Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 126: 103873, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295578

RESUMEN

A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.


Asunto(s)
Dieta Alta en Grasa , Hipotálamo , Proglucagón , Transducción de Señal , Animales , Ratas , Hipotálamo/fisiología , Proglucagón/metabolismo , Ratas Sprague-Dawley , Masculino , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 2 Similar al Glucagón/genética , Receptor del Péptido 2 Similar al Glucagón/metabolismo , ARN Mensajero/metabolismo , Neuronas/metabolismo , Sinapsis , Fibras Nerviosas/metabolismo , Electrofisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Respuesta de Saciedad , Conducta Alimentaria
2.
Neurosci Lett ; 768: 136362, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34838926

RESUMEN

Glucagon-like peptide (GLP)-1 and GLP-2, proglucagon-derived brain-gut peptides, function as anorexigenic neuropeptides in mammals. We previously showed that central administration of GLP-1 and GLP-2 potently suppressed food intake in chicks. GLP-1 and GLP-2 specifically activate their receptors GLP-1 receptor (GLP1R) and GLP-2 receptor (GLP2R), respectively in chickens. In adult chickens, GLP1R and GLP2R are expressed in different brain regions. These findings raise the hypothesis that both GLP-1 and GLP-2 function as anorexigenic peptides in the chicken brain but the mechanisms underlying the anorexigenic effects are different between them. In the present study, we compared several aspects of GLP-1 and GLP-2 in chicks. GLP1R mRNA levels in the brain stem and optic lobes were significantly higher than in other parts of the brain, whereas GLP2R mRNA was densely expressed in the telencephalon. Intracerebroventricular administration of either GLP-1 or GLP-2 significantly reduced the mRNA levels of corticotrophin releasing factor and AMP-kinase (AMPK) α1. The mRNA level of proopiomelanocortin was significantly increased, and those of AMPKα2 and GLP2R were significantly decreased by GLP-2, whereas the mRNA level of pyruvate dehydrogenase kinase 4 was significantly increased, and that of GLP1R was significantly decreased by GLP-1. Intracerebroventricular administration of either GLP-1 or GLP-2 induced sleep-like behavior in chicks. Our findings suggest that the anorexigenic peptides GLP-1 and GLP-2 induce similar behavioral changes in chicks, but the mechanism may differ between them.


Asunto(s)
Apetito/efectos de los fármacos , Péptido 1 Similar al Glucagón/administración & dosificación , Péptido 2 Similar al Glucagón/administración & dosificación , Hipotálamo/efectos de los fármacos , Sueño/efectos de los fármacos , Animales , Apetito/fisiología , Pollos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 2 Similar al Glucagón/metabolismo , Hipotálamo/metabolismo , Inyecciones Intraventriculares , Sueño/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA