Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Toxicol ; 98(4): 1135-1149, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38446233

RESUMEN

A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.


Asunto(s)
Reactivadores de la Colinesterasa , Compuestos de Pralidoxima , Taurina/análogos & derivados , Ratas , Humanos , Animales , Reactivadores de la Colinesterasa/farmacología , Trimedoxima/farmacología , Butirilcolinesterasa , Acetilcolinesterasa , Oximas/farmacología , Compuestos de Piridinio/farmacología , Antídotos/farmacología , Inhibidores de la Colinesterasa/toxicidad , Fósforo , Oxígeno
2.
Toxicol Appl Pharmacol ; 415: 115443, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33548273

RESUMEN

The brain is a critical target for the toxic action of organophosphorus (OP) inhibitors of acetylcholinesterase (AChE) such as the nerve agent sarin. However, the available oxime antidote 2-PAM only reactivates OP-inhibited AChE in peripheral tissues. Monoisonitrosoacetone (MINA), a tertiary oxime, reportedly reactivates AChE in the central nervous system (CNS). The current study investigated whether MINA would be beneficial as a supplemental oxime treatment in preventing lethality and reducing morbidity following lethal sarin exposure, MINA supplement would improve AChE recovery in the body, and MINA would be detectable in the CNS. Guinea pigs were exposed to sarin and treated with atropine sulfate and 2-PAM at one minute. Additional 2-PAM or MINA was administered at 3, 5, 15, or 30 min after sarin exposure. Survival and morbidity were assessed at 2 and 24 h. AChE activity in brain and peripheral tissues was evaluated one hour after MINA and 2-PAM treatment. An in vivo microdialysis technique was used to determine partitioning of MINA into the brain. A liquid chromatography-tandem mass spectrometry method was developed for the analysis of MINA in microdialysates. MINA-treated animals exhibited significantly higher survival and lower morbidity compared to 2-PAM-treated animals. 2-PAM was significantly more effective in reactivating AChE in peripheral tissues, but only MINA reactivated AChE in the CNS. MINA was found in guinea pig brain microdialysate samples beginning at ~10 min after administration in a dose-related manner. The data strongly suggest that a centrally penetrating oxime could provide significant benefit as an adjunct to atropine and 2-PAM therapy for OP intoxication.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antídotos/farmacología , Encéfalo/efectos de los fármacos , Reactivadores de la Colinesterasa/farmacología , Intoxicación por Organofosfatos/prevención & control , Oximas/farmacología , Sarín , Animales , Antídotos/metabolismo , Encéfalo/enzimología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Activación Enzimática , Cobayas , Masculino , Microdiálisis , Intoxicación por Organofosfatos/enzimología , Oximas/metabolismo , Permeabilidad , Compuestos de Pralidoxima/metabolismo , Compuestos de Pralidoxima/farmacología , Distribución Tisular
3.
Biomolecules ; 11(2)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513955

RESUMEN

Poisoning with organophosphorus compounds used as pesticides or misused as chemical weapons remains a serious threat to human health and life. Their toxic effects result from irreversible blockade of the enzymes acetylcholinesterase and butyrylcholinesterase, which causes overstimulation of the cholinergic system and often leads to serious injury or death. Treatment of organophosphorus poisoning involves, among other strategies, the administration of oxime compounds. Oximes reactivate cholinesterases by breaking the covalent bond between the serine residue from the enzyme active site and the phosphorus atom of the organophosphorus compound. Although the general mechanism of reactivation has been known for years, the exact molecular aspects determining the efficiency and selectivity of individual oximes are still not clear. This hinders the development of new active compounds. In our research, using relatively simple and widely available molecular docking methods, we investigated the reactivation of acetyl- and butyrylcholinesterase blocked by sarin and tabun. For the selected oximes, their binding modes at each step of the reactivation process were identified. Amino acids essential for effective reactivation and those responsible for the selectivity of individual oximes against inhibited acetyl- and butyrylcholinesterase were identified. This research broadens the knowledge about cholinesterase reactivation and demonstrates the usefulness of molecular docking in the study of this process. The presented observations and methods can be used in the future to support the search for new effective reactivators.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Animales , Dominio Catalítico , Análisis por Conglomerados , Activación Enzimática , Humanos , Ligandos , Ratones , Modelos Moleculares , Organofosfatos/química , Oximas/química , Fósforo/química , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , Teoría Cuántica , Sarín/química
4.
Chem Biol Interact ; 326: 109139, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32454005

RESUMEN

Since several decades oximes have been used as part of treatment of nerve agent intoxication with the aim to restore the biological function of the enzyme acetylcholinesterase after its covalent inhibition by organophosphorus compounds such as pesticides and nerve agents. Recent findings have illustrated that, besides oximes, certain Mannich phenols can reactivate the inhibited enzyme very effectively, and may therefore represent an attractive complementary class of reactivators. In this paper we further probe the effect of structural variation on the in vitro efficacy of Mannich phenol based reactivators. Thus, we present the synthesis of 14 compounds that are close variants of the previously reported 4-amino-2-(1-pyrrolidinylmethyl)-phenol, a very effective non-oxime reactivator, and 3 dimeric Mannich phenols. All compounds were assessed for their ability to reactivate human acetylcholinesterase inhibited by the nerve agents VX, tabun, sarin, cyclosarin and paraoxon in vitro. It was confirmed that the potency of the compounds is highly sensitive to small structural changes, leading to diminished reactivation potency in many cases. However, the presence of 4-substituted alkylamine substituents (as exemplified with the 4-benzylamine-variant) was tolerated. More surprisingly, the dimeric compounds demonstrated non-typical behavior and displayed some reactivation potency as well. Both findings may open up new avenues for designing more effective non-oxime reactivators.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Agentes Nerviosos/química , Agentes Nerviosos/farmacología , Oximas/química , Oximas/farmacología , Sustancias para la Guerra Química/química , Sustancias para la Guerra Química/farmacología , Reactivadores de la Colinesterasa/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Humanos , Relación Estructura-Actividad
5.
Drug Test Anal ; 12(7): 938-947, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32267631

RESUMEN

Oximes such as pralidoxime (2-PAM), obidoxime (Obi), and HI-6 are the only currently available therapeutic agents to reactivate inhibited acetylcholinesterase (AChE) in case of intoxications with organophosphorus (OP) compounds. However, each oxime has characteristic agent-dependent reactivating efficacy, and therefore the combined administration of complementary oximes might be a promising approach to improve therapy. Accordingly, a new high-performance liquid chromatography method with diode-array detection (HPLC-DAD) was developed and validated allowing for simultaneous or single quantification of 2-PAM, Obi, and HI-6 in human plasma. Plasma was precipitated using 5% w/v aqueous zinc sulfate solution and subsequently acetonitrile yielding high recoveries of 94.2%-101.0%. An Atlantis T3 column (150 × 2.1mm I.D., 3 µm) was used for chromatographic separation with a total run time of 15 min. Quantification was possible without interferences within a linear range from 0.12 to 120 µg/mL for all oximes. Excellent intra-day (accuracy 91.7%-98.6%, precision 0.5%-4.4%) and inter-day characteristics (accuracy 89.4%-97.4%, precision 0.4%-2.2%) as well as good ruggedness were found. Oximes in processed samples were stable for at least 12 h in the autosampler at 15°C as well as in human plasma for at least four freeze-thaw cycles. Finally, the method was applied to plasma samples of a clinical case of pesticide poisoning.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cloruro de Obidoxima/análisis , Oximas/análisis , Compuestos de Pralidoxima/análisis , Compuestos de Piridinio/análisis , Reactivadores de la Colinesterasa/análisis , Reactivadores de la Colinesterasa/sangre , Humanos , Masculino , Cloruro de Obidoxima/sangre , Oximas/sangre , Compuestos de Pralidoxima/sangre , Compuestos de Piridinio/sangre , Reproducibilidad de los Resultados
6.
Drug Chem Toxicol ; 42(3): 252-256, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29421945

RESUMEN

The development of acetylcholinesterase reactivators, i.e., antidotes against organophosphorus poisoning, is an important goal of defense research. The aim of this study was to compare cytotoxicity and chemical structure of five currently available oximes (pralidoxime, trimedoxime, obidoxime, methoxime, and asoxime) together with four perspective oximes from K-series (K027, K074, K075, and K203). The cytotoxicity of tested substances was measured using two methods - colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and impedance based real-time cytotoxicity assay - in three different cell lines (HepG2, ACHN, and NHLF). Toxicity was subsequently expressed as toxicological index IC50. The tested compounds showed different cytotoxicity ranging from 0.92 to 40.06 mM. In HepG2 cells, K027 was the least and asoxime was the most toxic reactivator. In ACHN and NHLF cell lines, trimedoxime was the compound with the lowest adverse effects, whereas the highest toxicity was found in methoxime-treated cells. The results show that at least five structural features affect the reactivators' toxicity such as the number of oxime groups in the molecule, their position on pyridinium ring, the length of carbon linker, and the oxygen substitution or insertion of the double bond into the connection chain. Newly synthetized oximes with IC50 ≥ 1 mM evaluated in this three cell lines model might appear suitable for further testing.


Asunto(s)
Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/toxicidad , Oximas/química , Oximas/toxicidad , Alternativas a las Pruebas en Animales , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Fibroblastos/efectos de los fármacos , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Dosificación Letal Mediana , Estructura Molecular , Relación Estructura-Actividad
7.
J Med Chem ; 61(17): 7630-7639, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30125110

RESUMEN

Acetylcholinesterase (AChE), a key enzyme in the central and peripheral nervous systems, is the principal target of organophosphorus nerve agents. Quaternary oximes can regenerate AChE activity by displacing the phosphyl group of the nerve agent from the active site, but they are poorly distributed in the central nervous system. A promising reactivator based on tetrahydroacridine linked to a nonquaternary oxime is also an undesired submicromolar reversible inhibitor of AChE. X-ray structures and molecular docking indicate that structural modification of the tetrahydroacridine might decrease inhibition without affecting reactivation. The chlorinated derivative was synthesized and, in line with the prediction, displayed a 10-fold decrease in inhibition but no significant decrease in reactivation efficiency. X-ray structures with the derivative rationalize this outcome. We thus show that rational design based on structural studies permits the refinement of new-generation pyridine aldoxime reactivators that may be more effective in the treatment of nerve agent intoxication.


Asunto(s)
Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Agentes Nerviosos/toxicidad , Relación Estructura-Actividad , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos/métodos , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Agentes Nerviosos/química , Cloruro de Obidoxima/farmacología , Compuestos Organofosforados/química , Compuestos Organofosforados/toxicidad
8.
Sultan Qaboos Univ Med J ; 17(3): e293-e300, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29062551

RESUMEN

OBJECTIVES: Organophosphate (OP) pesticides inhibit both red blood cell (RBC) and plasma cholinesterases (ChEs). Oximes, especially pralidoxime (2-PAM), are widely used as antidotes to treat OP poisoning. In addition, N-acetylcysteine (NAC) is sometimes used as an adjuvant antidote. The current study aimed to assess the feasibility of using NAC as a single therapeutic agent for OP poisoning in comparison to in vitro 2-PAM. METHODS: This study was carried out at the Razi Drug Research Center of Iran University of Medical Sciences, Tehran, Iran, between April and September 2014. A total of 22 healthy human subjects were recruited and 8 mL citrated blood samples were drawn from each subject. Dichlorvos-inhibited blood samples were separately exposed to low and high doses (final concentrations of 300 and 600 µmol.L-1, respectively) of 2-PAM, NAC and cysteine. Plasma and RBCs were then separated by centrifugation and their ChE activity was measured using spectrophotometry. RESULTS: Although cysteine-and not NAC-increased the ChE activity of both plasma and RBCs over those of dichlorvos, it did not increase them over those of a high dose of 2-PAM. CONCLUSION: These results suggest that the direct reactions of 2-PAM and cysteine with dichlorvos and the reactivation of phosphorylated ChEs occurr via an associative stepwise addition-elimination process. High therapeutic blood concentrations of cysteine are needed for the elevation of ChE activity in plasma and RBCs; however, both this agent and NAC may still be effective in the reactivation of plasma and RBC ChEs.


Asunto(s)
Acetilcisteína/uso terapéutico , Inhibidores de la Colinesterasa , Reactivadores de la Colinesterasa/uso terapéutico , Colinesterasas/sangre , Cisteína/farmacología , Activación Enzimática , Intoxicación por Organofosfatos/tratamiento farmacológico , Antídotos , Colinesterasas/efectos de los fármacos , Diclorvos , Eritrocitos/enzimología , Estudios de Factibilidad , Humanos , Técnicas In Vitro , Insecticidas , Irán , Intoxicación por Organofosfatos/enzimología , Compuestos de Pralidoxima/uso terapéutico
9.
Medicine (Baltimore) ; 96(11): e6375, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28296779

RESUMEN

The mortality rate caused by organophosphate (OP) poisoning is still high, even the standard treatment such as atropine and oxime improves a lot. To search for alternative therapies, this study was aimed to investigate the effects of packed red blood cell (RBC) transfusion in acute OP poisoning, and compare the therapeutic effects of RBCs at different storage times.Patients diagnosed with OP poisoning were included in this prospective study. Fresh RBCs (packed RBCs stored less than 10 days) and longer-storage RBCs (stored more than 10 days but less than 35 days) were randomly transfused or not into OP poisoning patients. Cholinesterase (ChE) levels in blood, atropine usage and durations, pralidoxime durations were measured.We found that both fresh and longer-storage RBCs (200-400 mL) significantly increased blood ChE levels 6 hours after transfusion, shortened the duration for ChE recovery and length of hospital stay, and reduced the usage of atropine and pralidoxime. In addition, fresh RBCs demonstrated stronger therapeutic effects than longer-storage RBCs.Packed RBCs might be an alternative approach in patients with OP poisoning, especially during early stages.


Asunto(s)
Transfusión de Eritrocitos/métodos , Intoxicación por Organofosfatos/terapia , Enfermedad Aguda , Atropina/uso terapéutico , Reactivadores de la Colinesterasa/uso terapéutico , Colinesterasas/sangre , Femenino , Lavado Gástrico , Humanos , Masculino , Intoxicación por Organofosfatos/tratamiento farmacológico , Compuestos de Pralidoxima/uso terapéutico , Estudios Prospectivos , Factores de Tiempo
10.
Chem Res Toxicol ; 28(5): 1036-44, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25835984

RESUMEN

Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of the soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin, and paraoxon, inhibition. We here demonstrate that ex vivo, in whole human blood, 1 µM soman was detoxified within 30 min when supplemented with 0.5 µM Y337A/F338A AChE and 100 µM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of 42 pyridinium aldoximes, and 5 imidazole 2-aldoxime N-propylpyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2-3-fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack.


Asunto(s)
Acetilcolinesterasa/genética , Acetilcolinesterasa/farmacología , Sustancias para la Guerra Química/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Oximas/farmacología , Compuestos de Piridinio/farmacología , Soman/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Humanos , Ratones , Modelos Moleculares , Mutación Puntual
11.
J Med Food ; 18(2): 157-65, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25546299

RESUMEN

Deer bone has been used as a health-enhancing food as well as an antiaging agent in traditional Oriental medicine. Recently, the water extract of deer bone (DBE) showed a neuroprotective action against glutamate or Aß1-42-induced cell death of mouse hippocampal cells by exerting antioxidant activity through the suppression of MAP kinases. The present study is to examine whether DBE improves memory impairment induced by scopolamine. DBE (50, 100 or 200 mg/kg) was administered orally to mice for 14 days, and then scopolamine (2 mg/kg, i.p.) was administered together with DBE for another 7 days. Memory performance was evaluated in the Morris water maze (MWM) test and passive avoidance test. Also, brain acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity, biomarkers of oxidative stress and the loss of neuronal cells in the hippocampus, was evaluated by histological examinations. Administration of DBE significantly restored memory impairments induced by scopolamine in the MWM test (escape latency and number of crossing platform area), and in the passive avoidance test. Treatment with DBE inhibited the AChE activity and increased the ChAT activity in the brain of memory-impaired mice induced by scopolamine. Additionally, the administration of DBE significantly prevented the increase of lipid peroxidation and the decrease of glutathione level in the brain of mice treated with scopolamine. Also, the DBE treatment restored the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase to control the level. Furthermore, scopolamine-induced oxidative damage of neurons in hippocampal CA1 and CA3 regions were prevented by DBE treatment. It is suggested that DBE may be useful for memory improvement through the regulation of cholinergic marker enzyme activities and the suppression of oxidative damage of neurons in the brain of mice treated with scopolamine.


Asunto(s)
Antioxidantes/farmacología , Huesos , Reactivadores de la Colinesterasa/análisis , Ciervos , Trastornos de la Memoria/tratamiento farmacológico , Extractos de Tejidos/farmacología , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/enzimología , Colina O-Acetiltransferasa/metabolismo , Antagonistas Colinérgicos , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Hipocampo/anatomía & histología , Peroxidación de Lípido , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Escopolamina , Superóxido Dismutasa/metabolismo
12.
J Biomol Struct Dyn ; 33(5): 978-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24805972

RESUMEN

Neuropathological cascades leading to reduced cholinergic transmission in Alzheimer's disease led to development of AChE-inhibitors. Although lethal dose of some inhibitors cause interruption with AChE mediated mechanism but reversible AChE inhibitors can assist in protection from inhibition of AChE and hence in an aim to probe potential molecules as anticholinesterase and as reactivators, computationally structure-based approach has been exploited in this work for designing new 2-amino-3-pyridoixime-dipeptides conjugates. We have combined MD simulations with flexible ligand docking approach to determine binding specificity of 2-amino-3-pyridoixime dipeptides towards AChE (PDB 2WHP). PAS residues are found to be responsible for oxime-dipeptides binding along with π-π interactions with Trp86 and Tyr286, hydrogen bonding with side chains of Asp74 and Tyr341 (Gscore -10.801 and MM-GBSA free energy -34.89 kcal/mol). The docking results depicted complementary multivalent interactions along with good binding affinity as predicted from MM-GBSA analysis. The 2-amino-3-pyridoxime-(Arg-Asn) AChE systems subjected to MD simulations under explicit solvent systems with NPT and NVT ensemble. MD simulations uncovered dynamic behavior of 2-amino-3-pyridoxime-(Arg-Asn) and exposed its mobile nature and competence to form strong long range-order contacts towards active site residues to approach inhibited serine residue and facilitated via large contribution from hydrogen bonding and water bridges along with slow and large movements of adjacent important residues. In an effort to evaluate the complete potential surface profile, 2-amino-3-pyridoxime induced reactivation pathway of sarin-serine adduct has been investigated by the DFT approach at the vacuum MO6/6-311G (d, p) level along with the Poisson-Boltzmann solvation model and found to be of relatively low energy barrier. The pKa evaluation has revealed the major deprotonated 2-amino-3-pyridoixime species having pKa of 6.47 and hence making 2-amino-3-pyridoxime-(Arg-Asn) potential anticholinesterase and reactivator for AChE under the physiological pH.


Asunto(s)
Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Reactivadores de la Colinesterasa/química , Dipéptidos/química , Oximas/química , Acetilcolinesterasa/metabolismo , Algoritmos , Sitios de Unión , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/metabolismo , Reactivadores de la Colinesterasa/farmacología , Dipéptidos/metabolismo , Dipéptidos/farmacología , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Oximas/metabolismo , Oximas/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Serina/química , Serina/metabolismo
14.
Hum Exp Toxicol ; 33(11): 1186-90, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24758785

RESUMEN

A case of organophosphate (OP) poisoning was admitted to the emergency room. The patient accepted treatment with pralidoxime (PAM), atropine, and supporting therapy. It was observed that even after 22 h after treatment, 960 mg of atropine was not enough for the patient to be atropinized. However, a 160-mg follow-up treatment of anisodamine was quite enough for atropinization after 4 h. As a case report, more studies are required before any definite conclusion can be reached regarding the use of anisodamine as a potential substitute for high-dose atropine in cases of OP poisoning.


Asunto(s)
Antídotos/uso terapéutico , Intoxicación por Organofosfatos/tratamiento farmacológico , Alcaloides Solanáceos/uso terapéutico , Atropina/uso terapéutico , Reactivadores de la Colinesterasa/uso terapéutico , Femenino , Humanos , Insecticidas/envenenamiento , Persona de Mediana Edad , Antagonistas Muscarínicos/uso terapéutico , Compuestos de Pralidoxima/uso terapéutico
15.
Chem Biol Interact ; 203(1): 67-71, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-22975155

RESUMEN

A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k(2). Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated K(ox) reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity.


Asunto(s)
Acetilcolinesterasa/metabolismo , Reactivadores de la Colinesterasa/farmacología , Oximas/farmacología , Acetamidas/química , Acetamidas/farmacología , Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/química , Evaluación Preclínica de Medicamentos , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Humanos , Cinética , Modelos Moleculares , Organofosfatos/toxicidad , Compuestos Organofosforados/toxicidad , Oximas/química , Paraoxon/toxicidad , Sarín/toxicidad
16.
Chem Biol Interact ; 203(1): 77-80, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-22960624

RESUMEN

Organophosphates (OP) inhibit acetylcholinesterase (AChE, EC 3.1.1.7), both in peripheral tissues and central nervous system (CNS), causing adverse and sometimes fatal effects due to the accumulation of neurotransmitter acetylcholine (ACh). The currently used therapy, focusing on the reactivation of inhibited AChE, is limited to peripheral tissues because commonly used quaternary pyridinium oxime reactivators do not cross the blood brain barrier (BBB) at therapeutically relevant levels. A directed library of thirty uncharged oximes that contain tertiary amine or imidazole protonable functional groups that should cross the BBB as unionized species was tested as tabun-hAChE conjugate reactivators along with three reference oximes: DAM (diacetylmonoxime), MINA (monoisonitrosoacetone), and 2-PAM. The oxime RS150D [N-((1-(3-(2-((hydroxyimino)methyl)-1H-imidazol-1-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide] was highlighted as the most promising reactivator of the tabun-hAChE conjugate. We also observed that oximes RS194B [N-(2-(azepan-1-yl)ethyl)-2-(hydroxyimino)acetamide] and RS41A [2-(hydroxyimino)-N-(2-(pyrrolidin-1-yl)ethyl)acetamide], which emerged as lead uncharged reactivators of phosphylated hAChE with other OPs (sarin, cyclosarin and VX), exhibited only moderate reactivation potency for tabun inhibited hAChE. This implies that geometry of oxime access to the phosphorus atom conjugated to the active serine is an important criterion for efficient reactivation, along with the chemical nature of the conjugated moiety: phosphorate, phosphonate, or phosphoramidate. Moreover, modification of the active center through mutagenesis enhances the rates of reactivation. The phosphoramidated-hAChE choline-binding site mutant Y337A showed three-times enhanced reactivation capacity with non-triazole imidazole containing aldoximes (RS113B, RS113A and RS115A) and acetamide derivative (RS194B) than with 2PAM.


Asunto(s)
Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Organofosfatos/toxicidad , Oximas/farmacología , Acetilcolinesterasa/genética , Barrera Hematoencefálica/efectos de los fármacos , Dominio Catalítico/genética , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacocinética , Evaluación Preclínica de Medicamentos , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Cinética , Estructura Molecular , Mutagénesis Sitio-Dirigida , Oximas/química , Oximas/farmacocinética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
17.
J Biomol Screen ; 18(1): 108-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22960781

RESUMEN

Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities. Therefore, discovering new organophosphate antidotes is a high priority. Early life stage zebrafish exposed to organophosphates exhibit several phenotypes that parallel the human response to organophosphates, including behavioral deficits, paralysis, and eventual death. Here, we have developed a high-throughput zebrafish screen in a 96-well plate format to find new antidotes that counteract organophosphate-induced lethality. In a pilot screen of 1200 known drugs, we identified 16 compounds that suppress organophosphate toxicity in zebrafish. Several in vitro assays coupled with liquid chromatography/tandem mass spectrometry-based metabolite profiling enabled determination of mechanisms of action for several of the antidotes, including reversible acetylcholinesterase inhibition, cholinergic receptor antagonism, and inhibition of bioactivation. Therefore, the in vivo screen is capable of discovering organophosphate antidotes that intervene in distinct pathways. These findings suggest that zebrafish screens might be a broadly applicable approach for discovering compounds that counteract the toxic effects of accidental or malicious poisonous exposures.


Asunto(s)
Antídotos/farmacología , Ensayos Analíticos de Alto Rendimiento , Organofosfatos/toxicidad , Paratión/toxicidad , Animales , Atropina/farmacología , Línea Celular Tumoral , Antagonistas Colinérgicos/farmacología , Reactivadores de la Colinesterasa/farmacología , Evaluación Preclínica de Medicamentos , Emetina/farmacología , Glicopirrolato/farmacología , Humanos , Dosificación Letal Mediana , Metoclopramida/farmacología , Neostigmina/farmacología , Pirenzepina/análogos & derivados , Pirenzepina/farmacología , Compuestos de Pralidoxima/farmacología , Pez Cebra
18.
Chem Biol Interact ; 203(1): 125-8, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-22827894

RESUMEN

Treatment of poisoning by various organophosphorus (OP) nerve agents with established acetylcholinesterase (AChE) reactivators (oximes) is insufficient. In consequence, extensive research programs have been undertaken in various countries in the past decades to identify more effective oximes. The efficacy of new compounds has been investigated with different in vitro and in vivo models which hamper the comparison of results from different laboratories. The crucial mechanism of action of oximes is the reactivation of phosphylated AChE. The kinetic properties of these compounds can be quantified in vitro with isolated AChE from different origin. It was tempting to evaluate the reactivation kinetics of a series of oximes with various OP inhibitors performed under identical experimental conditions in order to get insight into structural requirements for adequate affinity and reactivity towards inhibited AChE. The determination of reactivation rate constants with bispyridinium oximes having different linkers, bearing oxime group(s) at different positions and having in part additional substituents revealed that (a) the reactivating potency was dependent on the position of the oxime groups and of additional substituents, (b) small modifications of the oxime structure had an in part marked effect on the kinetic properties and (c) no single oxime had an adequate reactivating potency with AChE inhibited by structurally different OP. These and previous studies underline the necessity to investigate in detail the kinetic properties of novel oximes and that the identification of a single oxime being effective against a broad range of structurally different OP will remain a major challenge.


Asunto(s)
Acetilcolinesterasa/metabolismo , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Oximas/química , Oximas/farmacología , Acetilcolinesterasa/química , Sustancias para la Guerra Química/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Evaluación Preclínica de Medicamentos , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Humanos , Cinética , Organofosfatos/toxicidad , Compuestos Organofosforados/toxicidad , Fosforilación , Sarín/toxicidad , Relación Estructura-Actividad
19.
Chem Biol Interact ; 203(1): 135-8, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23123249

RESUMEN

A critical need for combating the effects of organophosphate (OP) anticholinesterases, such as nerve agents, is the current lack of an effective oxime reactivator which can penetrate the blood-brain barrier (BBB), and therefore reactivate inhibited acetylcholinesterase (AChE) in the brain. Our laboratories have synthesized and have initiated testing of novel phenoxyalkyl pyridinium oximes (patent pending) that are more lipophilic than currently approved oximes. This is a preliminary report on these novel oximes which have been tested in vitro in rat brain homogenates with highly relevant surrogates for sarin (phthalimidyl isopropyl methylphosphonate; PIMP) and VX (nitrophenyl ethyl methylphosphonate; NEMP). The oximes demonstrated a range of 14-76% reactivation of rat brain AChE in vitro. An in vivo testing paradigm was developed in which the novel oxime was administered at the time of maximal brain AChE inhibition (about 80%) (1h) elicited by nitrophenyl isopropyl methylphosphonate (NIMP; sarin surrogate). This paradigm, with delayed administration of oxime to a time when brain AChE was starting to recover, was designed to minimize reactivation/reinhibition of peripheral AChE during the reactivation period which would decrease the availability of the surrogate for entry into the brain; this paradigm will allow proof of concept of BBB penetrability. The initial studies of these oximes in vivo with the sarin surrogate NIMP have indicated reactivation of up to about 25% at 30 min after oxime administration and substantial attenuation of seizure behavior from some of the oximes. Therefore these novel oximes have considerable potential as brain-protecting therapeutics for anticholinesterases.


Asunto(s)
Acetilcolinesterasa/metabolismo , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/farmacocinética , Oximas/farmacología , Oximas/farmacocinética , Animales , Barrera Hematoencefálica , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Sustancias para la Guerra Química/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/química , Evaluación Preclínica de Medicamentos , Proteínas Ligadas a GPI/metabolismo , Masculino , Organofosfatos/toxicidad , Compuestos Organotiofosforados/toxicidad , Oximas/química , Ratas , Ratas Sprague-Dawley , Sarín/análogos & derivados , Sarín/toxicidad , Convulsiones/inducido químicamente , Convulsiones/prevención & control
20.
Chem Biol Interact ; 203(1): 81-4, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23111374

RESUMEN

Organophosphorus nerve agents (OPNAs) are highly toxic compounds that represent a threat to both military and civilian populations. They cause an irreversible inhibition of acetylcholinesterase (AChE), by the formation of a covalent P-O bond with the catalytic serine. Among the present treatment of nerve agents poisoning, pyridinium and bis-pyridinium aldoximes are used to reactivate this inhibited enzyme but these compounds do not readily cross the blood brain barrier (BBB) due to their permanent cationic charge and thus cannot efficiently reactivate cholinesterases in the central nervous system (CNS). In this study, a series of seven new uncharged oximes reactivators have been synthesized and their in vitro ability to reactivate VX and tabun-inhibited human acetylcholinesterase (hAChE) has been evaluated. The dissociation constant K(D) of inhibited enzyme-oxime complex, the reactivity rate constant kr and the second order reactivation rate constant k(r2) have been determined and have been compared to reference oximes HI-6, Obidoxime and 2-Pralidoxime (2-PAM). Regarding the reactivation of VX-inhibited hAChE, all compounds show a better reactivation potency than those of 2-PAM, nevertheless they are less efficient than obidoxime and HI-6. Moreover, one of seven described compounds presents an ability to reactivate tabun-inhibited hAChE equivalent to those of 2-PAM.


Asunto(s)
Acetilcolinesterasa/metabolismo , Sustancias para la Guerra Química/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/síntesis química , Reactivadores de la Colinesterasa/farmacología , Compuestos Organofosforados/toxicidad , Reactivadores de la Colinesterasa/química , Evaluación Preclínica de Medicamentos , Electroquímica , Proteínas Ligadas a GPI/metabolismo , Humanos , Estructura Molecular , Cloruro de Obidoxima/farmacología , Oximas/síntesis química , Oximas/química , Oximas/farmacología , Compuestos de Pralidoxima/farmacología , Compuestos de Piridinio/farmacología , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA