Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bull Exp Biol Med ; 159(1): 44-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26033588

RESUMEN

Cell damage depending on activity of quinone reductase 2 (MT3 receptor) was simulated in experiments on bone marrow cell suspension and assessed by menadione-induced DNA breaks measured by comet assay. We analyzed the protective effect of afobazole interacting with MT1, MT3, σ1 receptors, and monoamine oxidase A and its main metabolite M11 that specifi cally binds to MT3 receptors. Both compounds reduced the level of menadione-induced DNA damage (afobazole was effective in lower concentrations in comparison with M-11). Conclusion was made on the contribution of MT3 receptors to the protective effect of afobazole, but the observed concentration differences indicate possible contribution of other targets of anxiolytic drug to the protective mechanisms.


Asunto(s)
Ansiolíticos/farmacología , Bencimidazoles/farmacología , Células de la Médula Ósea/efectos de los fármacos , Roturas del ADN/efectos de los fármacos , Morfolinas/farmacología , Fármacos Neuroprotectores/farmacología , Quinona Reductasas/antagonistas & inhibidores , Receptores de Melatonina/efectos de los fármacos , Animales , Ansiolíticos/metabolismo , Bencimidazoles/metabolismo , Biotransformación , Células Cultivadas , Ensayo Cometa , Dicumarol/farmacología , Evaluación Preclínica de Medicamentos , Metalotioneína 3 , Ratones , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa , Morfolinas/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , Fármacos Neuroprotectores/metabolismo , Quinona Reductasas/metabolismo , Receptor de Melatonina MT1/efectos de los fármacos , Receptores sigma/efectos de los fármacos , Vitamina K 3/toxicidad
2.
Am J Physiol Endocrinol Metab ; 305(2): E230-42, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23695212

RESUMEN

Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.


Asunto(s)
Antioxidantes/farmacología , Gluconeogénesis/efectos de los fármacos , Hipotálamo/metabolismo , Hígado/metabolismo , Melatonina/farmacología , Proteína Oncogénica v-akt/metabolismo , Receptor de Melatonina MT1/efectos de los fármacos , Receptor de Melatonina MT2/efectos de los fármacos , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Prueba de Tolerancia a la Glucosa , Hipotálamo/efectos de los fármacos , Inyecciones Intraventriculares , Hígado/efectos de los fármacos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Ácido Pirúvico/metabolismo , Ratas , Ratas Wistar , Receptores Muscarínicos/efectos de los fármacos
3.
Anaesth Intensive Care ; 39(2): 171-81, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21485664

RESUMEN

Melatonin is a substance chiefly produced by the pineal gland and has a key role in the sleep-wake cycle. It also has an important antioxidant role. Exogenous melatonin has a short half-life and is available in a range of preparations. Newer analogues targeted for the recently discovered melatonin MT1 and MT2 receptors have also been developed. Exogenous melatonin is used as a resynchronisation agent in jet lag and for other sleep disturbances. Perioperatively, melatonin has been used as a premedicant, sedative and analgesic. It decreases paediatric emergence delirium. The antioxidant properties of melatonin are being investigated for use in sepsis and reperfusion injuries. It would appear that patients on melatonin supplements should continue taking them perioperatively because there may be benefits. Melatonin and its analogues will be increasingly encountered in the perioperative setting.


Asunto(s)
Antioxidantes/uso terapéutico , Sistemas de Liberación de Medicamentos , Melatonina/uso terapéutico , Animales , Antioxidantes/farmacología , Humanos , Melatonina/análogos & derivados , Melatonina/farmacología , Atención Perioperativa/métodos , Receptor de Melatonina MT1/efectos de los fármacos , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/efectos de los fármacos , Receptor de Melatonina MT2/metabolismo
4.
Neuropsychopharmacol Hung ; 11(2): 69-81, 2009 Jun.
Artículo en Húngaro | MEDLINE | ID: mdl-19827314

RESUMEN

Chronobiological problems are always present as aetiological or pathoplastic conditions almost in all psychiatric disorders and considered as the greatest contributors to the mood and sleep disorders associated problems. The present review summarise the recent advances in the chronobiology research from the point of the clinician with particular emphasis on the psychobiology and pharmacotherapy of the depression. Human behaviour builds up from different length of circadian, ultradian and seasonal rhytms, strictly controlled by a hierarchical organisation of sub-cellullar, cellular, neuro-humoral and neuro-immunological clock systems. These internal clock systems are orchestrated at molecular level by certain clock genes and on the other hand--at neuro-humoral level--by the effect of the sleep hormone, melatonine, produced by the neurons of the suprachiasmatic nucleus (SCN). Beside the biological factors, social interactions are also considered as important regulators of the biological clock systems. The pacemaker centers of the SCN receive efferents from the serotoninergic raphe nuclei in order to regulate stress responses and neuroimmunological functions. The direction and the level of the chronobiological desynchronisation could be totally divergent in the case of the different affective disorders. Different chronobiological interventions are required therefore in the case of the advanced and delayed sleep disorders. Sleeping disorders are considered as the most recognised signs of the chronobiological desynchronisation in depression, but these symptoms are only the tip of the iceberg, since other chronobiological symptoms could be present due to the hidden physiological abnormalities. The serum melatonine profile is considered to be characteristic to age, gender and certain neuropsychiatric disorders. The natural and synthetic agonist of the melatonine receptors could be used as chronobiotics. The recently marketed agomelatine with a highly selective receptor binding profile (MT1 and MT2 agonism and 5HT2C antagonism) targets the desynchronised circadian rhytm in affective disorders and it has mainly antidepressive effect. Among the non-pharmacological chronobiological interventions, the different forms of the sleep deprivation, light and social rhytm therapies could offer alternative treatment options for the clinician.


Asunto(s)
Relojes Biológicos , Cronoterapia , Ritmo Circadiano , Depresión/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Melatonina/sangre , Trastornos del Sueño-Vigilia/fisiopatología , Acetamidas/farmacología , Acetamidas/uso terapéutico , Afecto , Cronoterapia/métodos , Ritmo Circadiano/inmunología , Depresión/sangre , Depresión/etiología , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/etiología , Humanos , Hipnóticos y Sedantes/uso terapéutico , Melatonina/agonistas , Trastornos del Humor/fisiopatología , Receptor de Melatonina MT1/efectos de los fármacos , Receptor de Melatonina MT2/efectos de los fármacos , Sueño/inmunología , Privación de Sueño , Trastornos del Sueño-Vigilia/sangre , Trastornos del Sueño-Vigilia/etiología , Trastornos del Sueño-Vigilia/terapia , Núcleo Supraquiasmático/fisiopatología
5.
Integr Cancer Ther ; 7(3): 189-203, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18815150

RESUMEN

Melatonin is a phylogenetically well-preserved molecule with diverse physiological functions. In addition to its well-known regulatory control of the sleep/wake cycle, as well as circadian rhythms generally, melatonin is involved in immunomodulation, hematopoiesis, and antioxidative processes. Recent human and animal studies have now shown that melatonin also has important oncostatic properties. Both at physiological and pharmacological doses melatonin exerts growth inhibitory effects on breast cancer cell lines. In hepatomas, through its activation of MT1 and MT2 receptors, melatonin inhibits linoleic acid uptake, thereby preventing the formation of the mitogenic metabolite 1,3-hydroxyoctadecadienoic acid. In animal model studies, melatonin has been shown to have preventative action against nitrosodiethylamine (NDEA)-induced liver cancer. Melatonin also inhibits the growth of prostate tumors via activation of MT1 receptors thereby inducing translocation of the androgen receptor to the cytoplasm and inhibition of the effect of endogenous androgens. There is abundant evidence indicating that melatonin is involved in preventing tumor initiation, promotion, and progression. The anticarcinogenic effect of melatonin on neoplastic cells relies on its antioxidant, immunostimulating, and apoptotic properties. Melatonin's oncostatic actions include the direct augmentation of natural killer (NK) cell activity, which increases immunosurveillance, as well as the stimulation of cytokine production, for example, of interleukin (IL)-2, IL-6, IL-12, and interferon (IFN)-gamma. In addition to its direct oncostatic action, melatonin protects hematopoietic precursors from the toxic effect of anticancer chemotherapeutic drugs. Melatonin secretion is impaired in patients suffering from breast cancer, endometrial cancer, or colorectal cancer. The increased incidence of breast cancer and colorectal cancer seen in nurses and other night shift workers suggests a possible link between diminished secretion of melatonin and increased exposure to light during nighttime. The physiological surge of melatonin at night is thus considered a "natural restraint" on tumor initiation, promotion, and progression.


Asunto(s)
Antineoplásicos/farmacología , Melatonina/farmacología , Neoplasias/tratamiento farmacológico , Animales , Citocinas/efectos de los fármacos , Citocinas/metabolismo , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Melatonina/metabolismo , Neoplasias/fisiopatología , Receptor de Melatonina MT1/efectos de los fármacos , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/efectos de los fármacos , Receptor de Melatonina MT2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA