Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Intervalo de año de publicación
1.
Eur Rev Med Pharmacol Sci ; 27(12): 5530-5541, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37401289

RESUMEN

OBJECTIVE: Acromegaly is a fatal and chronic disease that is caused by the abnormal secretion of growth hormone (GH) by the pituitary adenoma or pituitary tumor, resulting in an increased circulated concentration of insulin-like growth factors 1 (IGF-1), where in most of the cases it is secreted by a pituitary tumor. Higher levels of GH cause an increase in IGF-1 in the liver leading to multiple conditions such as cardiovascular diseases, glucose imbalance, cancer, and sleep apnea. Medical treatments such as surgery and radiotherapy can be used as the first choice of patients; however, specified human growth hormone control should be an essential treatment strategy due to an incidence rate of 0.2-1.1 yearly. Therefore, the main focus of this study is to develop a novel drug for treating acromegaly by exploiting medicinal plants that have been screened using phenol as a pharmacophore model to identify target therapeutic medicinal plant phenols. MATERIALS AND METHODS: The screening identified thirty-four pharmacophore matches of medicinal plant phenols. These were selected as suitable ligands and were docked against the growth hormone receptor to calculate their binding affinity. The candidate with the highest screened score was fragment-optimized and subjected to absorption, distribution, metabolism, and excretion (ADME) analysis, in-depth toxicity predictions, interpretation of Lipinski's rule, and molecular dynamic simulations to check the behavior of the growth hormone with the fragment-optimized candidate. RESULTS: The highest docking energy was calculated as -6.5 K/mol for Bauhiniastatin-1. Enhancing the performance of Bauhiniastatin-1 against the growth hormone receptor with fragment optimization portrayed that human growth hormone inhibition can be executed in a more efficient and better way. Fragment-optimized Bauhiniastatin-1 (FOB) was predicted with high gastrointestinal absorption, a water solubility of -2.61 as soluble, and synthetic accessibility of 4.50, achieving Lipinski's rule of 5, with low organ toxicity prediction and interpreting a positive behavior against the targeted protein. The discovery of a de novo drug candidate was confirmed by the docking of fragment-optimized Bauhiniastatin-1 (FOB), which had an energy of -4,070 Kcal/mol. CONCLUSIONS: Although successful and completely harmless, present healthcare treatment does not always eradicate the disease in some individuals. Therefore, novel formulas or combinations of currently marketed medications and emergent phytochemicals will provide new possibilities for these instances.


Asunto(s)
Acromegalia , Hormona de Crecimiento Humana , Neoplasias Hipofisarias , Humanos , Acromegalia/tratamiento farmacológico , Acromegalia/etiología , Acromegalia/cirugía , Factor I del Crecimiento Similar a la Insulina/metabolismo , Farmacóforo , Fenoles/uso terapéutico , Receptores de Somatotropina/uso terapéutico , Hormona del Crecimiento
2.
Biomed Pharmacother ; 153: 113489, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076507

RESUMEN

Certain herbs used in traditional Chinese medicine may produce a growth-enhancing effect by promoting the secretion of growth hormone (GH) by the pituitary gland or mimicking the function of GH. In this study, we aimed to identify herbs that could serve as GH alternatives. A reporter gene assay for GH was developed, and 100 different herbal extracts were assayed. We found that Rhizoma Anemarrhenae (RA) water extracts exhibited transactivation activities that stimulate the activation of signal transducer and activator of transcription 5 (STAT5). The growth-promoting effect of RA in NB2-11 cells was inhibited by co-treatment with GH receptor (GHR)-Fc fusion protein. Unlike GH, RA extracts did not enhance the growth of B16F10 melanoma cells. The activation of the Janus kinase 2-STAT5 signaling pathway was confirmed in both NB2-11 cells and WI-38 human normal lung fibroblasts; the activation was inhibited by co-treatment with GHR-Fc fusion protein. Docking analysis of the active ingredients of RA, including mangiferin, neomangiferin, isomangiferin, anemarsaponin E, 7-O-methylmangiferin, officinalisinin I, timosaponin BII, timosaponin AI, and timosaponin AIII, using SWISSDOCK indicated a direct interaction of these compounds with GHR. The growth-promoting effects and activation of STAT5 were also confirmed. Moreover, we found that RA extract significantly increased the height of the tibial growth plate and stimulated the production of insulin-like growth factor 1 in the serum, liver, and muscle tissues. Our findings provide evidence that herbal extracts, particularly, RA extracts, can promote growth by mimicking GH bioactivity.


Asunto(s)
Anemarrhena , Medicamentos Herbarios Chinos , Hormona del Crecimiento , Medicamentos Herbarios Chinos/farmacología , Hormona del Crecimiento/farmacología , Humanos , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/metabolismo
3.
Endocrinology ; 163(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35803590

RESUMEN

Growth hormone (GH) acts in several hypothalamic neuronal populations to modulate metabolism and the autoregulation of GH secretion via negative-feedback loops. However, few studies have investigated whether GH receptor (GHR) expression in specific neuronal populations is required for the homeostatic control of GH secretion and energy homeostasis. In the present study, we investigated the consequences of the specific GHR ablation in GABAergic (VGAT-expressing) or glutamatergic (VGLUT2-expressing) cells. GHR ablation in GABAergic neurons led to increased GH secretion, lean mass, and body growth in male and female mice. VGAT-specific GHR knockout (KO) male mice also showed increased serum insulin-like growth factor-1, hypothalamic Ghrh, and hepatic Igf1 messenger RNA levels. In contrast, normal GH secretion, but reduced lean body mass, was observed in mice carrying GHR ablation in glutamatergic neurons. GHR ablation in GABAergic cells increased weight loss and led to decreased blood glucose levels during food restriction, whereas VGLUT2-specific GHR KO mice showed blunted feeding response to 2-deoxy-D-glucose both in males and females, and increased relative food intake, oxygen consumption, and serum leptin levels in male mice. Of note, VGLUT2-cre female mice, independently of GHR ablation, exhibited a previously unreported phenotype of mild reduction in body weight without further metabolic alterations. The autoregulation of GH secretion via negative-feedback loops requires GHR expression in GABAergic cells. Furthermore, GHR ablation in GABAergic and glutamatergic neuronal populations leads to distinct metabolic alterations. These findings contribute to the understanding of the neuronal populations responsible for mediating the neuroendocrine and metabolic effects of GH.


Asunto(s)
Neuronas GABAérgicas , Receptores de Somatotropina , Animales , Femenino , Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptores de Leptina/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo
4.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681914

RESUMEN

Insulin-like growth factor-1 (IGF-1) primarily increases the release of gamma-aminobutyric acid (GABA) in neurons; moreover, it is responsible for the promotion of longitudinal growth in children and adolescents. Therefore, in this study, we investigated whether exogenous GABA supplementation activates IGF-mediated growth performance. Zebrafish larvae treated with GABA at three days post fertilization (dpf) showed a significant increase in the total body length from 6 to 12 dpf through upregulation of growth-stimulating genes, including IGF-1, growth hormone-1 (GH-1), growth hormone receptor-1 (GHR-1), and cholecystokinin A (CCKA). In particular, at 9 dpf, GABA increased total body length from 3.60 ± 0.02 to 3.79 ± 0.03, 3.89 ± 0.02, and 3.92 ± 0.04 mm at concentrations of 6.25, 12.5, and 25 mM, and the effect of GABA at 25 mM was comparable to 4 mM ß-glycerophosphate (GP)-treated larvae (3.98 ± 0.02 mm). Additionally, the highest concentration of GABA (50 mM) -induced death in 50% zebrafish larvae at 12 dpf. GABA also enhanced IGF-1 expression and secretion in preosteoblast MC3T3-E1 cells, concomitant with high levels of the IGF-1 receptor gene (IGF-1R). In zebrafish larvae, the GABA-induced growth rate was remarkably decreased in the presence of an IGF-1R inhibitor, picropodophyllin (PPP), which indicates that GABA-induced IGF-1 enhances growth rate via IGF-1R. Furthermore, we investigated the effect of GABA receptors on growth performance along with IGF-1 activation. Inhibitors of GABAA and GABAB receptors, namely bicuculline and CGP 46381, respectively, considerably inhibited GABA-induced growth rate in zebrafish larvae accompanied by a marked decrease in the expression of growth-stimulating genes, including IGF-1, GH-1, GHR-1, and CCKA, but not with an inhibitor of GABAC receptor, TPMPA. Additionally, IGF-1 and IGF-1R expression was impaired in bicuculline and CGP 46381-treated MC3T3-E1 cells, but not in the cells treated with TPMPA. Furthermore, treatment with bicuculline and CGP 46381 significantly downregulated GABA-induced IGF-1 release in MC3T3-E1 cells. These data indicate that GABA stimulates IGF-1 release via GABAA and GABAB receptors and leads to growth promotion performance via IGF-1R.


Asunto(s)
Receptores de GABA/metabolismo , Somatomedinas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Ácido gamma-Aminobutírico/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glicerofosfatos/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Ratones , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacología , Receptor IGF Tipo 1/metabolismo , Receptores de Somatotropina/metabolismo , Pez Cebra/metabolismo
5.
Fish Physiol Biochem ; 47(4): 1313-1327, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34241763

RESUMEN

Selenium (Se), an essential component of deiodinases (DIOs), regulates the contents of thyroid hormones and thus improves animal growth. To explore the influences of selenium supplementation on fish growth metabolism, a total of 270 healthy grass carp (Ctenopharyngodon idella) were divided into three groups and feed three graded dietary selenium (0.141, 0.562, and 1.044 mg Se/kg) levels. The results showed that after 60-day feeding, dietary selenium improved the final body weight and specific growth rate (SGR) of grass carp. The hepatic DIO activities in selenium-supplemented groups were higher than those in control group. A significant increase in triiodothyronine (T3), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) levels was accompanied by a decrease in the contents of thyroxine (T4) and free thyroxine (FT4) in selenium-supplemented groups. The histopathological observation of thyroid suggested that selenium deficiency resulted in hypertrophy of follicular epithelial cells. Moreover, the gene relative expression levels of dio1, dio2, and dio3 showed an increasing trend with the rising concentration of dietary selenium. The transcription levels of HPT axis-related genes (crh, tsh-ß, ttr, tr-s, tpo, nis) and GH/IGF1-related genes (gh, ghr, igf1, igf1r) were significantly upregulated in selenium-supplemented groups. No significant differences in the above indicators were observed between 0.562 and 1.044 mg Se/kg diet group except T3 content and dio1 relative expression ratio. These results indicate that dietary selenium supplementation improves the hepatic DIO activities and thyroid hormone metabolism and regulates the transcription levels of HPT and GH/IGF axis-related genes, which may be responsible for the growth promotion in grass carp.


Asunto(s)
Carpas , Suplementos Dietéticos , Selenio/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Carpas/sangre , Carpas/crecimiento & desarrollo , Carpas/metabolismo , Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/genética , Hipotálamo , Factor I del Crecimiento Similar a la Insulina/genética , Yoduro Peroxidasa/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Hipófisis , Receptor IGF Tipo 1/genética , Receptores de Somatotropina/genética , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/patología , Tirotropina/sangre , Tiroxina/sangre , Triyodotironina/sangre
6.
Cells ; 10(4)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919674

RESUMEN

Many aspects of physiological functions are controlled by the hypothalamus, a brain region that connects the neuroendocrine system to whole-body metabolism. Growth hormone (GH) and the GH receptor (GHR) are expressed in hypothalamic regions known to participate in the regulation of feeding and whole-body energy homeostasis. Sirtuin 1 (SIRT1) is the most conserved mamma-lian nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase that plays a key role in controlling life span and sensing nutrient availability in the hypothalamus in response to caloric restriction. However, the interaction between GHR signaling and SIRT1 in the hypothal-amus is not established. In the arcuate nucleus (ARC) of the hypothalamus, the anorexigenic proopiomelanocortin (POMC)-expressing neurons and the orexigenic agouti-related protein (AgRP)-expressing neurons are the major regulators of feeding and energy expenditure. We show that in the ARC, the majority of GHR-expressing neurons also express SIRT1 and respond to fasting by upregulating SIRT1 expression. Accordingly, hypothalamic upregulation of SIRT1 in response to fasting is blunted in animals with GHR deletion in the AgRP neurons (AgRPEYFPΔGHR). Our data thus reveal a novel interaction between GH and SIRT1 in responses to fasting.


Asunto(s)
Ayuno/metabolismo , Hipotálamo/metabolismo , Receptores de Somatotropina/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Femenino , Ácidos Hidroxámicos/farmacología , Hipotálamo/efectos de los fármacos , Masculino , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Brain Res ; 1751: 147189, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33152340

RESUMEN

A growth hormone (GH) injection is able to induce the phosphorylated form of the signal transducer and activator of transcription 5 (pSTAT5) in a large number of cells throughout the mouse brain. The present study had the objective to map the distribution of GH-responsive cells in the brain of rats that received an intracerebroventricular injection of GH and compare it to the pattern found in mice. We observed that rats and mice exhibited a similar distribution of GH-induced pSTAT5 in the majority of areas of the telencephalon, hypothalamus and brainstem. However, rats exhibited a higher density of GH-responsive cells than mice in the horizontal limb of the diagonal band of Broca (HDB), supraoptic and suprachiasmatic nuclei, whereas mice displayed more GH-responsive cells than rats in the hippocampus, lateral hypothalamic area and dorsal motor nucleus of the vagus (DMX). Since both HDB and DMX contain acetylcholine-producing neurons, pSTAT5 was co-localized with choline acetyltransferase in GH-injected animals. We found that 50.0 ± 4.5% of cholinergic neurons in the rat HDB coexpressed GH-induced pSTAT5, whereas very few co-localizations were observed in the mouse HDB. In contrast, rats displayed fewer cholinergic neurons responsive to GH in the DMX at the level of the area postrema. In summary, pSTAT5 can be used as a marker of GH-responsive cells in the rat brain. Although rats and mice exhibit a relatively similar distribution of GH-responsive neurons, some species-specific differences exist, as exemplified for the responsiveness to GH in distinct populations of cholinergic neurons.


Asunto(s)
Mapeo Encefálico/métodos , Receptores de Somatotropina/análisis , Factor de Transcripción STAT5/análisis , Acetilcolina , Animales , Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Colina O-Acetiltransferasa/metabolismo , Neuronas Colinérgicas/metabolismo , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/farmacología , Hipocampo/metabolismo , Hipotálamo/metabolismo , Infusiones Intraventriculares , Masculino , Bulbo Raquídeo/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación , Ratas , Ratas Long-Evans , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/metabolismo
8.
Peptides ; 135: 170426, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069692

RESUMEN

The hypothalamus mediates important exercise-induced metabolic adaptations, possibly via hormonal signals. Hypothalamic leptin receptor (LepR)- and steroidogenic factor 1 (SF1)-expressing neurons are directly responsive to growth hormone (GH) and deletion of GH receptor (GHR) in these cells impairs neuroendocrine responses during situations of metabolic stress. In the present study, we determined whether GHR ablation in LepR- or SF1-expressing cells modifies acute and chronic metabolic adaptations to exercise. Male mice carrying deletion of GHR in LepR- or SF1-expressing cells were submitted to 8 weeks of treadmill running training. Changes in aerobic performance and exercise-induced metabolic adaptations were determined. Mice carrying GHR deletion in LepR cells showed increased aerobic performance after 8 weeks of treadmill training, whereas GHR ablation in SF1 cells prevented improvement in running capacity. Trained mice carrying GHR ablation in SF1 cells exhibited increased fat mass and reduced cross-sectional area of the gastrocnemius muscle. In contrast, deletion of GHR in LepR cells reduced fat mass and increased gastrocnemius muscle hypertrophy, energy expenditure and voluntary locomotor activity in trained mice. Although glucose tolerance was not significantly affected by targeted deletions, glycemia before and immediately after maximum running tests was altered by GHR ablation. In conclusion, GHR signaling in hypothalamic neurons regulates the adaptation capacity to aerobic exercise in a cell-specific manner. These findings suggest that GH may represent a hormonal cue that informs specific hypothalamic neurons to produce exercise-induced acute and chronic metabolic adaptations.


Asunto(s)
Ejercicio Físico/fisiología , Condicionamiento Físico Animal , Receptores de Leptina/genética , Receptores de Somatotropina/genética , Factor Esteroidogénico 1/genética , Adaptación Fisiológica/genética , Animales , Metabolismo Energético/genética , Regulación de la Expresión Génica , Hormona del Crecimiento/metabolismo , Humanos , Hipotálamo/metabolismo , Leptina/genética , Locomoción/genética , Masculino , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Neuronas/metabolismo
9.
Life Sci ; 259: 118229, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32781065

RESUMEN

AIMS: Cholinergic neurons are distributed in brain areas containing growth hormone (GH)-responsive cells. We determined if cholinergic neurons are directly responsive to GH and the metabolic consequences of deleting the GH receptor (GHR) specifically in choline acetyltransferase (ChAT)-expressing cells. MAIN METHODS: Mice received an acute injection of GH to detect neurons co-expressing ChAT and phosphorylated STAT5 (pSTAT5), a well-established marker of GH-responsive cells. For the physiological studies, mice carrying ablation of GHR exclusively in ChAT-expressing cells were produced and possible changes in energy and glucose homeostasis were determined when consuming regular chow or high-fat diet (HFD). KEY FINDINGS: The majority of cholinergic neurons in the arcuate nucleus (60%) and dorsomedial nucleus (84%) of the hypothalamus are directly responsive to GH. Approximately 34% of pre-ganglionic parasympathetic neurons in the dorsal motor nucleus of the vagus also exhibited GH-induced pSTAT5. GH-induced pSTAT5 in these ChAT neurons was absent in GHR ChAT knockout mice. Mice carrying ChAT-specific GHR deletion, either in chow or HFD, did not exhibit significant changes in body weight, body adiposity, lean body mass, food intake, energy expenditure, respiratory quotient, ambulatory activity, serum leptin levels, glucose tolerance, insulin sensitivity and metabolic responses to 2-deoxy-d-glucose. However, GHR deletion in ChAT neurons caused decreased hypothalamic Pomc mRNA levels in HFD mice. SIGNIFICANCE: Cholinergic neurons that regulate the metabolism are directly responsive to GH, although GHR signaling in these cells is not required for energy and glucose homeostasis. Thus, the physiological importance of GH action on cholinergic neurons still needs to be identified.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Hormona del Crecimiento/metabolismo , Receptores de Somatotropina/metabolismo , Acetilcolina/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Dieta Alta en Grasa , Metabolismo Energético , Glucosa/metabolismo , Hormona del Crecimiento/fisiología , Hipotálamo/metabolismo , Resistencia a la Insulina/genética , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Somatotropina/genética , Factor de Transcripción STAT5/metabolismo , Nervio Vago/metabolismo
10.
J Neurosci ; 40(22): 4309-4322, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32317389

RESUMEN

Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine ß-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.


Asunto(s)
Exocitosis , Retroalimentación Fisiológica , Hormona del Crecimiento/metabolismo , Neuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Femenino , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Tirosina 3-Monooxigenasa/genética
11.
Neuroscience ; 434: 136-147, 2020 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32229232

RESUMEN

The arcuate nucleus (ARH) is an important hypothalamic area for the homeostatic control of feeding and other metabolic functions. In the ARH, proopiomelanocortin- (POMC) and agouti-related peptide (AgRP)-expressing neurons play a key role in the central regulation of metabolism. These neurons are influenced by circulating factors, such as leptin and growth hormone (GH). The objective of the present study was to determine whether a direct action of GH on ARH neurons regulates the density of POMC and AgRP axonal projections to major postsynaptic targets. We studied POMC and AgRP axonal projections to the hypothalamic paraventricular (PVH), lateral (LHA) and dorsomedial (DMH) nuclei in leptin receptor (LepR)-deficient mice (Leprdb/db), GH-deficient mice (Ghrhrlit/lit) and in mice carrying specific ablations of GH receptor (GHR) either in LepR- or AgRP-expressing cells. Leprdb/db mice presented reduction in the density of POMC innervation to the PVH compared to wild-type and Ghrhrlit/lit mice. Additionally, both Leprdb/db and Ghrhrlit/lit mice showed reduced AgRP fiber density in the PVH, LHA and DMH. LepR GHR knockout mice showed decreased density of POMC innervation in the PVH and DMH, compared to control mice, whereas a reduction in the density of AgRP innervation was observed in all areas analyzed. Conversely, AgRP-specific ablation of GHR led to a significant reduction in AgRP projections to the PVH, LHA and DMH, without affecting POMC innervation. Our findings indicate that GH has direct trophic effects on the formation of POMC and AgRP axonal projections and provide additional evidence that GH regulates hypothalamic neurocircuits controlling energy homeostasis.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Receptores de Somatotropina , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Receptores de Somatotropina/genética
12.
BMC Vet Res ; 15(1): 315, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477098

RESUMEN

BACKGROUND: Postbiotics have been established as potential feed additive to be used in monogastric such as poultry and swine to enhance health and growth performance. However, information on the postbiotics as feed additive in ruminants is very limited. The aim of this study was to elucidate the effects of supplementation of postbiotics in newly-weaned lambs on growth performance, digestibility, rumen fermentation characteristics and microbial population, blood metabolite and expression of genes related to growth and volatile fatty acid transport across the rumen epithelium. RESULTS: Postbiotic supplementation increased weight gain, feed intake, nutrient intake and nutrient digestibility of the lambs. No effect on ruminal pH and total VFA, whereas butyrate and ruminal ammonia-N concentration were improved. The lambs fed with postbiotics had higher blood total protein, urea nitrogen and glucose. However, no difference was observed in blood triglycerides and cholesterol levels. Postbiotics increased the population of fibre degrading bacteria but decreased total protozoa and methanogens in rumen. Postbiotics increased the mRNA expression of hepatic IGF-1 and ruminal MCT-1. CONCLUSIONS: The inclusion of postbiotics from L. plantarum RG14 in newly-weaned lambs improved growth performance, nutrient intake and nutrient digestibility reflected from better rumen fermentation and microbial parameters, blood metabolites and upregulation of growth and nutrient intake genes in the post-weaning lambs.


Asunto(s)
Suplementos Dietéticos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Receptores de Somatotropina/metabolismo , Ovinos/crecimiento & desarrollo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Digestión , Fermentación , Regulación de la Expresión Génica/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/genética , Lactobacillus plantarum , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Distribución Aleatoria , Receptores de Somatotropina/genética , Rumen/microbiología , Ovinos/sangre , Ovinos/metabolismo , Destete
13.
FASEB J ; 33(11): 11909-11924, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31366244

RESUMEN

Growth hormone (GH) is secreted during hypoglycemia, and GH-responsive neurons are found in brain areas containing glucose-sensing neurons that regulate the counter-regulatory response (CRR). However, whether GH modulates the CRR to hypoglycemia via specific neuronal populations is currently unknown. Mice carrying ablation of GH receptor (GHR) either in leptin receptor (LepR)- or steroidogenic factor-1 (SF1)-expressing cells were studied. We also investigated the importance of signal transducer and activator of transcription 5 (STAT5) signaling in SF1 cells for the CRR. GHR ablation in LepR cells led to impaired capacity to recover from insulin-induced hypoglycemia and to a blunted CRR caused by 2-deoxy-d-glucose (2DG) administration. GHR inactivation in SF1 cells, which include ventromedial hypothalamic neurons, also attenuated the CRR. The reduced CRR was prevented by parasympathetic blockers. Additionally, infusion of 2DG produced an abnormal hyperactivity of parasympathetic preganglionic neurons, whereas the 2DG-induced activation of anterior bed nucleus of the stria terminalis neurons was reduced in mice without GHR in SF1 cells. Mice carrying ablation of Stat5a/b genes in SF1 cells showed no defects in the CRR. In summary, GHR expression in SF1 cells is required for a normal CRR, and these effects are largely independent of STAT5 pathway.-Furigo, I. C., de Souza, G. O., Teixeira, P. D. S., Guadagnini, D., Frazão, R., List, E. O., Kopchick, J. J., Prada, P. O., Donato, J., Jr. Growth hormone enhances the recovery of hypoglycemia via ventromedial hypothalamic neurons.


Asunto(s)
Hormona del Crecimiento/farmacología , Hipoglucemia/tratamiento farmacológico , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Animales , Desoxiglucosa/farmacología , Hipoglucemia/fisiopatología , Hipotálamo/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo
14.
PLoS One ; 14(1): e0210613, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30673747

RESUMEN

The aim of this study was to clarify the combined effects and dose-effect relationships of rhGH on tumor growth, nutrition status, and immune function in MKN-45 xenograft mice. In this study, animal models were induced in nude mice using the subcutaneous transplantation of MKN-45 cells, and rhGH was injected daily for 14 days. Three rhGH treatment dosages were set with reference to the equivalent dosage converted from human clinical dosage, including 2 IU (0.67 mg), 10 IU (3.35 mg) and 50 IU (16.75 mg) per kg body weight. The tumor volume, body weight and food intake were measured every two or three days. After 14 days of rhGH treatment, the tumors were isolated and weighed. The expression levels of Ki-67, vascular endothelial growth factor (VEGF) and CD31in tumor tissues were detected by immunohistochemistry (IHC). The protein expression levels of pJAK2, JAK2, pSTAT3, STAT3, pAKT, AKT, pERK and ERK were measured by western blotting. The percentage of active NK cells in peripheral blood mononuclear cells (PBMCs) was detected by fluorescence-activated cell sorting (FACS). The results showed that rhGH had improved the food intake, increased the body weight and strengthened the immune function of MKN-45 xenograft mice but had not promote tumor growth. MKN-45 xenograft mice treated with rhGH at a higher dosage gained more weight, while those treated with rhGH at a lower dosage showed stronger immune function and smaller tumor volume.


Asunto(s)
Hormona de Crecimiento Humana/uso terapéutico , Inmunidad/efectos de los fármacos , Estado Nutricional/efectos de los fármacos , Proteínas Recombinantes/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Conducta Alimentaria , Femenino , Hormona de Crecimiento Humana/farmacología , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico , Receptores de Somatotropina/metabolismo , Proteínas Recombinantes/farmacología , Neoplasias Gástricas/irrigación sanguínea
15.
Artículo en Inglés | MEDLINE | ID: mdl-30114526

RESUMEN

Phoenixin (Pnx) is an endogenous peptide known to be involved in reproduction and food intake in rats, with two active isoforms, phoenixin-14 (Pnx-14) and phoenixin-20 (Pnx-20). However, little is known about the functions of Pnx in teleost. Here, pnx was cloned and was detected in all tissues of both male and female in spotted scat (Scatophagus argus), including growth axis, hypothalamus, pituitary, and liver. Real-time PCR analysis showed that pnx in the hypothalamus increased significantly after 2 d and 7 d fasting, while reduced significantly after re-feeding (P < 0.05). When pituitary and liver fragments were cultured in vitro with Pnx-14 and Pnx-20 (10 nM and 100 nM) for 6 h, the expression of ghrhr (growth hormone-releasing hormone receptor) and gh (growth hormone) in the pituitary, and ghr1 (growth hormone receptor 1) in the liver increased significantly, except ghr2 (growth hormone receptor 2) incubated with 10 nM and 100 nM Pnx-20 and ghr1 incubated with 10 nM Pnx-20. Similarly, the expression of ghrhr and gh in the pituitary, as well as ghr1 and ghr2 in the liver, increased significantly after injecting S. argus with Pnx-14 and Pnx-20 (10 ng/g and 100 ng/g body weight). These results indicate that Pnx is likely to be involved in the regulation of food intake, and also regulates the growth of S. argus by increasing ghrhr and gh expression in the pituitary, ghr1 and ghr2 in the liver, and ghr1 directly in the liver.


Asunto(s)
Ingestión de Energía , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Hormonas Peptídicas/metabolismo , Perciformes/fisiología , Animales , Acuicultura , China , Ingestión de Energía/efectos de los fármacos , Femenino , Proteínas de Peces/administración & dosificación , Proteínas de Peces/genética , Proteínas de Peces/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/agonistas , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Hormonas Hipotalámicas/administración & dosificación , Hormonas Hipotalámicas/genética , Hormonas Hipotalámicas/farmacología , Hipotálamo/efectos de los fármacos , Inyecciones Intraperitoneales , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Especificidad de Órganos , Hormonas Peptídicas/administración & dosificación , Hormonas Peptídicas/genética , Hormonas Peptídicas/farmacología , Perciformes/crecimiento & desarrollo , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Isoformas de Proteínas/administración & dosificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Distribución Aleatoria , Receptores de Neuropéptido/agonistas , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/agonistas , Receptores de Hormona Reguladora de Hormona Hipofisaria/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo , Receptores de Somatotropina/agonistas , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Técnicas de Cultivo de Tejidos/veterinaria , Aumento de Peso
16.
Mol Metab ; 6(5): 393-405, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28462074

RESUMEN

OBJECTIVE: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. METHODS: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR). The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. RESULTS: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. CONCLUSION: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding.


Asunto(s)
Glucosa/metabolismo , Hipotálamo/metabolismo , Hígado/metabolismo , Neuronas/metabolismo , Receptores de Leptina/metabolismo , Receptores de Somatotropina/metabolismo , Animales , Hipotálamo/citología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
17.
Poult Sci ; 96(6): 1884-1890, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339753

RESUMEN

Previous studies demonstrated that in ovo photostimulation with monochromatic green light increases body weight and accelerates muscle development in broilers. The mechanism in which in ovo photostimulation accelerates growth and muscle development is not clearly understood. The objective of the current study was to define development of the somatotropic axis in the broiler embryo associated with in ovo green light photostimulation. Two-hundred-forty fertile broiler eggs were divided into 2 groups. The first group was incubated under intermittent monochromatic green light using light-emitting diode (LED) lamps with an intensity of 0.1 W\m2 at shell level, and the second group was incubated under dark conditions and served as control. In ovo green light photostimulation increased plasma growth hormone (GH) and prolactin (PRL) levels, as well as hypothalamic growth hormone releasing hormone (GHRH), liver growth hormone receptor (GHR), and insulin-like growth factor-1 (IGF-1) mRNA levels. The in ovo photostimulation did not, however, increase embryo's body weight, breast muscle weight, or liver weight. The results of this study suggest that stimulation with monochromatic green light during incubation increases somatotropic axis expression, as well as plasma prolactin levels, during embryonic development.


Asunto(s)
Embrión de Pollo/crecimiento & desarrollo , Embrión de Pollo/efectos de la radiación , Luz , Animales , Peso Corporal/efectos de la radiación , Hormona del Crecimiento/sangre , Hormona del Crecimiento/efectos de la radiación , Hormona Liberadora de Hormona del Crecimiento/análisis , Hormona Liberadora de Hormona del Crecimiento/efectos de la radiación , Hipotálamo/metabolismo , Hipotálamo/efectos de la radiación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/efectos de la radiación , Hígado/embriología , Hígado/efectos de la radiación , Óvulo/efectos de la radiación , Músculos Pectorales/embriología , Músculos Pectorales/efectos de la radiación , Prolactina/sangre , Prolactina/efectos de la radiación , ARN Mensajero , Receptores de Somatotropina/efectos de la radiación
18.
Arq. bras. med. vet. zootec ; 69(1): 205-213, jan.-fev. 2017. tab, graf
Artículo en Portugués | LILACS, VETINDEX | ID: biblio-836700

RESUMEN

Este estudo foi desenvolvido com o objetivo de avaliar a expressão gênica do fator de crescimento semelhante à insulina I (IGF-I) e do receptor do hormônio do crescimento (GHR) no fígado e no músculo do peito de codornas de corte, alimentadas com dietas contendo diferentes níveis de suplementação de metionina, em duas gerações sucessivas. Foram utilizadas codornas dos 22 aos 42 dias de idade, distribuídas em três e cinco tratamentos na primeira e na segunda geração, respectivamente. Ao final, as aves foram abatidas por deslocamento cervical, sendo coletados fígado e músculo do peito para extração de RNA total. O cDNA foi amplificado usando primers específicos para os genes analisados. Os resultados mostraram que a expressão dos genes GHR e IGF-I sofreu influência da suplementação. No quinto tratamento, em que apenas a primeira geração recebeu uma suplementação acima do padrão das exigências para o período, houve uma expressão significativamente maior do GHR tanto no músculo do peito como no fígado e igualmente do IGF-I no músculo, levando a concluir que o excesso de metionina na dieta torna-se tóxica para as aves. Apesar de a expressão dos genes ter sofrido influência da adição de metionina nos níveis estudados, não foi observada diferença no consumo alimentar, na conversão alimentar e no peso das aves.(AU)


This study was conducted to evaluate the gene expression of the insulin-like I growth factor (IGF-I) and growth hormone receptor (GHR), in the liver and chest muscle of slaughter quails fed with diets containing different levels of methionine supplementation, in two successive generations. Twenty-two to 42 day-old quails were used, distributed in three and five treatments in the first and second generation, respectively. At the end, the birds were killed by cervical dislocation, and their liver and chest muscle were collected for total RNA extraction. The cDNA was amplified using specific primers for the genes analyzed. The results showed that the expression of GHR gene and IGF-I were influenced by the supplementation. In the fifth treatment, where only the first generation received supplementation above the standard requirements for the period, there was a significantly higher expression of GHR both in muscle chest and in the liver, and also IGF-I on muscle, leading to the conclusion that the excess dietary methionine becomes toxic to birds. Despite the gene´s expression seeming to be influenced by the addition of methionine levels in the study, there was no difference in feed intake, feed conversion and weight of the birds.(AU)


Asunto(s)
Animales , Coturnix/genética , Suplementos Dietéticos/análisis , Expresión Génica , Factor I del Crecimiento Similar a la Insulina/genética , Metionina/administración & dosificación , Receptores de Somatotropina/genética , Cartilla de ADN , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
19.
J Neuroendocrinol ; 29(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27874965

RESUMEN

The Siberian hamster (Phodopus sungorus) is a seasonal mammal, exhibiting a suite of physiologically and behaviourally distinct traits dependent on the time of year and governed by changes in perceived day length (photoperiod). These attributes include significant weight loss, reduced food intake, gonadal atrophy and pelage change with short-day photoperiod as in winter. The central mechanisms driving seasonal phenotype change during winter are mediated by a reduced availability of hypothalamic triiodothyronine (T3), although the downstream mechanisms responsible for physiological and behavioural changes are yet to be fully clarified. With access to a running wheel (RW) in short photoperiod, Siberian hamsters that have undergone photoperiod-mediated weight loss over-ride photoperiod-drive for reduced body weight and regain weight similar to a hamster held in long days. These changes occur despite retaining the majority of hypothalamic gene expression profiles appropriate for short-day hamsters. Utilising the somatostatin agonist pasireotide, we recently provided evidence for an involvement of the growth hormone (GH) axis in the seasonal regulation of bodyweight. In the present study, we employed pasireotide to test for the possible involvement of the GH axis in RW-induced body weight regulation. Pasireotide successfully inhibited exercise-stimulated growth in short-day hamsters and this was accompanied by altered hypothalamic gene expression of key GH axis components. Our data provide support for an involvement of the GH axis in the RW response in Siberian hamsters.


Asunto(s)
Peso Corporal/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Receptores de Somatotropina/biosíntesis , Somatostatina/análogos & derivados , Animales , Composición Corporal/efectos de los fármacos , Cricetinae , Ingestión de Alimentos , Hormona Liberadora de Hormona del Crecimiento/biosíntesis , Hipotálamo/metabolismo , Yoduro Peroxidasa/biosíntesis , Masculino , Neuropéptido Y/biosíntesis , Tamaño de los Órganos/efectos de los fármacos , Phodopus , Fotoperiodo , Proopiomelanocortina/biosíntesis , Somatostatina/agonistas , Somatostatina/biosíntesis , Somatostatina/farmacología
20.
BMC Vet Res ; 12(1): 163, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27496016

RESUMEN

BACKGROUND: Postbiotics (metabolic products by lactic acid bacteria) and prebiotics have been established as substitute to antibiotics in order to enhance immunity and growth performance in broiler chickens. Nonetheless, insufficient information is available on the effects of postbiotics and prebiotics combination on growth performance, faecal microbiota, pH and volatile fatty acids (VFA), as well as liver insulin like growth factor 1 (IGF1) and growth hormone receptor (GHR) mRNA expressions in broiler chickens. The aim of this experiment was to evaluate the effects of different types of postbiotics with different levels of prebiotic (inulin) on broiler for those parameters. RESULTS: The results showed that birds fed T3: (0.3 % RI11 + 0.8 % Inulin), T4: (0.3 % RI11 + 1.0 % Inulin), and T6: (0.3 % RG14+ 1.0 % Inulin) had higher (p < 0.05) final body weight (BW) and total weight gain (WG) than other treatments. Birds fed T3 had lower feed conversion ratio (FCR) which was significantly different from those fed with negative control diet but was similar to other treatments. Postbiotic and inulin increased (p < 0.05) faecal lactic acid bacteria (LAB) and reduced (p < 0.05) Enterobacteriaceae count. Birds fed T4 and T6 had higher faecal acetic acid and propionic acid respectively, and both had higher total VFA and lactic acid bacteria but lower pH and Enterobacteriaceae (ENT) counts compared to other treatments. The liver of birds fed T4 and T6 had higher IGF1 expression compared to other treatments while T6 had higher GHR mRNA expression compared to other treatments. CONCLUSIONS: Results indicate that the addition of postbiotics and inulin combinations had beneficial effects on total BW, feed efficiency, mucosa architecture and IGF1 and GHR mRNA expression in broiler chickens.


Asunto(s)
Dieta/veterinaria , Suplementos Dietéticos , Heces/microbiología , Regulación de la Expresión Génica/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/genética , Inulina/farmacología , Receptores de Somatotropina/genética , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/fisiología , Ácidos Grasos Volátiles/análisis , Heces/química , Perfilación de la Expresión Génica , Microbiota/efectos de los fármacos , ARN Mensajero/genética , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA