Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 12(1): 17539, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266374

RESUMEN

Melatonin is a known modulator of follicle development; it acts through several molecular cascades via binding to its two specific receptors MT1 and MT2. Even though it is believed that melatonin can modulate granulosa cell (GC) functions, there is still limited knowledge of how it can act in human GC through MT1 and MT2 and which one is more implicated in the effects of melatonin on the metabolic processes in the dominant follicle. To better characterize the roles of these receptors on the effects of melatonin on follicular development, human granulosa-like tumor cells (KGN) were treated with specific melatonin receptor agonists and antagonists, and gene expression was analyzed with RNA-seq technology. Following appropriate normalization and the application of a fold change cut-off of 1.5 (FC 1.5, p ≤ 0.05) for each treatment, lists of the principal differentially expressed genes (DEGs) are generated. Analysis of major upstream regulators suggested that the MT1 receptor may be involved in the melatonin antiproliferative effect by reprogramming the metabolism of human GC by activating the PKB signaling pathway. Our data suggest that melatonin may act complementary through both MT1 and MT2 receptors to modulate human GC steroidogenesis, proliferation, and differentiation. However, MT2 receptors may be the ones implicated in transducing the effects of melatonin on the prevention of GC luteinization and follicle atresia at the antral follicular stage through stimulating the PKA pathway.


Asunto(s)
Melatonina , Receptor de Melatonina MT1 , Humanos , Femenino , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo , Células de la Granulosa/metabolismo , Genómica
2.
Domest Anim Endocrinol ; 74: 106403, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413836

RESUMEN

Heat stress (HS) has a great influence on the etiology of male infertility. Coenzyme Q10 (CoQ10), known to have powerful antioxidant effects, has been reported to have such actions that are effective to treat infertility caused by HS. The aim of the present study was to investigate the antioxidative effect of CoQ10 on sperm quality, testicular antioxidant activities, and male fertility under HS. For this purpose, 18 mature male rabbits (aged 22 wk) of the Sinai Gabali breed were equally divided into 3 groups and placed at temperature-humidity index of 29 for 8 wk at a farm. The supplementation of CoQ10 at 0, 10, and 20 mg/kg of body weight was done in the first, second, and third groups, respectively. The results showed that the supplementation of CoQ10 had significant (P < 0.05) effect on semen quality factor (SQF) and testicular antioxidant activities by the supplementation of CoQ10. Moreover, a significant improvement in the concentration of testosterone, integrity of testicular DNA, and the expression of melatonin receptors was also observed, which were consistent with a significant improvement in buck fertility. The prolificacy was significantly increased (P < 0.05) in females when inseminated from bucks that were treated with CoQ10. Our results suggest that CoQ10 tends to decrease oxidative stress by enhancing testicular antioxidant activities, which are considered the most important factors for a buck's fertility. Hence, CoQ10 could be a suitable feed supplement to increase fertility, through enhancing the semen quality, in male rabbits and reducing the harmful effects of HS.


Asunto(s)
Estrés Oxidativo , Receptor de Melatonina MT1/metabolismo , Análisis de Semen/veterinaria , Testículo/fisiología , Termotolerancia , Ubiquinona/análogos & derivados , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Regulación de la Expresión Génica , Calor , Humedad , Masculino , Modelos Moleculares , Conformación Proteica , Conejos , Receptor de Melatonina MT1/genética , Ubiquinona/administración & dosificación , Ubiquinona/farmacología
3.
Nature ; 579(7800): 609-614, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32040955

RESUMEN

The neuromodulator melatonin synchronizes circadian rhythms and related physiological functions through the actions of two G-protein-coupled receptors: MT1 and MT2. Circadian release of melatonin at night from the pineal gland activates melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing the physiology and behaviour of animals to the light-dark cycle1-4. The two receptors are established drug targets for aligning circadian phase to this cycle in disorders of sleep5,6 and depression1-4,7-9. Despite their importance, few in vivo active MT1-selective ligands have been reported2,8,10-12, hampering both the understanding of circadian biology and the development of targeted therapeutics. Here we docked more than 150 million virtual molecules to an MT1 crystal structure, prioritizing structural fit and chemical novelty. Of these compounds, 38 high-ranking molecules were synthesized and tested, revealing ligands with potencies ranging from 470 picomolar to 6 micromolar. Structure-based optimization led to two selective MT1 inverse agonists-which were topologically unrelated to previously explored chemotypes-that acted as inverse agonists in a mouse model of circadian re-entrainment. Notably, we found that these MT1-selective inverse agonists advanced the phase of the mouse circadian clock by 1.3-1.5 h when given at subjective dusk, an agonist-like effect that was eliminated in MT1- but not in MT2-knockout mice. This study illustrates the opportunities for modulating melatonin receptor biology through MT1-selective ligands and for the discovery of previously undescribed, in vivo active chemotypes from structure-based screens of diverse, ultralarge libraries.


Asunto(s)
Ritmo Circadiano/fisiología , Ligandos , Receptores de Melatonina/agonistas , Receptores de Melatonina/metabolismo , Animales , Ritmo Circadiano/efectos de los fármacos , Oscuridad , Evaluación Preclínica de Medicamentos , Agonismo Inverso de Drogas , Femenino , Humanos , Luz , Masculino , Ratones , Ratones Noqueados , Simulación del Acoplamiento Molecular , Receptor de Melatonina MT1/agonistas , Receptor de Melatonina MT1/deficiencia , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/agonistas , Receptor de Melatonina MT2/deficiencia , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo , Receptores de Melatonina/deficiencia , Receptores de Melatonina/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad por Sustrato/genética
4.
J Pineal Res ; 67(3): e12593, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31278759

RESUMEN

Milk fat content is an important criterion for assessing milk quality and is one of the main target traits of dairy cattle breeding. Recent studies have shown the importance of melatonin in regulating lipid metabolism, but the potential effects of melatonin on milk fat synthesis in bovine mammary epithelial cells (BMECs) remain unclear. Here, we showed that melatonin supplementation at 10 µmol/L significantly downregulated the mRNA expression of lipid metabolism-related genes and resulted in lower lipid droplet formation and triglyceride accumulation. Moreover, melatonin significantly upregulated melatonin receptor subtype melatonin receptor 1a (MT1) gene expression, and the negative effects of melatonin on milk fat synthesis were reversed by treatment with the nonselective MT1/melatonin receptor subtype melatonin receptor 1b (MT2) antagonist. However, a selective MT2 antagonist did not modify the negative effects of melatonin on milk fat synthesis. In addition, KEGG analysis revealed that melatonin inhibition of milk fat synthesis may occur via the mTOR signaling pathway. Further analysis revealed that melatonin significantly suppressed the activation of the mTOR pathway by restricting the phosphorylation of mTOR, 4E-BP1, and p70S6K, and the inhibition of melatonin on milk fat synthesis was reversed by mTOR activator MHY1485 in BMECs. Furthermore, in vivo experiments in Holstein dairy cows showed that exogenous melatonin significantly decreased milk fat concentration. Our data from in vitro and in vivo studies revealed that melatonin suppresses milk fat synthesis by inhibiting the mTOR signaling pathway via the MT1 receptor in BMECs. These findings lay a foundation to identify a new potential means for melatonin to modulate the fat content of raw milk in Holstein dairy cows.


Asunto(s)
Células Epiteliales/metabolismo , Melatonina/farmacología , Leche/metabolismo , Receptor de Melatonina MT1/metabolismo , Animales , Bovinos , Células Epiteliales/efectos de los fármacos , Femenino , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Leche/química , Receptor de Melatonina MT1/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
Nature ; 569(7755): 284-288, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31019306

RESUMEN

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.


Asunto(s)
Electrones , Rayos Láser , Modelos Moleculares , Receptor de Melatonina MT1/química , Receptor de Melatonina MT1/metabolismo , Acetamidas/química , Acetamidas/metabolismo , Secuencia de Aminoácidos , Antidepresivos/química , Antidepresivos/metabolismo , Cristalización , Humanos , Indenos/química , Indenos/metabolismo , Ligandos , Melatonina/análogos & derivados , Melatonina/química , Simulación del Acoplamiento Molecular , Mutación , Receptor de Melatonina MT1/agonistas , Receptor de Melatonina MT1/genética , Receptor de Serotonina 5-HT2C/química , Relación Estructura-Actividad , Especificidad por Sustrato
6.
Poult Sci ; 98(9): 4172-4181, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31001634

RESUMEN

Precise natural anti-oxidative compounds have facilitated the research of infertile gametes and the development of novel bio-therapeutics, especially the molecules that are based on the reduction of oxidative stress, such as L-carnitine (LC). In addition to, the defect in the functioning of sperm mitochondrial and the decreasing seminal antioxidant ability due to aging, its essential role in permitting the mitochondrial import and oxidation of long chain fatty acids is worthy. Therefore, current study was designed to investigate the effects of dietary LC on semen quality, seminal antioxidant activity, and their implications for the fertility in aged cocks for 12 wk. Supplementation of the feed with two different doses of LC (50 and 150 mg/kg body weight/day) for 12 wk showed significantly increased in the reproductive activity of cock, in comparison to the control group. Seminal analysis showed that supplementation of LC significantly increased (P < 0.05) the sperm motility, concentration, livability, semen quality factor, seminal malondialdehyde concentration, catalase, and glutathione peroxidase activities. In addition, addition of LC significantly increased (P < 0.05) the plasma concentration of testosterone and prostaglandin E2 but posed no significant effect on the concentration of follicle-stimulating hormone. Furthermore, the findings of artificial insemination showed significant increased (P < 0.05) in the percentage of fertility in LC groups, while the percentage hatchability and mortality remained unchanged. Immunohistochemistry analysis revealed that LC significantly increased (P < 0.05) the testicular immunopositivity of MT1 and MT2. Moreover, the administration of LC to the aged cocks enhanced (P < 0.05) GnRH1 and GnRHR mRNA levels when compared with untreated cocks. The results of the present study suggest that LC treatment of aged cocks increases the seminal antioxidant enzymes and sexual hormones levels, which may improve the semen quality by increasing the expression of GnRH1 and melatonin receptors (MT1 and MT2) activities. Collectively, LC could be a suitable feed supplementation to increase reproductive activities through enhancing semen quality in aging cocks.


Asunto(s)
Antioxidantes/metabolismo , Proteínas Aviares/genética , Carnitina/metabolismo , Pollos/fisiología , Expresión Génica/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Alimentación Animal/análisis , Animales , Antioxidantes/administración & dosificación , Proteínas Aviares/metabolismo , Carnitina/administración & dosificación , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Masculino , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo , Análisis de Semen/veterinaria , Espermatozoides/fisiología , Testículo/metabolismo
7.
Anim Sci J ; 90(4): 473-480, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30793438

RESUMEN

This study was aimed to address melatonin receptor expression, mRNA level of hypothalamus and hypophysis hormone receptors (GnRHR, FSHR, and LHR), steroidogenesis, cell cycle, apoptosis, and their regulatory factors after addition of melatonin for 24 hr in cultured buffalo granulosa cells (GCs). The results revealed that direct addition of different concentrations of melatonin (100 pM, 1 nM, and 100 nM) resulted in significant upregulation (p < 0.05) of mRNA level of melatonin receptor 1a (MT1) without affecting melatonin receptor 1b (MT2). Melatonin treatment significantly downregulated (p < 0.05) mRNA level of FSH and GnRH receptors, whereas 100 nM dose of melatonin significantly increased mRNA level of LH receptor. Treatment with 100 nM of melatonin significantly decreased the basal progesterone production with significant decrease (p < 0.05) in mRNA levels of StAR and p450ssc, and lower mRNA level of genes (Insig1, Lipe, and Scrab1) that affect cholesterol availability. Melatonin supplementation suppressed apoptosis (100 nM, p < 0.05) and enhanced G2/M phase (1 nM, 100 nM, p < 0.05) of cell cycle progression which was further corroborated by decrease in protein expression of caspase-3, p21, and p27 and increase in bcl2. Our results demonstrate that melatonin regulates gonadotrophin receptors and ovarian steroidogenesis through MT1. Furthermore, the notion of its incorporation in apoptosis and proliferation of buffalo GCs extends its role in buffalo ovaries.


Asunto(s)
Apoptosis/efectos de los fármacos , Estradiol/metabolismo , Hormona Folículo Estimulante/metabolismo , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Melatonina/farmacología , Progesterona/metabolismo , Animales , Búfalos , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Hormona Folículo Estimulante/genética , Expresión Génica/efectos de los fármacos , Melatonina/fisiología , ARN Mensajero/metabolismo , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo , Receptores LHRH/metabolismo , Regulación hacia Arriba/efectos de los fármacos
8.
Theriogenology ; 128: 1-7, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30711643

RESUMEN

Buffaloes have tendency to show seasonal reproduction and remain in anestrus due to limited ovarian activity during summer. The seasonal reproductive behavior is ascribed the effect of melatonin related to photoperiod. Treating animals with melatonin could be a possible strategy to overcome the problem. The role of MTNR1A gene has not been fully explained in the buffalo. Therefore, we conducted a study on 114 buffalo heifers to detect the polymorphic site in MTNR1A gene and further treated them with melatonin implants to investigate the role of most frequent genotype following melatonin treatment on pregnancy. The present investigation is the first to investigate the association between melatonin treated different MTNR1A genotype buffalo and pregnancy. We confirmed SNP at position 72 in 812 bp fragment exon II of MTNR1A gene. RFLP of PCR products with Hpa I enzyme resulted in three genotypes: TT (812bp), CT (812, 743, 69bp) and CC (743, 69bp). Next, buffaloes of each genotype (TT, CC, CT; n = 28 for each) were treated with melatonin implants to compare the conception rate with their corresponding untreated control (n = 10 for each genotype). Melatonin concentrations were higher (P < 0.05) for the treatment groups of all genotypes compared to their respective untreated control from day 1-28. The pregnancy rate was significantly associated with the MTNR1A genotype. The conception rate was higher (P < 0.05) for TT genotype than for the other genotypes of buffaloes treated with melatonin. Furthermore, buffaloes of TT genotype treated with melatonin started exhibiting estrus activity soon from second week of melatonin treatment (14.1 ±â€¯2.1; range: 10-17 days) and were found to be 7.8 times more likely to become pregnant compared to other genotypes following melatonin treatment. In conclusion, TT genotype of MTNR1A gene is more sensitive to melatonin treatment that favours pregnancy in buffaloes during summer.


Asunto(s)
Búfalos/genética , Melatonina/uso terapéutico , Receptor de Melatonina MT1/genética , Reproducción/genética , Animales , Búfalos/fisiología , Femenino , Fertilización/efectos de los fármacos , Fertilización/genética , Genotipo , Polimorfismo Genético , Embarazo , Índice de Embarazo , Reproducción/efectos de los fármacos , Estaciones del Año
9.
Free Radic Biol Med ; 131: 345-355, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30553970

RESUMEN

Traumatic brain injury (TBI) is a principal cause of death and disability worldwide. Melatonin, a hormone made by the pineal gland, is known to have anti-inflammatory and antioxidant properties. In this study, using a weight-drop model of TBI, we investigated the protective effects of ramelteon, a melatonin MT1/MT2 receptor agonist, and its underlying mechanisms of action. Administration of ramelteon (10 mg/kg) daily at 10:00 a.m. alleviated TBI-induced early brain damage on day 3 and long-term neurobehavioral deficits on day 28 in C57BL/6 mice. Ramelteon also increased the protein levels of interleukin (IL)-10, IL-4, superoxide dismutase (SOD), glutathione, and glutathione peroxidase and reduced the protein levels of IL-1ß, tumor necrosis factor, and malondialdehyde in brain tissue and serum on days 1, 3, and 7 post-TBI. Similarly, ramelteon attenuated microglial and astrocyte activation in the perilesional cortex on day 3. Furthermore, ramelteon decreased Keap 1 expression, promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation, and increased levels of downstream proteins, including SOD-1, heme oxygenase-1, and NQO1 on day 3 post-TBI. However, in Nrf2 knockout mice with TBI, ramelteon did not decrease the lesion volume, neuronal degeneration, or myelin loss on day 3; nor did it mitigate depression-like behavior or most motor behavior deficits on day 28. Thus, timed ramelteon treatment appears to prevent inflammation and oxidative stress via the Nrf2-antioxidant response element pathway and might represent a potential chronotherapeutic strategy for treating TBI.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Edema Encefálico/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Indenos/farmacología , Factor 2 Relacionado con NF-E2/genética , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/patología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Inflamación , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptor de Melatonina MT1/agonistas , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/agonistas , Receptor de Melatonina MT2/metabolismo , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
10.
J Ethnopharmacol ; 232: 39-46, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30543912

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicines (TCMs) are fascinating sources for natural drug candidates. Uncaria rhynchophylla (Gouteng) is a famous TCM used for alleviating central nervous system (CNS) disorders, while its antidepressant constituents are still disputed. AIM OF THE STUDY: The present study was designed to assess the antidepressant property of U. rhynchophylla and characterize the active constituents targeting melatonin receptors which are closely related to CNS diseases. MATERIALS AND METHODS: The total extract and each fraction of U. rhynchophylla were extensively assessed for their agonistic activity on melatonin receptors in vitro. The following bioassay-guided fractionation yielded the active constituents, whose activity was confirmed by dose-dependent bioassay and antagonistic experiment on HEK293 cells. Their antidepressant effects were evaluated on forced swimming test (FST), tail suspension test (TST) and open-field test (OFT) mice models in vivo. Their metabolic profiles in mice plasma were analyzed by LCMS-IT-TOF. RESULTS: The stems and hooks of U. rhynchophylla were revealed with agonistic activity on melatonin receptors (MT1 and MT2). Under the guidance of bioassay, two flavanols, catechin and epicatechin were obtained and showed obviously activity agitating MT1 (EC50 = 25.8 and 156.1 µM) and MT2 (EC50 = 47.3 and 208.8 µM) receptors. The agonistic activity of catechin on melatonin receptors can be antagonized by luzindole at the concentrations of 1.57-100 µM. Catechin could significantly reduce the immobility time in both FST and TST mice models at doses of 80 and 40 mg/kg, without obvious effect on locomotor activity in OFT mice model. Five phase II (M1-M5) and one phase I (M6) metabolites of catechin were detected in mice plasma after intragastric (i.g.) administration. CONCLUSION: Catechin is a potent antidepressant candidate from U. rhynchophylla by targeting melatonin receptors. The main metabolic pathways of catechin in mice plasma are glucuronidation (M3) and methylated glucuronidation (M4 and M5). This study provides valuable information for understanding the antidepressant potency of Gouteng and its active constituents.


Asunto(s)
Antidepresivos/uso terapéutico , Catecoles/uso terapéutico , Depresión/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Receptor de Melatonina MT1/agonistas , Receptor de Melatonina MT2/agonistas , Uncaria , Animales , Antidepresivos/farmacología , Catecoles/farmacología , Células HEK293 , Humanos , Locomoción/efectos de los fármacos , Masculino , Ratones , Fitoterapia , Extractos Vegetales/farmacología , Tallos de la Planta , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética
11.
Mol Reprod Dev ; 85(8-9): 665-681, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30106229

RESUMEN

Poor-quality oocytes (those with 1-2 layers of cumulus cells) typically possess low meiotic competence and development. Prolonging the duration of in vitro maturation (IVM; 52 hr) can enhance the maturation rate of poor-quality oocytes, but it does not improve subsequent embryonic development. This likely reflects the increased reactive oxygen species (ROS) production and apoptosis seen in these oocytes compared with the non-prolonged IVM (44 hr) group. Melatonin is a free radical scavenger, anti-oxidant and anti-apoptotic agent that reported to enhance the quality of embryos by inhibiting ROS generation and apoptosis. Therefore, we herein investigated whether melatonin combined with prolonged IVM (52 hr) could improve the quality and development of poor-quality oocytes. We supplemented IVM and/or in vitro culture (IVC) media with various concentrations (0, 10-7 , 10-6 , 10-5 M) of melatonin, and estimated parameters related to oocyte quality and development. The addition of melatonin (10-6 M) to a prolonged IVM system improved the oocyte quality and development compared with those of the melatonin-free poor-quality oocytes group, and that this was due to decreases in ROS generation, apoptosis, and DNA damage. When melatonin was added during both IVM (10-6 M) and IVC (10-6 M), we observed a cumulative positive influence on the embryonic development and quality; this treatment enhanced the expression level of Oct4 and decreased the levels of ROS, DNA damage, and apoptosis. Together, these findings suggest that the combination of melatonin plus prolonged IVM can improve the quality and development of poor-quality porcine oocytes via anti-oxidative and anti-apoptotic effects.


Asunto(s)
Antioxidantes/farmacología , Técnicas de Maduración In Vitro de los Oocitos/métodos , Melatonina/farmacología , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Blastocisto/metabolismo , Células Cultivadas , Células del Cúmulo/metabolismo , Daño del ADN/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Expresión Génica , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Estrés Oxidativo/efectos de los fármacos , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Receptor de Melatonina MT1/genética , Porcinos
12.
Epilepsy Behav ; 71(Pt A): 23-34, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28460319

RESUMEN

Clinical and experimental findings show that melatonin may be used as an adjuvant to the treatment of epilepsy-related complications by alleviates sleep disturbances, circadian alterations and attenuates seizures alone or in combination with AEDs. In addition, it has been observed that there is a circadian component on seizures, which cause changes in circadian system and in melatonin production. Nevertheless, the dynamic changes of the melatoninergic system, especially with regard to its membrane receptors (MT1 and MT2) in the natural course of TLE remain largely unknown. The aim of this study was to evaluate the 24-hour profile of MT1 and MT2 mRNA and protein expression in the hippocampus of rats submitted to the pilocarpine-induced epilepsy model analyzing the influence of the circadian rhythm in the expression pattern during the acute, silent, and chronic phases. Melatonin receptor MT1 and MT2 mRNA expression levels were increased in the hippocampus of rats few hours after SE, with MT1 returning to normal levels and MT2 reducing during the silent phase. During the chronic phase, mRNA expression levels of both receptors return to levels close to control, however, presenting a different daily profile, showing that there is a circadian change during the chronic phase. Also, during the acute and silent phase it was possible to verify MT1 label only in CA2 hippocampal region with an increased expression only in the dark period of the acute phase. The MT2 receptor was present in all hippocampal regions, however, it was reduced in the acute phase and it was found in astrocytes. In chronic animals, there is a reduction in the presence of both receptors especially in regions where there is a typical damage derived from epilepsy. Therefore, we conclude that SE induced by pilocarpine is able to change melatonin receptor MT1 and MT2 protein and mRNA expression levels in the hippocampus of rats few hours after SE as well as in silent and chronic phases.


Asunto(s)
Epilepsia/inducido químicamente , Epilepsia/metabolismo , Hipocampo/metabolismo , Pilocarpina/toxicidad , Receptor de Melatonina MT1/biosíntesis , Receptor de Melatonina MT2/biosíntesis , Animales , Epilepsia/genética , Expresión Génica , Hipocampo/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética
13.
Gen Comp Endocrinol ; 242: 101-107, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26482006

RESUMEN

Melatonin plays crucial roles in a wide range of ovarian physiological functions via the melatonin receptors (MRs). Structure and function of MRs have been well studied in sheep, cattle, and humans, but little information exists on the genetic characterization and function of these receptors in the ovary of the white yak. In the present study, the melatonin receptor MT1 was cloned by RT-PCR in the ovary of white yak; the MT1 cDNA fragment obtained (843bp) comprised an open reading frame (827bp) encoding a protein containing 275 residues, characterized by seven transmembrane regions and an NRY motif, two distinct amino acid replacements were found. The white yak MT1 had a 83.9-98.6% protein sequence identity with that of nine other mammals. Using RT-PCR, the expression levels of MT1, MT2, and LHR in the ovary of pregnant and non-pregnant white yaks were compared, revealing higher levels of all genes in pregnant yaks: 3.83-fold increase for MT1 (P<0.05), 1.39-fold increase for MT2, and 15.32-fold increase for LHR (P<0.05). The distribution of MT1 in yak ovaries was observed using immunohistochemistry on paraffin embedded ovarian sections: MT1 was mainly present on primordial follicles (PF), granulosa cells (GCs), oocytes, and corpus luteum (CL) cells; MT1 expression showed an increasing tendency from PF to GCs to oocytes and to large CL cells. It is suggested that melatonin and MT1 are associated with the corpus luteum function of pregnancy maintenance and follicular development during oocyte maturation in the white yak.


Asunto(s)
Bovinos/fisiología , Regulación de la Expresión Génica/fisiología , Receptor de Melatonina MT1/metabolismo , Secuencia de Aminoácidos , Animales , ADN Complementario/genética , Femenino , Células de la Granulosa/metabolismo , Humanos , Melatonina/metabolismo , Sistemas de Lectura Abierta , Ovario/metabolismo , Embarazo , ARN Mensajero/metabolismo , Receptor de Melatonina MT1/genética
14.
Psychopharmacology (Berl) ; 232(14): 2519-30, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25704105

RESUMEN

RATIONALE: While it is known that tobacco use varies across the 24-h day, the time-of-day effects are poorly understood. Findings from several previous studies indicate a potential role for melatonin in these time-of-day effects; however, the specific underlying mechanisms have not been well characterized. Understanding of these mechanisms may lead to potential novel smoking cessation treatments. OBJECTIVE: The objective of this study is examine the role of melatonin and melatonin receptors in nicotine free-choice consumption METHODS: A two-bottle oral nicotine choice paradigm was utilized with melatonin supplementation in melatonin-deficient mice (C57BL/6J) or without melatonin supplementation in mice proficient at melatonin synthesis (C3H/Ibg) compared to melatonin-proficient mice lacking both or one of the high-affinity melatonin receptors (MT1 and MT2; double-null mutant DM, or MT1 or MT2). Preference for bitter and sweet tastants also was assessed in wild-type and MT1 and MT2 DM mice. Finally, home cage locomotor monitoring was performed to determine the effect of melatonin administration on activity patterns. RESULTS: Supplemental melatonin in drinking water significantly reduced free-choice nicotine consumption in C57BL/6J mice, which do not produce endogenous melatonin, while not altering activity patterns. Independently, genetic deletion of both MT1 and MT2 receptors in a melatonin-proficient mouse strain (C3H) resulted in significantly more nicotine consumption than controls. However, single genetic deletion of either the MT1 or MT2 receptor alone did not result in increased nicotine consumption. Deletion of MT1 and MT2 did not impact taste preference. CONCLUSIONS: This study demonstrates that nicotine consumption can be affected by exogenous or endogenous melatonin and requires at least one of the high-affinity melatonin receptors. The fact that expression of either the MT1 or MT2 melatonin receptor is sufficient to maintain lower nicotine consumption suggests functional overlap and potential mechanistic explanations.


Asunto(s)
Melatonina/farmacología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Receptores de Melatonina/efectos de los fármacos , Animales , Conducta de Elección/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ingestión de Líquidos , Masculino , Melatonina/deficiencia , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Receptor de Melatonina MT1/genética , Receptores de Melatonina/genética , Gusto/efectos de los fármacos
15.
Neuroscience ; 277: 506-21, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25046530

RESUMEN

Melatonin, an indoleamine hormone secreted into circulation at night primarily by the brain's pineal gland, has been shown to have a wide variety of actions on the development and physiology of neurons in the CNS. Acting via two G-protein-coupled membrane receptors (MT1 and MT2), melatonin modulates neurogenesis, synaptic functions, neuronal cytoskeleton and gene expression. In the present studies, we sought to characterize the behavior and neuronal biology of transgenic mice lacking both of these melatonin receptors as a way to understand the hormone's receptor versus non-receptor-mediated actions in CNS-dependent activities, such as learning and memory, anxiety, general motor performance and circadian rhythmicity. Assessment of these behaviors was complemented by molecular analyses of gene expression in the brain. Our results demonstrate mild behavioral hyperactivity and a lengthened circadian period of free-running motor activity in melatonin receptor-deficient mice as compared to receptor-intact control mice beginning at an early age. Significant improvement in cognitive performance was found using the Barnes Maze and the Y-Maze. No behavioral changes in anxiety levels were found. Electrophysiological measures in hippocampal slices revealed a clear enhancement of long-term potentiation in mice lacking melatonin receptors with no significant differences in paired-pulse facilitation. Quantitative analysis of brain protein expression levels of phosphoCREB and phosphoERK1/2 and key markers of synaptic activity (synapsin, glutamate receptor 1, spinophilin, and glutamic acid decarboxylase 1) revealed significant differences between the double-knockout and wild-type animals, consistent with the behavioral findings. Thus, genetic deletion of melatonin receptors produces mice with enhanced cognitive and motor performance, supporting the view that these receptors play an important role in neurobehavioral development.


Asunto(s)
Lóbulo Frontal/fisiología , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Receptor de Melatonina MT1/deficiencia , Receptor de Melatonina MT2/deficiencia , Animales , Ansiedad/fisiopatología , Proteína de Unión a CREB/metabolismo , Ritmo Circadiano/fisiología , Ingestión de Líquidos/fisiología , Locomoción/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Melatonina/sangre , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Distribución Aleatoria , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética
16.
Anim Reprod Sci ; 147(1-2): 10-6, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24768045

RESUMEN

Melatonin and its receptors are found in the testis of many species, where they mediate testicular functions. The present study aimed to investigate the expression of melatonin receptors (MT1 and MT2) in bovine Sertoli cells (SCs), using reverse transcription polymerase chain reaction (RT-PCR) and western blot. In addition, we assessed the mRNA levels of spermatogenesis-related genes (real-time PCR) and secretion of inhibin B after treatment with various concentrations (0, 80, 160, and 320 pg/mL) of melatonin at different time points (24, 48, or 72 h). We found that bovine SCs express MT1 and MT2 receptors, which were regulated by melatonin in time- and dose-dependent manners after treatment with melatonin. Exogenous melatonin up-regulated the expression of spermatogenesis-related genes, including Cyclin D1, Cyclin E, Pdgfa, Dhh, Occludin, and Claudin, and decreased the mRNA levels of P21 and Kit1 in a time or dose-dependent manner. Meanwhile, melatonin supplementation significantly affected Inhba, Inhbb and Inha mRNA expression. These findings were consistent with inhibin B levels detected in the culture medium. In conclusion, exogenous melatonin acts via its receptors and appears to play regulatory roles in the development and function of bovine SCs.


Asunto(s)
Melatonina/metabolismo , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Células de Sertoli/metabolismo , Animales , Bovinos , Células Cultivadas , Regulación de la Expresión Génica , Inhibinas/genética , Inhibinas/metabolismo , Masculino , Melatonina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética , Espermatogénesis/fisiología
17.
Synapse ; 68(4): 153-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24382790

RESUMEN

Several clinical reports on neuropathic pain of various etiologies have shown that it significantly interferes with sleep. Inadequate sleep due to neuropathic pain may contribute to the stressful negative consequences of living with pain. It is generally recognized that melatonin (MT) system in the hypothalmus is crusial for circadian rhythm and sleep-wake transition. However, little, if any, is known about whether neuropathic pain could affect the MT system associated with sleep disturbance. In this study, we investigated the possible changes in circadian rhythm for the expression of MT receptors, especially MT1A and MT1B receptors, in the hypothalamus of mice with sciatic nerve ligation. The samples for real-time RT-PCR assay were prepared at 8:00, 14:00, 20:00, and 2:00 on day 7 after sciatic nerve ligation or sham operation. The mRNA expression of MT1A and MT1B receptors at 2:00 in sciatic nerve-ligated mice, which exhibited thermal hyperalgesia along with an increase in wakefulness and a decrease in nonrapid eye movement sleep, was significantly greater than those in sham-operated mice, whereas the levels of both MT1A and MT1B receptors at 8:00 in sciatic nerve-ligated mice were significantly lower than those in sham-operated mice. These findings suggest that neuropathic pain-like stimuli lead to sleep disturbance in parallel with changes in circadian rhythm for mRNA expression of MT 1A and 1B receptors in the hypothalamus of mice.


Asunto(s)
Ritmo Circadiano , Hipotálamo/metabolismo , Neuralgia/metabolismo , ARN Mensajero/metabolismo , Receptor de Melatonina MT1/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/fisiopatología , ARN Mensajero/genética , Receptor de Melatonina MT1/genética
18.
Theriogenology ; 78(7): 1517-26, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22980085

RESUMEN

Melatonin and its receptors have been detected in the ovary of many species, and mediate ovarian functions. The present study was designed to investigate the expression and subcellar location of melatonin receptors in bovine granulosa cells (GCs), using reverse transcription (RT) polymerase chain reaction, Western blot, and immunofluorescence analyses. Furthermore, expression level of melatonin receptors mRNA (real-time polymerase chain reaction) after treatment with various concentrations of melatonin, as well as its effects on cell apoptosis, proliferation, and steroidogenesis (by flow cytometry and RIA), were determined. In bovine GCs, melatonin receptors MT1 and MT2 were differentially located at the cell membrane, the cytoplasm, and nuclear membranes. The expression of MT1 and MT2 mRNA was regulated differently by melatonin in time- and dose-dependent manners. Exogenous melatonin suppressed cell apoptosis (P < 0.05) but not proliferation (P > 0.05). After 72 h, the apoptotic rate was significantly inhibited in all treatment groups. Meanwhile, melatonin supplementation stimulated progesterone production, but inhibited estradiol biosynthesis, in a time-dependent manner. Progesterone production was highest (P < 0.05) at 72 h. Estradiol concentrations were almost unaffected (P > 0.05) at 24 h, but were decreased (P < 0.05) at 48 h. In conclusion, exogenous melatonin acts via receptors and has important roles in regulation of development and function of bovine GCs.


Asunto(s)
Apoptosis/efectos de los fármacos , Bovinos , Células de la Granulosa/química , Melatonina/farmacología , Progesterona/biosíntesis , Receptores de Melatonina/fisiología , Animales , Membrana Celular/química , Proliferación Celular/efectos de los fármacos , Citoplasma/química , Femenino , Expresión Génica/efectos de los fármacos , Células de la Granulosa/metabolismo , Células de la Granulosa/ultraestructura , Membrana Nuclear/química , ARN Mensajero/análisis , Receptor de Melatonina MT1/análisis , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/fisiología , Receptor de Melatonina MT2/análisis , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/fisiología
19.
Reprod Fertil Dev ; 23(3): 417-23, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21426859

RESUMEN

In the present study, we analysed the molecular mechanism(s) by which melatonin directly affects ovarian function in the mare. In Experiment 1, follicles and corpora lutea (CL) were collected from slaughterhouse ovaries and analysed for melatonin (MT(1)) receptor mRNA and protein. In Experiment 2, CL were collected from slaughterhouse ovaries and cultured in Dulbecco's modified Eagle's medium-F12 medium (control medium) supplemented with 50 ng mL(-1) equine chorionic gonadotrophin (eCG), 1 nM-1 µM melatonin, 1 µM forskolin or 1 µM luzindole. Explants were cultured for 3 h in the presence of these drugs. Conditioned media were analysed for progesterone production; luteal cells were analysed for cholesterol side-chain cleavage enzyme (P450scc), a steroidogenic enzyme that converts cholesterol into pregnenolone. Both MT(1) receptor mRNA and protein were expressed in follicles and CL. Melatonin inhibited both the eCG- and forskolin-stimulated production of progesterone, as well as the forskolin-stimulated expression of P450scc, in equine luteal cells and the effect was dose-dependent. The inhibitory effect of melatonin was blocked by luzindole, a non-selective melatonin MT(1) and MT(2) receptor antagonist. The data support the presence of functional melatonin receptors in luteal cells and a regulatory role for melatonin in the endocrine function of the equine CL.


Asunto(s)
Caballos/fisiología , Células Lúteas/efectos de los fármacos , Células Lúteas/metabolismo , Melatonina/farmacología , Folículo Ovárico/metabolismo , Progesterona/metabolismo , Receptor de Melatonina MT1/biosíntesis , Animales , Western Blotting/veterinaria , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/biosíntesis , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Gonadotropina Coriónica/farmacología , Colforsina/farmacología , Femenino , Folículo Ovárico/citología , Folículo Ovárico/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptor de Melatonina MT1/antagonistas & inhibidores , Receptor de Melatonina MT1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Estadísticas no Paramétricas , Triptaminas/farmacología
20.
J Pineal Res ; 46(1): 22-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18494781

RESUMEN

Melatonin is a multifunctional molecule that mediates several circadian and seasonal processes in animal reproduction. Melatonin and its metabolites are antioxidants and free radical scavengers. We investigated the effects of melatonin on porcine oocyte maturation and embryo development. We then investigated the local expression of the melatonin receptor 1 (MT1) gene in cumulus cells, granulosa cells, and the oocytes with the reverse transcription-polymerase chain reaction (RT-PCR) method. We further evaluated the antioxidant effects [reactive oxygen species (ROS) levels in cumulus-oocytes complexes] of melatonin supplementation during in vitro maturation (IVM). Compared with control, melatonin supplementation (10 ng/mL) during IVM resulted in a greater proportion of oocytes extruding the polar body (75.6% versus 84.6%). Significantly greater proportion of parthenogenetically activated oocytes developed to blastocysts when the in vitro medium was supplemented with melatonin; however, cleavage frequency and blastocyst cell number were not affected by the treatment. RT-PCR analysis revealed the expression of MT1 gene in cumulus and granulosa cells but not in oocytes. Melatonin-treated oocytes had significantly lower levels of ROS than did control (untreated) oocytes. We conclude that exogenous melatonin has beneficial effects on nuclear and cytoplasmic maturation during porcine IVM. Some of the observed effects may be mediated by receptor binding and while others may have been receptor independent, e.g., direct free radical scavenging.


Asunto(s)
Células del Cúmulo/efectos de los fármacos , Melatonina/farmacología , Oocitos/efectos de los fármacos , Receptor de Melatonina MT1/genética , Análisis de Varianza , Animales , Fase de Segmentación del Huevo , Células del Cúmulo/metabolismo , Células del Cúmulo/fisiología , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Oocitos/metabolismo , Oocitos/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Receptor de Melatonina MT1/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA