Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 13(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916690

RESUMEN

Tryptophan metabolism, via the kynurenine (Kyn) pathway, and microbial transformation of tryptophan to indolic compounds are fundamental for host health; both of which are altered in colon carcinogenesis. Alterations in tryptophan metabolism begin early in colon carcinogenesis as an adaptive mechanism for the tumor to escape immune surveillance and metastasize. The microbial community is a key part of the tumor microenvironment and influences cancer initiation, promotion and treatment response. A growing awareness of the impact of the microbiome on tryptophan (Trp) metabolism in the context of carcinogenesis has prompted this review. We first compare the different metabolic pathways of Trp under normal cellular physiology to colon carcinogenesis, in both the host cells and the microbiome. Second, we review how the microbiome, specifically indoles, influence host tryptophan pathways under normal and oncogenic metabolism. We conclude by proposing several dietary, microbial and drug therapeutic modalities that can be utilized in combination to abrogate tumorigenesis.


Asunto(s)
Carcinogénesis/metabolismo , Neoplasias del Colon/terapia , Microbioma Gastrointestinal/efectos de los fármacos , Triptófano/metabolismo , Escape del Tumor/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inmunología , Colon/microbiología , Colon/patología , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/microbiología , Terapia Combinada/métodos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Microbioma Gastrointestinal/inmunología , Interacciones Microbiota-Huesped/inmunología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indoles/administración & dosificación , Indoles/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Quinurenina/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/inmunología , Probióticos/administración & dosificación , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/metabolismo , Simbiosis/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
2.
Cell ; 177(6): 1649-1661.e9, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31080069

RESUMEN

Current machine learning techniques enable robust association of biological signals with measured phenotypes, but these approaches are incapable of identifying causal relationships. Here, we develop an integrated "white-box" biochemical screening, network modeling, and machine learning approach for revealing causal mechanisms and apply this approach to understanding antibiotic efficacy. We counter-screen diverse metabolites against bactericidal antibiotics in Escherichia coli and simulate their corresponding metabolic states using a genome-scale metabolic network model. Regression of the measured screening data on model simulations reveals that purine biosynthesis participates in antibiotic lethality, which we validate experimentally. We show that antibiotic-induced adenine limitation increases ATP demand, which elevates central carbon metabolism activity and oxygen consumption, enhancing the killing effects of antibiotics. This work demonstrates how prospective network modeling can couple with machine learning to identify complex causal mechanisms underlying drug efficacy.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Adenina/metabolismo , Biología Computacional/métodos , Evaluación Preclínica de Medicamentos/métodos , Escherichia coli/metabolismo , Aprendizaje Automático , Redes y Vías Metabólicas/inmunología , Modelos Teóricos , Purinas/metabolismo
3.
Autoimmun Rev ; 18(5): 455-475, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30844549

RESUMEN

The role of microorganism in human diseases cannot be ignored. These microorganisms have evolved together with humans and worked together with body's mechanism to maintain immune and metabolic function. Emerging evidence shows that gut microbe and their metabolites open up new doors for the study of human response mechanism. The complexity and interdependence of these microbe-metabolite-host interactions are rapidly being elucidated. There are various changes of microbial levels in models or in patients of various autoimmune diseases (AIDs). In addition, the relevant metabolites involved in mechanism mainly include short-chain fatty acids (SCFAs), bile acids (BAs), and polysaccharide A (PSA). Meanwhile, the interaction between microbes and host genes is also a factor that must be considered. It has been demonstrated that human microbes are involved in the development of a variety of AIDs, including organ-specific AIDs and systemic AIDs. At the same time, microbes or related products can be used to remodel body's response to alleviate or cure diseases. This review summarizes the latest research of microbes and their related metabolites in AIDs. More importantly, it highlights novel and potential therapeutics, including fecal microbial transplantation, probiotics, prebiotics, and synbiotics. Nonetheless, exact mechanisms still remain elusive, and future research will focus on finding a specific strain that can act as a biomarker of an autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/microbiología , Enfermedades Autoinmunes/terapia , Interacciones Microbiota-Huesped/fisiología , Enfermedades Autoinmunes/inmunología , Autoinmunidad/fisiología , Trasplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/fisiología , Humanos , Redes y Vías Metabólicas/inmunología , Prebióticos/microbiología , Probióticos/metabolismo , Probióticos/uso terapéutico
4.
J Immunol ; 193(2): 708-21, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24943221

RESUMEN

Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing foreign (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), a metabolite in the 2-C-methyl-D-erythritol-4-phosphate pathway used by most eubacteria and apicomplexan parasites, and self isopentenyl pyrophosphate, a metabolite in the mevalonate pathway used by humans. Whereas microbial infections elicit prolonged expansion of memory Vγ2Vδ2 T cells, immunization with prenyl pyrophosphates or aminobisphosphonates elicit short-term Vγ2Vδ2 expansion with rapid anergy and deletion upon subsequent immunizations. We hypothesized that a live, attenuated bacterial vaccine that overproduces HMBPP would elicit long-lasting Vγ2Vδ2 T cell immunity by mimicking a natural infection. Therefore, we metabolically engineered the avirulent aroA(-) Salmonella enterica serovar Typhimurium SL7207 strain by deleting the gene for LytB (the downstream enzyme from HMBPP) and functionally complementing for this loss with genes encoding mevalonate pathway enzymes. LytB(-) Salmonella SL7207 had high HMBPP levels, infected human cells as efficiently as did the wild-type bacteria, and stimulated large ex vivo expansions of Vγ2Vδ2 T cells from human donors. Importantly, vaccination of a rhesus monkey with live lytB(-) Salmonella SL7207 stimulated a prolonged expansion of Vγ2Vδ2 T cells without significant side effects or anergy induction. These studies provide proof-of-principle that metabolic engineering can be used to derive live bacterial vaccines that boost Vγ2Vδ2 T cell immunity. Similar engineering of metabolic pathways to produce lipid Ags or B vitamin metabolite Ags could be used to derive live bacterial vaccine for other unconventional T cells that recognize nonpeptide Ags.


Asunto(s)
Ingeniería Metabólica/métodos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Vacunas contra la Salmonella/inmunología , Salmonella typhimurium/inmunología , Linfocitos T/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proliferación Celular , Células Cultivadas , Eliminación de Gen , Humanos , Inmunización , Activación de Linfocitos/inmunología , Macaca mulatta/inmunología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Ácido Mevalónico/metabolismo , Organofosfatos/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Linfocitos T/metabolismo
5.
Fish Shellfish Immunol ; 31(6): 1154-61, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22019826

RESUMEN

Hepcidin, an antimicrobial peptide described as a key regulator of iron metabolism, is known to respond in mammals to several stimuli, including iron overload, anemia, hypoxia and inflammation, through a number of molecular pathways. In order to understand the molecular pathways involved in the regulation of hepcidin expression in teleost fish, we have isolated for European sea bass (Dicentrarchus labrax) several coding sequences of known molecules involved on these pathways in mammals, namely jak3, stat3, tmprss6, bmp6, bmpr2, hjv, smad4, smad5, tfr1 and tfr2. The transcription levels of the isolated genes were evaluated by real-time PCR on fish subjected to experimental iron modulation (overload/deficiency) or infection with Photobacterium damsela. Results show that genes associated with the major pathway of the inflammatory response (IL6/JAK/STAT pathway) in mammals are also modulated in sea bass, being up-regulated during infection. Similarly, genes of the pathways classically associated with the response to variations in iron status (the HJV/BMP/SMAD and HFE/TfR pathways) are also modulated, mostly through down-regulation in iron deficiency and up-regulation during iron overload. Interestingly, many of these genes are also found to be up-regulated during infection, which may indicate a crosstalk between the known pathways of hepcidin regulation. These observations suggest the evolutionary conservation of the mechanisms of hepcidin regulation in teleost fish.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Lubina/inmunología , Lubina/metabolismo , Evolución Molecular , Regulación de la Expresión Génica/inmunología , Redes y Vías Metabólicas/inmunología , Photobacterium/inmunología , Análisis de Varianza , Animales , Lubina/microbiología , Cartilla de ADN/genética , ADN Complementario/biosíntesis , Regulación de la Expresión Génica/genética , Hepcidinas , Hibridación in Situ , Sobrecarga de Hierro/metabolismo , Redes y Vías Metabólicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Receptores de Transferrina/metabolismo , Proteínas Smad/metabolismo , Especificidad de la Especie , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA