a significant correlation between DOM fraction, fluorescence index, and N, P. Fluorescence index (FI) fitting of overlying water DOM predicted IWQI and trophic level index, and a(254) fitting of sediment DOM predicted nitrogen and phosphorus pollution risk (FF) with good results. These results contribute to a better understanding of the impact of WWTPs on receiving waters and the potential link between DOM and N and P pollution and provide new ideas for monitoring the water environment in highly polluted areas.


Asunto(s)
Ríos , Aguas Residuales , Ríos/química , Materia Orgánica Disuelta , Espectrometría de Fluorescencia , Nitrógeno/análisis , Fósforo , Sustancias Húmicas/análisis
16.
Water Res ; 239: 120054, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201376

RESUMEN

Lentic water bodies, including lakes, reservoirs, and wetlands, retain excess nutrients in runoff from agricultural and urban activities, and protect downstream water bodies from eutrophication. To develop effective nutrient mitigation strategies, it is important to understand the controls on nutrient retention in lentic systems and what drives variability between different systems and geographical regions. Efforts to synthesize water body nutrient retention at the global scale are biased toward studies from North America and Europe. Numerous studies published in Chinese Language journals exist in the extensive China National Knowledge Infrastructure (CNKI), but are missing from global synthesis due to their absence in English language journal databases. We address this gap by synthesizing data from 417 waterbodies in China to assess hydrologic and biogeochemical drivers of nutrient retention. In this study, we found median retention of 46 and 51% for nitrogen and phosphorus, respectively, across all water bodies in our national synthesis, and on average, wetlands retain more nutrients than lakes or reservoirs. The analysis of this dataset highlights the influence of water body size on first-order nutrient removal rate constants, as well as how regional temperature variations affect nutrient retention in water bodies. The dataset was used to calibrate the HydroBio-k model, which explicitly considers the effect of residence times and temperature on nutrient retention. Application of the HydroBio-k model across China reveals patterns of nutrient removal potential, where regions with a higher density of small water bodies retain more nutrients than others, such that regions like the Yangtze River Basin with a greater proportion of smaller water bodies have greater retention rates. Our results emphasize the importance of lentic systems and their function in nutrient removal and water quality improvement, as well as the drivers and variability of these functions at the landscape scale.


Asunto(s)
Eutrofización , Contaminantes Químicos del Agua , Temperatura , Ríos/química , Lagos/química , China , Fósforo/análisis , Nitrógeno/análisis , Nutrientes/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
17.
J Environ Manage ; 343: 118249, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245314

RESUMEN

Understanding the main driving factors of oasis river nutrients in arid areas is important to identify the sources of water pollution and protect water resources. Twenty-seven sub-watersheds were selected in the lower oasis irrigated agricultural reaches of the Kaidu River watershed in arid Northwest China, divided into the site, riparian, and catchment buffer zones. Data on four sets of explanatory variables (topographic, soil, meteorological elements, and land use types) were collected. The relationships between explanatory variables and response variables (total phosphorus, TP and total nitrogen, TN) were analyzed by redundancy analysis (RDA). Partial least squares structural equation modeling (PLS-SEM) was used to quantify the relationship between explanatory as well as response variables and fit the path relationship among factors. The results showed that there were significant differences in the TP and TN concentrations at each sampling point. The catchment buffer exhibited the best explanatory power of the relationship between explanatory and response variables based on PLS-SEM. The effects of various land use types, meteorological elements (ME), soil, and topography in the catchment buffer were responsible for 54.3% of TP changes and for 68.5% of TN changes. Land use types, ME and soil were the main factors driving TP and TN changes, accounting for 95.56% and 94.84% of the total effects, respectively. The study provides a reference for river nutrients management in arid oases with irrigated agriculture and a scientific and targeted basis to mitigate water pollution and eutrophication of rivers in arid lands.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Análisis de los Mínimos Cuadrados , Ríos/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Análisis de Clases Latentes , Suelo , China , Fósforo/análisis , Nitrógeno/análisis , Nutrientes
18.
Water Res ; 238: 119991, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37130489

RESUMEN

Small water bodies such as interval water-flooded ditches, ponds, and streams serve as important nutrient sinks in many landscapes, especially in the multi-water continuum system. Yet watershed nutrient cycling models often fail to or insufficiently capture these waters, resulting in great uncertainty in quantifying the distributed transfer and retention of nutrients across diverse landscapes in a watershed. In this study, we present a network-based predictive framework of the nutrient transport process in nested small water bodies, which incorporates topology structure, hydrological and biogeochemical processes, and connectivity to perform a nonlinear and distributed scaling of nutrient transfer and retention. The framework was validated and applied to N transport in a multi-water continuum watershed in the Yangtze River basin. We show that the importance of N loading and retention depends on the spatial context of grid source and water bodies because of the great variation in location, connectivity, and water types. Our results demonstrate that hotspots in nutrient loading and retention could be accurately and efficiently identified through hierarchical network effects and spatial interactions. This offers an effective approach for the reduction of watershed-scale nutrient loads. This framework can be used in modeling to identify where and how to restore small water bodies for reduced non-point pollution from agricultural watersheds.


Asunto(s)
Ríos , Abastecimiento de Agua , Ríos/química , Contaminación Ambiental , Agua , Nutrientes , Nitrógeno/análisis , Monitoreo del Ambiente/métodos , Fósforo/análisis
19.
Environ Monit Assess ; 195(6): 698, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37209292

RESUMEN

Outbreaks of planktonic algae seriously affect the water quality of rivers and are difficult to control. Based on the analysis of the temporal and spatial variation characteristics of environmental factors, this study uses a support vector machine regression (SVR) algorithm to establish a chlorophyll a (Chl-a) prediction model and conduct Chl-a sensitivity analysis. In 2018, the average Chl-a content was 126.25 ug/L. The maximum total nitrogen (TN) content was 16.68 mg/L and high year-round. The average NH4+-N and total phosphorous (TP) contents were only 0.78 and 0.18 mg/L. The content of NH4+-N was higher in spring and increased significantly along the water flow, while TP decreased slightly along the water flow. We used a radial basis function kernel SVR model and tenfold cross-validation method to optimize parameters. The penalty parameter c was 1.4142, the kernel function parameter g was 1, and the training and verification errors were only 0.032 and 0.067, respectively, indicating a good model fit. Based on a sensitivity analysis of the SVR prediction model, the maximum sensitivity coefficients of Chl-a to TP and WT were 0.571 and 0.394, respectively, and the contributions were 33% and 22%, respectively. The next highest sensitivity coefficients were those of DO (0.28, 16%) and pH (0.243, 14%). The sensitivity coefficients of TN and NH4+-N were the lowest. According to the current water environment pollution conditions, TP is the limiting factor of Chl-a in the Qingshui River, and it is also the main prevention and control factor of phytoplankton outbreak.


Asunto(s)
Clorofila , Máquina de Vectores de Soporte , Clorofila A , Clorofila/análisis , Monitoreo del Ambiente , Eutrofización , Ríos/química , Nitrógeno/análisis , Fósforo/análisis , China , Lagos/química
20.
Environ Monit Assess ; 195(5): 602, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37084027

RESUMEN

Agricultural non-point source pollution is threatening water environmental health of the Three Gorges reservoir. However, current studies for precision management of the agricultural non-point source pollution within this area are still limited. The objective of this study was identifying the critical areas and primary sources of agricultural non-point source pollution for precision management. Firstly, the inventory analysis approach was used to estimate the discharge amount of total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) from farmland fertilizer, crop residues, livestock breeding, and daily activities. Afterwards, the deviation standardization method was applied to evaluate the emission intensity of TN, TP, and COD, as well as calculating the comprehensive pollution index (CPI) of each village, based on which the critical areas for agricultural non-point source pollution management could be distinguished. Moreover, the equivalence pollution load method was conducted to identify the primary pollution sources within each critical zone. The above methods were implemented to an emigrant town within the Three Gorges reservoir area named Gufu. Results showed that agricultural non-point source pollution in Gufu town has been alleviated to a certain extent since 2016. Nevertheless, in four areas of the town (i.e., Longzhu, Fuzi, Shendu, and Maicang), the agricultural non-point source pollution still deserved attention and improvement. For the mentioned critical areas, farmland fertilizer and livestock breeding were the primary sources causing agricultural non-point source pollution. The emission amount of TN and TP from farmland fertilizer accounted for 60% and 48% of the total, respectively. And those from livestock breeding were 29% and 46%. Our research could provide definite targets to relieve agricultural non-point source pollution, which had great significance to protect water environment while coordinating regional economic growth after emigrant resettlement.


Asunto(s)
Contaminación Difusa , Contaminantes Químicos del Agua , Contaminación Difusa/análisis , Fertilizantes/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Análisis de la Demanda Biológica de Oxígeno , Ríos/química , Agua/análisis , China , Nitrógeno/análisis , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA