Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575923

RESUMEN

Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Daño del ADN/efectos de los fármacos , Flavonoides/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Medicamentos Herbarios Chinos , Regulación de la Expresión Génica , Recombinación Homóloga/efectos de los fármacos , Humanos , Ratones , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo
2.
Microbiol Res ; 170: 223-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24985093

RESUMEN

Induction of homologous recombination in Rhizobium etli to repair the DNA damage caused by hexavalent chromium (Cr) was evaluated. Mutants in recombination genes such as addA, recF, recA, ruvB, recG, and a double mutant ruvBrecG showed different sensitivity levels to Cr. As expected, the recA mutant showed the highest susceptibility, while complementation restored the Cr-resistant phenotype, similar to the wild-type strain. Small plasmid recombination increased up to 30-fold in the presence of Cr (0.05 mM) in the wild-type strain, while no change was observed in the recA mutant. A 20-fold increase in small plasmid recombination was also observed in the addA mutant in the presence of Cr. In addition, the ruvB mutant showed similar increases with Cr exposure to the wild-type strain, suggesting that other genetic elements may substitute its important role during recombination. Interestingly, continuous Cr exposure (0.05 mM) clearly induced the genetic expression of addA, recA, and ruvB genes. Finally, recombination mutants also showed susceptibility to other DNA-damaging agents such as tellurite and selenite. Together, these results confirm the induction and significance of the R. etli homologous recombination system to repair DNA damage caused by hexavalent Cr.


Asunto(s)
Cromo/farmacología , Recombinación Homóloga/efectos de los fármacos , Rhizobium etli/efectos de los fármacos , Rhizobium etli/genética , Cromo/toxicidad , Daño del ADN , Reparación del ADN , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Selenio/farmacología , Telurio/farmacología
3.
Biochem Pharmacol ; 91(3): 293-300, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25124703

RESUMEN

Homologous Recombination (HR) plays an essential role in cellular proliferation and in maintaining genomic stability by repairing DNA double-stranded breaks that appear during replication. Rad51, a key protein of HR in eukaryotes, can have an elevated expression level in tumor cells, which correlates with their resistance to anticancer therapies. Therefore, targeted inhibition of Rad51 through inhibitor may improve the tumor response to these therapies. In order to identify small molecules that inhibit Rad51 activity, we screened the Prestwick Library (1120 molecules) for their effect on the strand exchange reaction catalyzed by Rad51. We found that Chicago Sky Blue (CSB) is a potent inhibitor of Rad51, showing IC50 values in the low nanomolar range (400 nM). Biochemical analysis demonstrated that the inhibitory mechanism probably occurs by disrupting the Rad51 association with the single-stranded DNA, which prevents the nucleoprotein filament formation, the first step of the protein activity. Structure Activity Relationship analysis with a number of compounds that shared structure homology with CSB was also performed. The sensitivity of Rad51 inhibition to CSB modifications suggests specific interactions between the molecule and Rad51 nucleofilament. CSB and some of its analogs open up new perspectives in the search for agents capable of potentiating chemo- and radio-therapy treatments for cancer. Moreover, these compounds may be excellent tools to analyze Rad51 cellular functions. Our study also highlights how CSB and its analogs, which are frequently used in colorants, stains and markers, could be responsible of unwanted side effects by perturbing the DNA repair process.


Asunto(s)
Recombinasa Rad51/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Adenosina Trifosfato/metabolismo , Reparación del ADN/efectos de los fármacos , ADN de Cadena Simple/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Electroforesis/métodos , Electroforesis en Gel Bidimensional , Recombinación Homóloga/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Azul de Tripano/farmacología
4.
Chem Res Toxicol ; 25(8): 1598-608, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22747191

RESUMEN

Selenium (Se) is a trace element that is essential for human health as it takes part in many cellular processes. The cellular response to this compound elicits very diverse processes including DNA damage response and repair. Because an inorganic form of Se, sodium selenite (SeL), has often been a part of numerous studies and because this form of Se is used as a dietary supplement by the public, here, we elucidated mechanisms of SeL-induced toxicity in yeast Saccharomyces cerevisiae using a combination of systematic genetic and transcriptome analysis. First, we screened the yeast haploid deletion mutant library for growth in the presence of this Se compound. We identified 39 highly SeL sensitive mutants. The corresponding deleted genes encoded mostly proteins involved in DNA damage response and repair, vacuole function, glutathione (GSH) metabolism, transcription, and chromatin metabolism. DNA damage response and repair mutants were examined in more detail: a synergistic interaction between postreplication (PRR) and homologous recombination (HRR) repair pathways was revealed. In addition, the effect of combined defects in HRR and GSH metabolism was analyzed, and again, the synergistic interaction was found. Second, microarray analysis was used to reveal expression profile changes after SeL exposure. The gene process categories "amino acid metabolism" and "generation of precursor metabolites and energy" comprised the greatest number of induced and repressed genes, respectively. We propose that SeL-induced toxicity markedly results from DNA injury, thereby highlighting the importance of DNA damage response and repair pathways in protecting cells against toxic effects of this Se compound. In addition, we suggest that SeL toxicity also originates from damage to cellular proteins, including those acting in DNA damage response and repair.


Asunto(s)
Saccharomyces cerevisiae/efectos de los fármacos , Selenito de Sodio/toxicidad , Cromatina/metabolismo , Reparación del ADN/efectos de los fármacos , Glutatión/metabolismo , Recombinación Homóloga/efectos de los fármacos , Análisis por Micromatrices , Mutación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Selenito de Sodio/química , Transcriptoma/efectos de los fármacos
5.
New Phytol ; 193(2): 364-75, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22077663

RESUMEN

• Mutations in the breast cancer susceptibility gene 2 (BRCA2) are correlated with hereditary breast cancer in humans. Studies have revealed that mammalian BRCA2 plays crucial roles in DNA repair. Therefore, we wished to define the role of the BRCA2 homologs in Arabidopsis in detail. • As Arabidopsis contains two functional BRCA2 homologs, an Atbrca2 double mutant was generated and analyzed with respect to hypersensitivity to genotoxic agents and recombination frequencies. Cytological studies addressing male and female meiosis were also conducted, and immunolocalization was performed in male meiotic prophase I. • The Atbrca2 double mutant showed hypersensitivity to the cross-linking agent mitomycin C and displayed a dramatic reduction in somatic homologous recombination frequency, especially after double-strand break induction. The loss of AtBRCA2 also led to severe defects in male meiosis and development of the female gametophyte and impeded proper localization of the synaptonemal complex protein AtZYP1 and the recombinases AtRAD51 and AtDMC1. • The results demonstrate that AtBRCA2 is important for both somatic and meiotic homologous recombination. We further show that AtBRCA2 is required for proper meiotic synapsis and mediates the recruitment of AtRAD51 and AtDMC1. Our results suggest that BRCA2 controls single-strand invasion steps during homologous recombination in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Recombinación Homóloga/genética , Recombinasa Rad51/metabolismo , Rec A Recombinasas/metabolismo , Arabidopsis/citología , Arabidopsis/embriología , Secuencia de Bases , Segregación Cromosómica/efectos de los fármacos , Segregación Cromosómica/genética , ADN Bacteriano/genética , Genes de Plantas/genética , Recombinación Homóloga/efectos de los fármacos , Meiosis/efectos de los fármacos , Mitomicina/farmacología , Datos de Secuencia Molecular , Mutagénesis Insercional/efectos de los fármacos , Mutagénesis Insercional/genética , Mutación/genética , Tasa de Mutación , Óvulo Vegetal/citología , Óvulo Vegetal/efectos de los fármacos , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo , Infertilidad Vegetal/efectos de los fármacos , Infertilidad Vegetal/genética , Polen/citología , Polen/efectos de los fármacos , Polen/metabolismo , Semillas/citología , Semillas/efectos de los fármacos , Semillas/metabolismo
6.
Mol Cancer ; 10: 92, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21798026

RESUMEN

BACKGROUND: A novel anticancer drug 1-(3-C-ethynyl-ß-D-ribo-pentofuranosyl)cytosine (ECyd, TAS106) has been shown to radiosensitize tumor cells and to improve the therapeutic efficiency of X-irradiation. However, the effect of TAS106 on cellular DNA repair capacity has not been elucidated. Our aim in this study was to examine whether TAS106 modified the repair capacity of DNA double-strand breaks (DSBs) in tumor cells. METHODS: Various cultured cell lines treated with TAS106 were irradiated and then survival fraction was examined by the clonogenic survival assays. Repair of sublethal damage (SLD), which indicates DSBs repair capacity, was measured as an increase of surviving cells after split dose irradiation with an interval of incubation. To assess the effect of TAS106 on the DSBs repair activity, the time courses of γ-H2AX and 53BP1 foci formation were examined by using immunocytochemistry. The expression of DNA-repair-related proteins was also examined by Western blot analysis and semi-quantitative RT-PCR analysis. RESULTS: In clonogenic survival assays, pretreatment of TAS106 showed radiosensitizing effects in various cell lines. TAS106 inhibited SLD repair and delayed the disappearance of γ-H2AX and 53BP1 foci, suggesting that DSB repair occurred in A549 cells. Western blot analysis demonstrated that TAS106 down-regulated the expression of BRCA2 and Rad51, which are known as keys among DNA repair proteins in the homologous recombination (HR) pathway. Although a significant radiosensitizing effect of TAS106 was observed in the parental V79 cells, pretreatment with TAS106 did not induce any radiosensitizing effects in BRCA2-deficient V-C8 cells. CONCLUSIONS: Our results indicate that TAS106 induces the down-regulation of BRCA2 and the subsequent abrogation of the HR pathway, leading to a radiosensitizing effect. Therefore, this study suggests that inhibition of the HR pathway may be useful to improve the therapeutic efficiency of radiotherapy for solid tumors.


Asunto(s)
Proteína BRCA2/genética , Citidina/análogos & derivados , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Antineoplásicos/farmacología , Proteína BRCA2/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Citidina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/genética , Recombinación Homóloga/efectos de la radiación , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/patología , Neoplasias/radioterapia , Nucleósidos/farmacología , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA