Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 234: 106402, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37734284

RESUMEN

The effects of acupuncture on the protein and gene expression of oestrogen receptors (ERs) alpha (α) and beta (ß) in testosterone-induced benign prostatic hyperplasia (BPH) in rats remains unclear. In this study, rats were randomly divided into four groups (n = 10 per group). The rats in the blank group did not receive any treatment, while the rats in the model group were injected intraperitoneally with testosterone propionate for 28 days to establish the BPH model and then randomly sub-divided into a control group, an acupuncture group and a finasteride group (positive control group). Dissections were performed after rats were anesthetized with isoflurane, and then the weight and volume of the prostate were then measured. The expression of ERs was detected via immunohistochemistry, western blot and real-time polymerase chain reaction. The results showed that ERα was discontinuously distributed in epithelial cells and expressed in large quantities in stromal cells, and ERß was aggregated and expressed in hyperplastic nodules. Acupuncture and finasteride could significantly improve the distribution of ERα and ERß which suggested that acupuncture and finasteride could improve BPH. There was no significant difference in ERα messenger ribonucleic acid (mRNA) expression among the groups, but the ERß mRNA expression in the finasteride group showed a significant difference compared with the control and acupuncture groups. The mechanism of the acupuncture treatment of BPH may be related to the increased transcription level of ERß mRNA in prostate tissues, the improved distribution of ERα expression in epithelial cells and the aggregation expression of ERs in hyperplastic nodules.


Asunto(s)
Terapia por Acupuntura , Hiperplasia Prostática , Masculino , Humanos , Ratas , Animales , Finasterida/farmacología , Hiperplasia Prostática/inducido químicamente , Hiperplasia Prostática/terapia , Hiperplasia Prostática/metabolismo , Receptores de Estrógenos/genética , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Testosterona , ARN Mensajero
2.
Sci Rep ; 13(1): 9046, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270592

RESUMEN

Estradiol (E2) affects both reproductive and non-reproductive tissues, and the sensitivity to different doses of E2 varies between tissues. Membrane estrogen receptor α (mERα)-initiated signaling plays a tissue-specific role in mediating E2 effects, however, it is unclear if mERα signaling modulates E2 sensitivity. To determine this, we treated ovariectomized C451A females, lacking mERα signaling, and wildtype (WT) littermates with physiological (0.05 µg/mouse/day (low); 0.6 µg/mouse/day (medium)) or supraphysiological (6 µg/mouse/day (high)) doses of E2 (17ß-estradiol-3-benzoate) for three weeks. Low-dose treatment increased uterus weight in WT, but not C451A mice, while non-reproductive tissues (gonadal fat, thymus, trabecular and cortical bone) were unaffected in both genotypes. Medium-dose treatment increased uterus weight and bone mass and decreased thymus and gonadal fat weights in WT mice. Uterus weight was also increased in C451A mice, but the response was significantly attenuated (- 85%) compared to WT mice, and no effects were triggered in non-reproductive tissues. High-dose treatment effects in thymus and trabecular bone were significantly blunted (- 34% and - 64%, respectively) in C451A compared to WT mice, and responses in cortical bone and gonadal fat were similar between genotypes. Interestingly, the high dose effect in uterus was enhanced (+ 26%) in C451A compared to WT mice. In conclusion, loss of mERα signaling reduces the sensitivity to physiological E2 treatment in both non-reproductive tissues and uterus. Furthermore, the E2 effect after high-dose treatment in uterus is enhanced in the absence of mERα, suggesting a protective effect of mERα signaling in this tissue against supraphysiological E2 levels.


Asunto(s)
Estradiol , Receptor alfa de Estrógeno , Femenino , Ratones , Animales , Humanos , Receptor alfa de Estrógeno/genética , Estradiol/farmacología , Huesos , Transducción de Señal , Densidad Ósea , Útero , Ovariectomía
3.
Nat Commun ; 14(1): 3076, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248237

RESUMEN

Coupling the release of pituitary hormones to the developmental stage of the oocyte is essential for female fertility. It requires estrogen to restrain kisspeptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypothalamic nucleus. However, a mechanistic basis for this region-specific effect has remained elusive. Our genomic analysis in female mice demonstrate that some processes, such as restraint of KISS1-neuron activity in the arcuate nucleus, may be explained by region-specific estrogen receptor alpha (ERα) DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in the arcuate nucleus. These studies provide mechanistic insight into how ERα may control the KISS1-neuron, and Kiss1 gene expression, to couple gonadotropin release to the developmental stage of the oocyte.


Asunto(s)
Receptor Nuclear Huérfano DAX-1 , Receptor alfa de Estrógeno , Hipotálamo , Kisspeptinas , Animales , Femenino , Ratones , Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptor Nuclear Huérfano DAX-1/genética , Receptor Nuclear Huérfano DAX-1/metabolismo
4.
Reprod Toxicol ; 118: 108389, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142062

RESUMEN

The trace element selenium (Se) is essential for the maintenance of spermatogenesis and fertility. A growing volume of evidence shows that Se is necessary for testosterone synthesis, and Se can stimulate Leydig cell proliferation. However, Se can also act as a metalloestrogen, which can mimic estrogen and activate the estrogen receptors. This study aimed to investigate Se effect on estrogen signaling and the epigenetic status of Leydig cells. Mouse Leydig cells (MA-10) were cultured in a medium supplemented with different Se concentrations (4, 8 µM) for 24 h. Next, cells were assessed for morphological and molecular (qRT PCR, western blot, immunofluorescence) analyses. Immunofluorescence revealed strong immunosignal for 5-methylcytosine in both control and treated cells, with a stronger signal in the 8 µM treated group. qRT-PCR confirmed an increased expression of methyltransferase 3 beta (Dnmt3b) in 8 µM cells. Analysis of the expression of γH2AX (a marker for double-stranded DNA breaks) revealed an increase in the DNA breaks in cells exposed to 8 µM Se. Selenium exposure did not affect the expression of canonical estrogen receptors (ERα and ERß), however, an increase in membrane estrogen receptor G-protein coupled (GPER) protein expression was observed.To sum up, in a high concentration (8 µM) Se affects GPER expression (non-genomic estrogen signaling) in Leydig cells possibly via acting on receptor protein and/or its binding. This causes DNA breaks and induces changes in Leydig cell methylation status, especially in de novo methylation which is mediated by Dnmt3b.


Asunto(s)
Células Intersticiales del Testículo , Selenio , Animales , Masculino , Ratones , Epigénesis Genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Estrógenos/metabolismo , Células Intersticiales del Testículo/metabolismo , Metilación , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Selenio/toxicidad
5.
Int Immunopharmacol ; 116: 109825, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36764277

RESUMEN

Acute cardiovascular events increase significantly in postmenopausal women. The relationship between estrogen receptor (ER) and plaque stability in the postmenopausal stage remains to be elucidated. We aimed to explore whether ERα activation improves plaque instability in the postmenopausal stage. Here, we report that postmenopausal women showed increased macrophage activation and plaque instability with increased MCP-1, MMP9, TLR4, MYD88 and NF-κB p65 and decreased ERα and TIMP1 expression in the vascular endothelium. Moreover, ovariectomy in LDLR-/- mice resulted in a significant increase in plaque area and necrotic core area, as well as a significant decrease in collagen content and an increase in macrophage accumulation in the artery. Ovariectomy also reduced serum estrogen levels and ERα expression and upregulated TLR4 and MMP9 expression in arteries in LDLR-/- mice. Estrogen or phytoestrogen therapy upregulated the expression level of ERα in ovariectomized mice and increased plaque stability by inhibiting macrophage accumulation and TLR4 signaling. In vitro, LPS incubation of RAW264.7 cells resulted in a significant decrease in ERα and TIMP1 expression and an increase in TLR4 activation, and estrogen or phytoestrogen treatment increased ERα and TIMP1 expression and inhibited TLR4 activation and MMP9 expression in LPS-treated RAW264.7 cells. Compared to control siRNA transfected RAW264.7 cells, TLR4 siRNA promoted TIMP1 expression in RAW264.7 cells with LPS incubation, but did not affect ERα expression in RAW264.7 cells with or without LPS treatment. The ERα inhibitor MPP abolished the regulatory effect of estrogen or phytoestrogen on LPS-induced RAW264.7 cells. In conclusion, the present study demonstrates that decreased ERα expression promotes macrophage infiltration and plaque instability in the postmenopausal stage, and activation of ERα in the postmenopausal stage alleviates atherosclerotic plaque instability by inhibiting TLR4 signaling and macrophage-related inflammation.


Asunto(s)
Receptor alfa de Estrógeno , Placa Aterosclerótica , Receptor Toll-Like 4 , Animales , Femenino , Ratones , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Lipopolisacáridos , Macrófagos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Fitoestrógenos , Posmenopausia , ARN Interferente Pequeño/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Humanos , Células RAW 264.7
6.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835157

RESUMEN

Adjuvant endocrine therapy (AET) is the treatment of choice for early-stage estrogen receptor alpha (ERα)-positive breast cancer (BC). However, almost 40% of tamoxifen-treated cases display no response or a partial response to AET, thus increasing the need for new treatment options and strong predictors of the therapeutic response of patients at high risk of relapse. In addition to ERα, BC research has focused on ERß1 and ERß2 (isoforms of ERß), the second ER isotype. At present, the impact of ERß isoforms on ERα-positive BC prognosis and treatment remains elusive. In the present study, we established clones of MCF7 cells constitutively expressing human ERß1 or ERß2 and investigated their role in the response of MCF7 cells to antiestrogens [4-hydroxytamoxifen (OHΤ) and fulvestrant (ICI182,780)] and retinoids [all-trans retinoic acid (ATRA)]. We show that, compared to MCF7 cells, MCF7-ERß1 and MCF7-ERß2 cells were sensitized and desensitized, respectively, to the antiproliferative effect of the antiestrogens, ATRA and their combination and to the cytocidal effect of the combination of OHT and ATRA. Analysis of the global transcriptional changes upon OHT-ATRA combinatorial treatment revealed uniquely regulated genes associated with anticancer effects in MCF7-ERß1 cells and cancer-promoting effects in MCF7-ERß2 cells. Our data are favorable to ERß1 being a marker of responsiveness and ERß2 being a marker of resistance of MCF7 cells to antiestrogens alone and in combination with ATRA.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Receptor beta de Estrógeno , Femenino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Antagonistas de Estrógenos/uso terapéutico , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Moduladores de los Receptores de Estrógeno/uso terapéutico , Fulvestrant/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Isoformas de Proteínas , Tamoxifeno/uso terapéutico , Tretinoina/uso terapéutico
7.
Free Radic Biol Med ; 194: 199-208, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470319

RESUMEN

BACKGROUND: The maturation of the hypothalamic-pituitary-gonadal (HPG) axis is crucial for the establishment of reproductive function. In female mice, neuronal nitric oxide synthase (nNOS) activity appears to be key for the first postnatal activation of the neural network promoting the release of gonadotropin-releasing hormone (GnRH), i.e. minipuberty. However, in males, the profile of minipuberty as well as the role of nNOS-expressing neurons remain unexplored. METHODS: nNOS-deficient and wild-type mice were studied during postnatal development. The expression of androgen (AR) and estrogen receptor alpha (ERα) as well as nNOS phosphorylation were evaluated by immunohistochemistry in nNOS neurons in the median preoptic nucleus (MePO), where most GnRH neuronal cell bodies reside, and the hormonal profile of nNOS-deficient male mice was assessed using previously established radioimmunoassay and ELISA methods. Gonadectomy and pharmacological manipulation of ERα were used to elucidate the mechanism of minipubertal nNOS activation and the maturation of the HPG axis. RESULTS: In male mice, minipubertal FSH release occurred at P23, preceding the LH surge at P30, when balanopreputial separation occurs. Progesterone and testosterone remained low during minipuberty, increasing around puberty, whereas estrogen levels were high throughout postnatal development. nNOS neurons showed a sharp increase in Ser1412 phosphorylation of nNOS at P23, a phenomenon that occurred even in the absence of the gonads. In male mice, nNOS neurons did not appear to express AR, but abundantly expressed ERα throughout postnatal development. Selective pharmacological blockade of ERα during the infantile period blunted Ser1412 phosphorylation of nNOS at P23. CONCLUSIONS: Our results show that the timing of minipuberty differs in male mice when compared to females, but as in the latter, nNOS activity in the preoptic region plays a role in this process. Additionally, akin to male non-human primates, the profile of minipuberty in male mice is shaped by sex-independent mechanisms, and possibly involves extragonadal estrogen sources.


Asunto(s)
Receptor alfa de Estrógeno , Piridinolcarbamato , Femenino , Ratones , Masculino , Animales , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Receptor alfa de Estrógeno/genética , Hormona Liberadora de Gonadotropina/análisis , Hormona Liberadora de Gonadotropina/metabolismo , Estrógenos/metabolismo , Gónadas/química , Gónadas/metabolismo , Neuronas/metabolismo , Hipotálamo/metabolismo
8.
Cell Biol Toxicol ; 39(4): 1215-1235, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35802278

RESUMEN

Epimedii folium (EF) is an effective herbal medicine in osteoporosis treatment, but the clinical utilization of EF has been limited due to potential hepatotoxicity. The previous studies identified that baohuoside I (BI), the main active component of EF, was relevant to EF-induced liver injury. However, the mechanisms of BI causing direct injury to hepatocytes remain unclear. Here, we reveal that BI inhibits FXR-mediated signaling pathway via targeting estrogen receptor α (ER α), leading to the accumulation of bile acids (BAs). Targeted bile acid analyses show BI alters the BA composition and distribution, resulting in impaired BA homeostasis. Mechanistically, BI induces FXR-dependent hepatotoxicity at transcriptional level. Additionally, ER α is predicted to bind to the FXR promoter region based on transcription factor binding sites databases and we further demonstrate that ER α positively regulates FXR promoter activity and affects the expression of target genes involved in BA metabolism. Importantly, we discover that ER α and its mediated FXR transcription regulation might be involved in BI-induced liver injury via ligand-dependent ER α degradation. Collectively, our findings indicate that FXR is a newly discovered target gene of ER α mediated BI-induced liver injury, and suggest BI may be responsible for EF-induced liver injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Receptores Citoplasmáticos y Nucleares , Humanos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/farmacología , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Hígado , Homeostasis , Transducción de Señal
9.
Endocrinology ; 163(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35789268

RESUMEN

Luteinizing hormone (LH) secretion during the ovarian cycle is governed by fluctuations in circulating estradiol (E2) that oppositely regulate kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) of the hypothalamus. However, how these effects are orchestrated to achieve fertility is unknown. Here, we have tested the hypothesis that AVPV and ARC neurons have different sensitivities to E2 to coordinate changes in LH secretion. Cycling and ovariectomized rats with low and high E2 levels were used. As an index of E2 responsiveness, progesterone receptor (PR) was expressed only in the AVPV of rats with high E2, showing the preovulatory LH surge. On the other hand, kisspeptin neurons in the ARC responded to low E2 levels sufficient to suppress LH release. Notably, the Esr1/Esr2 ratio of gene expression was higher in the ARC than AVPV, regardless of E2 levels. Accordingly, the selective pharmacological activation of estrogen receptor α (ERα) required lower doses to induce PR in the ARC. The activation of ERß, in turn, amplified E2-induced PR expression in the AVPV and the LH surge. Thus, ARC and AVPV neurons are differently responsive to E2. Lower E2 levels activate ERα in the ARC, whereas ERß potentiates the E2 positive feedback in the AVPV, which appears related to the differential Esr1/Esr2 ratio in these 2 brain areas. Our findings provide evidence that the distinct expression of ER isoforms in the AVPV and ARC plays a key role in the control of periodic secretion of LH required for fertility in females.


Asunto(s)
Estradiol , Kisspeptinas , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Receptores de Estrógenos/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2750-2758, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35718495

RESUMEN

This study explored the phytoestrogen-like effect of Siwu Decoction(SWD) and the estrogen receptor(ER)-mediated molecular mechanism based on network pharmacology and in vivo experiment. The active components and targets of SWD were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), and related targets of "estrogen" from GeneCards and Online Mendelian Inheritance in Man(OMIM). Cytoscape and STRING were employed to construct the protein-protein interaction(PPI) network and "chemical component-target-disease" network and core targets were identified, followed by Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the core targets by R software. For the in vivo experiment, the 22-day-old SD female rats were treated(ig) with SWD for 4 days. Via hematoxylin-eosin(HE) staining, the morphological changes of rat uterus were observed. Reverse transcriptase-polymerase chain reaction(RT-PCR) was performed to detect mRNA expression of ER subtypes, estrogen-related targets, and the main regulatory factors in the estrogen signaling pathway. The results indicated 74 targets of SWD exerted phytoestrogen-like effect. KEGG pathway enrichment result suggested that estrogen signaling pathway was closely related to the phytoestrogen-like effect of SWD. Rats in SWD group demonstrated significantly thickened endometrium and significantly decreased expression of ERα, ERß, and G protein-coupled estrogen receptor(GPER) mRNA in ovarian tissue. In addition, significant lowering of ERα and ERß mRNA expression and significant rise of GPER mRNA expression in uterine tissue were observed in the SWD group. The expression of mitogen-activated protein kinase(MAPK) p38, MEK1/2 and extracellular signal-regulated kinase(ERK)1/2 mRNA was significantly low while that of epidermal growth factor receptor(EGFR) mRNA was significantly high in both ovarian and uterine tissues of SWD group compared with those in the control group. In conclusion, the phytoestrogen-like effect of SWD is closely related to the estrogen signaling pathway. The result lays a basis for revealing molecular mechanism of SWD in the treatment of gynecological diseases.


Asunto(s)
Medicamentos Herbarios Chinos , Animales , Medicamentos Herbarios Chinos/farmacología , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Estrógenos/farmacología , Femenino , Humanos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red , Fitoestrógenos , ARN Mensajero , Ratas , Receptores de Estrógenos/genética
11.
J Nutr Health Aging ; 26(6): 558-563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35718863

RESUMEN

BACKGROUND: The development of osteoporosis is partly explained by interactions between genetic and lifestyle or environmental factors. OBJECTIVES: In the current study, we determined the relationship between coffee consumption and the risk of osteoporosis among individuals with ESR1 rs2982573 in Taiwan. DESIGN, PARTICIPANTS AND SETTING: In this population-based cross-sectional study, we used genetic, demographic, and lifestyle data from participants recruited in Taiwan Biobank (TWB) between 2016 and 2019. We used multiple logistic regression analyses to determine the relationship between osteoporosis and variant rs2982573 genotypes (TT, TC, and CC). MAIN OUTCOME: The primary outcome was osteoporosis. RESULTS: Individuals with osteoporosis (n = 515) were older than those without the disease (mean age ±SE (year); 61.324±0.361 versus 53.068 ±0.130, p<0.001). There was no significant association between rs2982573 and osteoporosis (OR, 0.904; 95% CI, 0.706-1.157; p=0.422 for TC+CC when compared with the TT genotype). Coffee consumption was associated with a lower risk of osteoporosis (OR, 0.737; 95% CI, 0.592-0.918; p=0.006). The p-value for interaction between rs2982573 and coffee consumption was 0.0393. In our subgroup analyses, the adjusted ORs (95% CI) were 0.635 (0.410-0.985) in coffee drinking TC+CC individuals and 1.095 (0.809-1.482) in non-coffee drinking TC+CC individuals, respectively when compared with their TT genotype counterparts. CONCLUSION: According to our study, participants in the TWB with the TC+CC genotype of ESR1 rs2982573 who consumed at least three cups of coffee per week were less likely to have osteoporosis.


Asunto(s)
Café , Osteoporosis , Café/efectos adversos , Estudios Transversales , Receptor alfa de Estrógeno/genética , Genotipo , Humanos , Osteoporosis/etiología , Osteoporosis/genética , Polimorfismo Genético , Factores de Riesgo
12.
Commun Biol ; 5(1): 383, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444217

RESUMEN

Estrogen receptor (ER) α is involved in several estrogen-modulated neural and peripheral functions. To determine its role in the expression of female and male reproductive behavior, a mouse line lacking the ERα in the nervous system was generated. Mutant females did not exhibit sexual behavior despite normal olfactory preference, and had a reduced number of progesterone receptor-immunoreactive neurons in the ventromedial hypothalamus. Mutant males displayed a moderately impaired sexual behavior and unaffected fertility, despite evidences of altered organization of sexually dimorphic populations in the preoptic area. In comparison, males deleted for both neural ERα and androgen receptor (AR) displayed greater sexual deficiencies. Thus, these data highlight a predominant role for neural ERα in females and a complementary role with the AR in males in the regulation of sexual behavior, and provide a solid background for future analyses of neuronal versus glial implication of these signaling pathways in both sexes.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Conducta Sexual Animal , Animales , Receptor alfa de Estrógeno/genética , Femenino , Hipotálamo/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Área Preóptica/metabolismo
13.
Exp Gerontol ; 163: 111796, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35381315

RESUMEN

Increased visceral fat is strongly associated with a series of metabolic complications. Postmenopausal women have an increased risk of visceral fat accumulation, metabolic disorders, and a high incidence of cardiovascular events. However, the effect of estrogen replacement therapy on visceral adipose tissue among postmenopausal women of different ages remains controversial, and the underlying mechanism remains unclear. Hence, it is important to understand when estrogen replacement therapy affects the function of visceral adipose tissue (VAT). Therefore, we collected VAT from pre- and post-menopausal females and we observed increased pro-inflammatory cytokines and insulin resistance-inducing factors, decreased insulin-sensitizing factors, and thermogenic factors in VAT of postmenopausal women. The analysis of adipocytes isolated from the VAT of females of different ages indicated that adiponectin and browning signature genes were significantly decreased with estrogen treatment in postmenopausal women, but were not altered in the young group. Estrogen supplementation in aged female mice (22 m) significantly prevented visceral fat accumulation. However, it deteriorated VAT function by inducing pro-inflammatory cytokines and insulin resistance-inducing factors and decreasing insulin-sensitizing and thermogenic factors. Mechanistically, estrogen induced the expression of long non-coding RNA Gas5 via binding ERα in premenopausal women, which therefore suppressed IGF2BP1 to maintain VAT function. After menopause, with the reversal of ERα/ERß ratio in VAT, estrogen supplementation mainly worked through ERß, which led to low expression levels of Gas5 and eventually caused VAT dysfunction. Our study demonstrated the adverse effects of estrogen supplementation on VAT function in aged postmenopausal population and further elucidated the involved mechanism.


Asunto(s)
Receptor alfa de Estrógeno , Resistencia a la Insulina , Anciano , Animales , Citocinas/metabolismo , Suplementos Dietéticos , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Humanos , Insulina/metabolismo , Grasa Intraabdominal/metabolismo , Ratones , Obesidad Abdominal , Posmenopausia
14.
Nat Commun ; 13(1): 1061, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217640

RESUMEN

Extensive knowledge has been gained on the transcription network controlled by ERα, however, the mechanism underlying ESR1 (encoding ERα) expression is less understood. We recently discovered that the Hippo pathway is required for the proper expression of ESR1. YAP/TAZ are transcription coactivators that are phosphorylated and inhibited by the Hippo pathway kinase LATS. Here we delineated the molecular mechanisms underlying ESR1 transcription repression by the Hippo pathway. Mechanistically, YAP binds to TEAD to increase local chromatin accessibility to stimulate transcription of nearby genes. Among the YAP target genes, Vestigial-Like Protein 3 (VGLL3) competes with YAP/TAZ for binding to TEAD transcription factor and recruits the NCOR2/SMRT repressor to the super-enhancer of ESR1 gene, leading to epigenetic alteration and transcriptional silencing. We developed a potent LATS inhibitor VT02956. Targeting the Hippo pathway by VT02956 represses ESR1 expression and inhibits the growth of ER+ breast cancer cells as well as patient-derived tumour organoids. Moreover, histone deacetylase inhibitors, such as Entinostat, induce VGLL3 expression to inhibit ER+ breast cancer cells. Our study suggests LATS as unexpected cancer therapeutic targets, especially for endocrine-resistant breast cancers.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Vía de Señalización Hippo , Femenino , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/metabolismo
15.
Mol Nutr Food Res ; 66(11): e2100857, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35212448

RESUMEN

SCOPE: Glycine is commonly used as an additive in bone health supplements, the activity and differentiation of bone mesenchymal stem cells (BMSCs) are essential to bone metabolism, but the effect of Glycine on bone metabolism and specific mechanism are not fully clarified. METHODS AND RESULTS: The ovariectomized rats to evaluate the effects of Glycine on bone quality and quantity is constructed; then used an ER signaling inhibitor (ICI182780) and an ERα deficient BMSCs to explore how Glycine mediated ERα regulating the osteogenic and adipogenic differentiation of BMSCs; furthermore, an autodock analysis is used to assess the affinity of Glycine and ERα. The results show that Glycine significantly moderated bone mass and bone microstructure in ovariectomized rats; Glycine stimulates the osteogenic differentiation and attenuates the adipogenic differentiation in OVX rats and BMSCs, and these effects could be abolished by ICI 182780; further docking experiment showes that Glycine and ERα have a stronger affinity, and finally proves that the impact of Glycine could be blocked by ERα. CONCLUSION: Glycine stimulates osteogenesis and attenuates adipogenesis in ovariectomized rats, which process may involve in ERα mediated ER signaling pathway.


Asunto(s)
Adipogénesis , Osteogénesis , Adipogénesis/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Glicina/farmacología , Ratas , Receptores de Estrógenos , Transducción de Señal
16.
Sci Rep ; 12(1): 159, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997010

RESUMEN

Huangqin decoction (HQD) is a Traditional Chinese Medicine formula for ulcerative colitis. However, the pharmacology and molecular mechanism of HQD on ulcerative colitis is still unclear. Combined microarray analysis, network pharmacology, and molecular docking for revealing the therapeutic targets and molecular mechanism of HQD against ulcerative colitis. TCMSP, DrugBank, Swiss Target Prediction were utilized to search the active components and effective targets of HQD. Ulcerative colitis effective targets were obtained by microarray data from the GEO database (GSE107499). Co-targets between HQD and ulcerative colitis are obtained by Draw Venn Diagram. PPI (Protein-protein interaction) network was constructed by the STRING database. To obtain the core target, topological analysis is exploited by Cytoscape 3.7.2. GO and KEGG enrichment pathway analysis was performed to Metascape platform, and molecular docking through Autodock Vina 1.1.2 finished. 161 active components with 486 effective targets of HQD were screened. 1542 ulcerative colitis effective targets were obtained with |Log2FC|> 1 and adjusted P-value < 0.05. The Venn analysis was contained 79 co-targets. Enrichment analysis showed that HQD played a role in TNF signaling pathway, IL-17 signaling pathway, Th17 cell differentiation, etc. IL6, TNF, IL1B, PTGS2, ESR1, and PPARG with the highest degree from PPI network were successfully docked with 19 core components of HQD, respectively. According to ZINC15 database, quercetin (ZINC4175638), baicalein (ZINC3871633), and wogonin (ZINC899093) recognized as key compounds of HQD on ulcerative colitis. PTGS2, ESR1, and PPARG are potential therapeutic targets of HQD. HQD can act on multiple targets through multi-pathway, to carry out its therapeutic role in ulcerative colitis.


Asunto(s)
Antiinflamatorios/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Colon/efectos de los fármacos , Biología Computacional , Medicamentos Herbarios Chinos/farmacología , Fármacos Gastrointestinales/farmacología , Farmacología en Red , Scutellaria baicalensis , Integración de Sistemas , Antiinflamatorios/aislamiento & purificación , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colon/inmunología , Colon/metabolismo , Colon/patología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Bases de Datos Genéticas , Medicamentos Herbarios Chinos/aislamiento & purificación , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Flavanonas/aislamiento & purificación , Flavanonas/farmacología , Fármacos Gastrointestinales/aislamiento & purificación , Redes Reguladoras de Genes , Humanos , Simulación del Acoplamiento Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , PPAR gamma/genética , PPAR gamma/metabolismo , Mapas de Interacción de Proteínas , Quercetina/aislamiento & purificación , Quercetina/farmacología , Scutellaria baicalensis/química , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/metabolismo
17.
J Ethnopharmacol ; 283: 114735, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34637969

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Qing' E Formula (QEF) is a compound preparation that was originally recorded in the 'Prescriptions of the Bureau of Taiping People's Welfare Pharmacy' during the Song Dynasty (10th century CE). It consists of four Chinese medicinal herbs, Eucommiae Cortex (Eucommia ulmoides), Psoraleae Fructus (Psoralea corylifolium), Juglandis Semen (Juglans regia), and Garlic Rhizoma. According to traditional Chinese medicine (TCM), QEF has the ability to tonify the kidney and strengthen muscle and bone. According to the 'kidney governing bone' theory in TCM, QEF is also used to treat the symptoms of climacteric syndrome, especially osteoporosis caused by reduced production of estrogen during the perimenopausal period; however, the therapeutic roles of the individual components of the QEF and their compatibility within the formula has not been investigated. AIM OF THE STUDY: In this study, the compatibility mechanism and estrogen-like action properties of the four herbal components in the QEF was elucidated according to the organizing principle of Chinese medicine formulas using both in vitro and in vivo models. MATERIALS AND METHODS: The estrogen-like effects of QEF and its herbal components were investigated in MCF7 and HEK293 cells as well as ovariectomized (OVX) rats. The estrogen-like effects of the QEF and its components were analyzed in vitro using Cell Counting Kit-8 and Luciferase reporter gene assays. In the in vivo studies, the blood plasma levels of hormones, lipids, neurotransmitters, aromatase, superoxide dismutase (SOD), and malondialdehyde (MDA) were measured through enzyme-linked immunosorbent assays (ELISAs). The histological morphologies of the target organs after exposure to QEF were investigated by HE staining and immunohistochemical methods. The expression levels of estrogen pathway-related proteins and genes in the OVX rats were measured by Western blotting and real time quantitative PCR (RT-qPCR), respectively. RESULTS: The in vitro results showed that the QEF, Eucommia (EC) and Psoralea (PF) promoted the proliferation of MCF-7 cells and upregulated the expression of ERα, ERß and pS2 genes in the MCF-7 cells. Notably, the QEF demonstrated the most active estrogen-like effects compared to the individual ingredients. The in vivo results showed that the QEF, EC, and PF increased the uterine coefficient, upregulated the expression of both ERs (ERα and ERß) in the uterus, and increased blood serum hormone levels. QEF and its individual components ameliorated menopausal-derived lipid metabolism dysfunction, increased neurotransmitter production by stimulating the adrenal glands, enhanced the antioxidant activity in the serum by increasing the concentration of SOD, reversed ovariectomy-derived atrophy in the uterus, and reduced the weight gain associated with estrogen reduction in the OVX rats. The QEF also antagonize the loss of appetite of OVX animals caused by feeding Psoralea alone, which could explain the compatibility mechanism of Qing' E Formula with reducing toxicity and increasing efficiency. CONCLUSIONS: The estrogen-like effects of Eucommia and Psoralea were mainly mediated through activation of ERα and ERß. The phytoestrogen components regulated hormone production and the expression of related proteins and genes, which indicated that these components exhibited estrogen-like therapeutic effects. However, the QEF showed the greatest estrogen-like effects compared to the individual components. Overall, this corroborated the therapeutic prowess of the QEF and clarified the pharmacodynamic interactions between the different components extracts in the QEF.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Menopausia/efectos de los fármacos , Fitoestrógenos/farmacología , Animales , Antioxidantes/metabolismo , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/toxicidad , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ovariectomía , Fitoestrógenos/química , Fitoestrógenos/toxicidad , Ratas , Ratas Sprague-Dawley
18.
J Ethnopharmacol ; 282: 114612, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34496266

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoyao San (XYS) is a famous prescription in traditional Chinese medicine, which is used in the treatment of "liver depression and spleen deficiency" syndrome. It is often used clinically to treat chronic hepatitis, liver cirrhosis, various symptoms of postmenopausal women, especially mental disorders and digestive system diseases. However, the effect of XYS on hepatic steatosis in postmenopausal women remains unclear. In this research, we investigated the effects of XYS on hepatic steatosis in ovariectomized (OVX) apolipoprotein E knockout (ApoE-/-) mice, as well as the molecular mechanisms in vitro and in vivo. MATERIALS AND METHODS: Fifty female ApoE-/- mice were divided into 5 groups: control group (Sham), model group (OVX), OVX + ß-estradiol (E2, 0.4 mg/kg) group, OVX + XYS (13.0 g/kg) group, and OVX + XYS (6.5 g/kg) group. The control group received a standard diet, while the other groups received a high-fat diet (HFD). The hepatic pathologies of the mice were examined with Oil red O staining and HE staining after 12 week treatment. Blood and liver variables were determined enzymatically. Transmission electron microscopy was used to examine the ultrastructure of hepatocytes. The expression of estrogen receptor α (ERα) and lipid metabolism genes was analyzed by real-time PCR and/or Western blot. In in vitro studies, we investigated the effect of XYS-medicated serum on the expression and activity of ERα in L02 cells by immunofluorescence and luciferase reporter assays, and examined the protection of XYS-medicated serum against free fatty acid (FFA)-induced steatosis of L02 cells. Intracellular lipid accumulation were measured by Oil red O staining and Nile red staining assay. Finally, the influence of ICI 182,780, a specific antagonist of ERα, on the protective effect of XYS-medicated serum on FFA-induced steatosis of L02 cells was investigated. RESULTS: Treatment of Ovx/ApoE-/- mice with XYS significantly decreased HFD-induced increases in hepatic steatosis and triglyceride (TG) content, accompanied by inhibition of liver X receptor α (LXRα), sterol regulatory element binding protein (SREBP)-1c and its target lipogenic genes transcription. Similarly, XYS-medicated serum reduced the size and number of lipid droplets and the cellular TG content in FFA-induced L02 cells. In addition, XYS significantly increased the ERα expression in hepatocytes in vivo and in vitro and enhanced the transcriptional activity of ERα promoter in L02 cells. And these effects could be partly reversed by the antiestrogen ICI 182,780. CONCLUSIONS: These findings suggest that XYS has an estrogen-like effect and inhibits steatosis in postmenopausal animal models by reducing the expression of genes related to TG synthesis through ERα pathway.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Receptor alfa de Estrógeno/metabolismo , Hígado Graso/tratamiento farmacológico , Fitoterapia , Animales , Línea Celular , Dieta Alta en Grasa , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados para ApoE , Ovariectomía , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
19.
Biomed Pharmacother ; 143: 112215, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649346

RESUMEN

Orchids are basically ornamental, and biological functions are seldom evaluated. This research investigated the effects of Acampe ochracea methanol extract (AOME) in ameliorating the paracetamol (PCM) induced liver injury in Wistar albino rats, evaluating its phytochemical status through UPLC-qTOF-MS analysis. With molecular docking and network pharmacology, virtual screening verified the inevitable interactions between the UPLC-qTOF-MS-characterized compounds and hepatoprotective drug receptors. The AOME has explicit a dose-dependent decrease of liver enzymes acid phosphatase (ACP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), total bilirubin, as well as an increase of serum total protein and antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH) with a virtual normalization (p < 0.05-p < 0.001) and the values were almost equivalent to the reference drug silymarin. After pretreatment with AOME, PCM-induced malondialdehyde (MDA) levels were considerably decreased (p < 0.001). Histopathological examinations corroborated the functional and biochemical findings. The AOME upregulated the genes involved in antioxidative (CAT, SOD, ß-actin, PON1, and PFK1) and hepatoprotective mechanisms in PCM intoxicated rats. An array of 103 compounds has been identified from AOME through UPLC-qTOF-MS analysis. The detected compounds were substantially related to the targets of several liver proteins and antioxidative enzymes, according to an in silico study. Virtual prediction by SwissADME and admetSAR showed that AOME has drug-like, non-toxic, and potential pharmacological activities in hepatic damage. Furthermore, VEGFA, CYP19A1, MAPK14, ESR1, and PPARG genes interact with target compounds impacting the significant biological actions to recover PCM-induced liver damage.


Asunto(s)
Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hígado/efectos de los fármacos , Orchidaceae , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Acetaminofén , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacocinética , Aromatasa/genética , Aromatasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Regulación de la Expresión Génica , Hígado/metabolismo , Hígado/patología , Masculino , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Farmacología en Red , Orchidaceae/química , Estrés Oxidativo/genética , PPAR gamma/genética , PPAR gamma/metabolismo , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacocinética , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacocinética , Mapas de Interacción de Proteínas , Ratas Wistar , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Sci Rep ; 11(1): 20095, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635729

RESUMEN

Bioactive fractions obtained from medicinal plants which have been used for the treatment of multiple diseases could exert their effects by targeting common pathways. Prior knowledge of their usage could allow us to identify novel molecular links. In this study, we explored the molecular basis of action of one such herbal formulation Cissampelos pareira L. (Cipa), used for the treatment of female hormone disorders and fever. Transcriptomic studies on MCF7 cell lines treated with Cipa extract carried out using Affymetrix arrays revealed a downregulation of signatures of estrogen response potentially modulated through estrogen receptor α (ERα). Molecular docking analysis identified 38 Cipa constituents that potentially bind (ΔG < - 7.5) with ERα at the same site as estrogen. The expression signatures in the connectivity map ( https://clue.io/; ) revealed high positive scores with translation inhibitors such as emetine (score: 99.61) and knockdown signatures of genes linked to the antiviral response such as ribosomal protein RPL7 (score: 99.92), which is a reported ERα coactivator. Further, gene knockdown experiments revealed that Cipa exhibits antiviral activity in dengue infected MCF7 cells potentially modulated through estrogen receptor 1. This approach reveals a novel pathway involving the ESR1-RPL7 axis which could be a potential target in dengue viral infection.


Asunto(s)
Antivirales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Cissampelos/química , Dengue/tratamiento farmacológico , Receptor alfa de Estrógeno/metabolismo , Extractos Vegetales/farmacología , Transcriptoma/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/virología , Dengue/metabolismo , Dengue/patología , Dengue/virología , Virus del Dengue , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Células MCF-7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA