Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Br J Anaesth ; 121(3): 605-615, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30115259

RESUMEN

BACKGROUND: Current concepts suggest that impaired representation of information in cortical networks contributes to loss of consciousness under anaesthesia. We tested this idea in rat auditory cortex using information theory analysis of multiunit responses recorded under three anaesthetic agents with different molecular targets: isoflurane, propofol, and dexmedetomidine. We reasoned that if changes in the representation of sensory stimuli are causal for loss of consciousness, they should occur regardless of the specific anaesthetic agent. METHODS: Spiking responses were recorded with chronically implanted microwire arrays in response to acoustic stimuli incorporating varied temporal and spectral dynamics. Experiments consisted of four drug conditions: awake (pre-drug), sedation (i.e. intact righting reflex), loss of consciousness (a dose just sufficient to cause loss of righting reflex), and recovery. Measures of firing rate, spike timing, and mutual information were analysed as a function of drug condition. RESULTS: All three drugs decreased spontaneous and evoked spiking activity and modulated spike timing. However, changes in mutual information were inconsistent with altered stimulus representation being causal for loss of consciousness. First, direction of change in mutual information was agent-specific, increasing under dexmedetomidine and decreasing under isoflurane and propofol. Second, mutual information did not decrease at the transition between sedation and LOC for any agent. Changes in mutual information under anaesthesia correlated strongly with changes in precision and reliability of spike timing, consistent with the importance of temporal stimulus features in driving auditory cortical activity. CONCLUSIONS: The primary sensory cortex is not the locus for changes in representation of information causal for loss of consciousness under anaesthesia.


Asunto(s)
Anestesia General/métodos , Anestésicos Generales/farmacología , Corteza Auditiva/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Estimulación Acústica/métodos , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos/farmacología , Animales , Corteza Auditiva/fisiología , Estado de Conciencia/fisiología , Dexmedetomidina/farmacología , Electroencefalografía/efectos de los fármacos , Femenino , Hipnóticos y Sedantes/farmacología , Isoflurano/farmacología , Propofol/farmacología , Ratas Endogámicas ACI , Tiempo de Reacción/efectos de los fármacos , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/fisiología
2.
Anesthesiology ; 129(3): 459-476, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29894316

RESUMEN

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Many general anesthetics were discovered empirically, but primary screens to find new sedative-hypnotics in drug libraries have not used animals, limiting the types of drugs discovered. The authors hypothesized that a sedative-hypnotic screening approach using zebrafish larvae responses to sensory stimuli would perform comparably to standard assays, and efficiently identify new active compounds. METHODS: The authors developed a binary outcome photomotor response assay for zebrafish larvae using a computerized system that tracked individual motions of up to 96 animals simultaneously. The assay was validated against tadpole loss of righting reflexes, using sedative-hypnotics of widely varying potencies that affect various molecular targets. A total of 374 representative compounds from a larger library were screened in zebrafish larvae for hypnotic activity at 10 µM. Molecular mechanisms of hits were explored in anesthetic-sensitive ion channels using electrophysiology, or in zebrafish using a specific reversal agent. RESULTS: Zebrafish larvae assays required far less drug, time, and effort than tadpoles. In validation experiments, zebrafish and tadpole screening for hypnotic activity agreed 100% (n = 11; P = 0.002), and potencies were very similar (Pearson correlation, r > 0.999). Two reversible and potent sedative-hypnotics were discovered in the library subset. CMLD003237 (EC50, ~11 µM) weakly modulated γ-aminobutyric acid type A receptors and inhibited neuronal nicotinic receptors. CMLD006025 (EC50, ~13 µM) inhibited both N-methyl-D-aspartate and neuronal nicotinic receptors. CONCLUSIONS: Photomotor response assays in zebrafish larvae are a mechanism-independent platform for high-throughput screening to identify novel sedative-hypnotics. The variety of chemotypes producing hypnosis is likely much larger than currently known.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Hipnóticos y Sedantes/farmacología , Larva/efectos de los fármacos , Locomoción/efectos de los fármacos , Reflejo de Enderezamiento/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Femenino , Larva/fisiología , Locomoción/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Reflejo de Enderezamiento/fisiología , Xenopus , Pez Cebra
3.
Mol Neurobiol ; 55(3): 2676-2684, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28421540

RESUMEN

Maternal folate status during pregnancy may influence central nervous system (CNS) development in offspring. However, the recommended intakes of folic acid for women of childbearing age differ among countries and there is still no consensus about whether folic acid should be supplemented continuously throughout pregnancy. We hypothesized that folic acid supplementation may be more beneficial for offspring's neurobehavioral development if prolonged throughout pregnancy instead of being limited to the periconceptional period. In this study, three groups of the female rats were fed folate-normal, folate-deficient, or folate-supplemented diets throughout pregnancy. In another group, the female rats were fed folate-supplemented diet from mating for 10 consecutive days and then fed folate-normal diet for remainder days of pregnancy. The results showed that maternal folate deficiency increased plasma homocysteine (Hcy) concentration in dams, delayed early sensory-motor reflex development, impaired spatial learning and memory ability, and caused ultrastructural damages in the hippocampus of offspring. Maternal folic acid supplementation would be more effective on improving early sensory-motor reflex development and spatial learning and memory ability in offspring if prolonged throughout pregnancy instead of being limited to the periconceptional period. In conclusion, prolonged maternal folic acid supplementation throughout pregnancy would be more effective in neurobehavioral development of offspring in rats.


Asunto(s)
Suplementos Dietéticos , Ácido Fólico/administración & dosificación , Aprendizaje/efectos de los fármacos , Embarazo/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Reflejo de Enderezamiento/efectos de los fármacos , Factores de Edad , Animales , Animales Recién Nacidos , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Hipocampo/ultraestructura , Aprendizaje/fisiología , Masculino , Salud Materna , Embarazo/fisiología , Desempeño Psicomotor/fisiología , Ratas , Ratas Sprague-Dawley , Reflejo de Enderezamiento/fisiología
4.
Front Neural Circuits ; 11: 36, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28725184

RESUMEN

Although general anesthetics are routinely administered to surgical patients to induce loss of consciousness, the mechanisms underlying anesthetic-induced unconsciousness are not fully understood. In rats, we characterized changes in the extradural EEG and intracranial local field potentials (LFPs) within the prefrontal cortex (PFC), parietal cortex (PC), and central thalamus (CT) in response to progressively higher doses of the inhaled anesthetic sevoflurane. During induction with a low dose of sevoflurane, beta/low gamma (12-40 Hz) power increased in the frontal EEG and PFC, PC and CT LFPs, and PFC-CT and PFC-PFC LFP beta/low gamma coherence increased. Loss of movement (LOM) coincided with an abrupt decrease in beta/low gamma PFC-CT LFP coherence. Following LOM, cortically coherent slow-delta (0.1-4 Hz) oscillations were observed in the frontal EEG and PFC, PC and CT LFPs. At higher doses of sevoflurane sufficient to induce loss of the righting reflex, coherent slow-delta oscillations were dominant in the frontal EEG and PFC, PC and CT LFPs. Dynamics similar to those observed during induction were observed as animals emerged from sevoflurane anesthesia. We conclude that the rat is a useful animal model for sevoflurane-induced EEG oscillations in humans, and that coherent slow-delta oscillations are a correlate of sevoflurane-induced behavioral arrest and loss of righting in rats.


Asunto(s)
Anestésicos por Inhalación/farmacología , Ritmo Delta/efectos de los fármacos , Éteres Metílicos/farmacología , Lóbulo Parietal/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Tálamo/efectos de los fármacos , Animales , Ritmo beta/efectos de los fármacos , Sincronización Cortical/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Electrodos Implantados , Ritmo Gamma/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Ratas Sprague-Dawley , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/fisiología , Sevoflurano , Tálamo/fisiología
5.
J Neurosurg ; 116(6): 1368-78, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22462511

RESUMEN

OBJECT: This study investigates the outcome after traumatic brain injury (TBI) in mice lacking the essential DNA repair gene xeroderma pigmentosum group A (XPA). As damage to DNA has been implicated in neuronal cell death in various models, the authors sought to elucidate whether the absence of an essential DNA repair factor would affect the outcome of TBI in an experimental setting. METHODS: Thirty-seven adult mice of either wild-type (n = 18) or XPA-deficient ("knock-out" [n = 19]) genotype were subjected to controlled cortical impact experimental brain trauma, which produced a focal brain injury. Sham-injured mice of both genotypes were used as controls (9 in each group). The mice were subjected to neurobehavoral tests evaluating learning/acquisition (Morris water maze) and motor dysfunction (Rotarod and composite neuroscore test), pre- and postinjury up to 4 weeks. The mice were killed after 1 or 4 weeks, and cortical lesion volume, as well as hippocampal and thalamic cell loss, was evaluated. Hippocampal staining with doublecortin antibody was used to evaluate neurogenesis after the insult. RESULTS: Brain-injured XPA(-/-) mice exhibited delayed recovery from impairment in neurological motor function, as well as pronounced cognitive dysfunction in a spatial learning task (Morris water maze), compared with injured XPA(+/+) mice (p < 0.05). No differences in cortical lesion volume, hippocampal damage, or thalamic cell loss were detected between XPA(+/+) and XPA(-/-) mice after brain injury. Also, no difference in the number of cells stained with doublecortin in the hippocampus was detected. CONCLUSIONS: The authors' results suggest that lack of the DNA repair factor XPA may delay neurobehavioral recovery after TBI, although they do not support the notion that this DNA repair deficiency results in increased cell or tissue death in the posttraumatic brain.


Asunto(s)
Lesiones Encefálicas/genética , Lesiones Encefálicas/fisiopatología , Corteza Cerebral/lesiones , Corteza Cerebral/fisiopatología , Reparación del ADN/genética , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Destreza Motora/fisiología , Regeneración Nerviosa/genética , Equilibrio Postural/fisiología , Reflejo de Enderezamiento/fisiología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Animales , Lesiones Encefálicas/patología , Muerte Celular/genética , Muerte Celular/fisiología , Corteza Cerebral/patología , Genotipo , Hipocampo/patología , Hipocampo/fisiopatología , Ratones , Ratones Noqueados , Ratones Transgénicos , Tálamo/patología , Tálamo/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA