Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 31(7): 58, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32607849

RESUMEN

Traumatic spinal cord injury (TSCI) can cause paralysis and permanent disability. Rehabilitation (RB) is currently the only accepted treatment, although its beneficial effect is limited. The development of biomaterials has provided therapeutic possibilities for TSCI, where our research group previously showed that the plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical characteristics than those of the PPy synthesized by conventional methods, promotes recovery of motor function after TSCI. The present study evaluated if the plasma-synthesized PPy/I applied in combination with RB could increase its beneficial effects and the mechanisms involved. Adult rats with TSCI were divided into no treatment (control); biopolymer (PPy/I); mixed RB by swimming and enriched environment (SW/EE); and combined treatment (PPy/I + SW/EE) groups. Eight weeks after TSCI, the general health of the animals that received any of the treatments was better than the control animals. Functional recovery evaluated by two scales was better and was achieved in less time with the PPy/I + SW/EE combination. All treatments significantly increased ßIII-tubulin (nerve plasticity) expression, but only PPy/I increased GAP-43 (nerve regeneration) and MBP (myelination) expression when were analyzed by immunohistochemistry. The expression of GFAP (glial scar) decreased in treated groups when determined by histochemistry, while morphometric analysis showed that tissue was better preserved when PPy/I and PPy/I + SW/EE were administered. The application of PPy/I + SW/EE, promotes the preservation of nervous tissue, and the expression of molecules related to plasticity as ßIII-tubulin, reduces the glial scar, improves general health and allows the recovery of motor function after TSCI. The implant of the biomaterial polypyrrole/iodine (PPy/I) synthesized by plasma (an unconventional synthesis method), in combination with a mixed rehabilitation scheme with swimming and enriched environment applied after a traumatic spinal cord injury, promotes expression of GAP-43 and ßIII-tubulin (molecules related to plasticity and nerve regeneration) and reduces the expression of GFAP (molecule related to the formation of the glial scar). Both effects together allow the formation of nerve fibers, the reconnection of the spinal cord in the area of injury and the recovery of lost motor function. The figure shows the colocalization (yellow) of ßIII-tubilin (red) and GAP-43 (green) in fibers crossing the epicenter of the injury (arrowheads) that reconnect the rostral and caudal ends of the injured spinal cord and allowed recovery of motor function.


Asunto(s)
Materiales Biocompatibles , Terapia por Ejercicio/métodos , Yodo/química , Polímeros/química , Pirroles/química , Traumatismos de la Médula Espinal/rehabilitación , Traumatismos de la Médula Espinal/cirugía , Animales , Coagulación con Plasma de Argón/métodos , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/efectos de la radiación , Precipitación Química/efectos de la radiación , Terapia Combinada , Modelos Animales de Enfermedad , Planificación Ambiental , Femenino , Inyecciones Espinales , Yodo/administración & dosificación , Yodo/efectos de la radiación , Laminectomía , Láseres de Gas/uso terapéutico , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Polímeros/administración & dosificación , Polímeros/síntesis química , Polímeros/efectos de la radiación , Pirroles/administración & dosificación , Pirroles/síntesis química , Pirroles/efectos de la radiación , Ratas , Ratas Long-Evans , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/patología , Regeneración de la Medula Espinal/efectos de los fármacos , Natación
2.
J Tissue Eng Regen Med ; 10(8): 656-68, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-23950083

RESUMEN

Spinal cord injury results in tissue necrosis in and around the lesion site, commonly leading to the formation of a fluid-filled cyst. This pathological end point represents a physical gap that impedes axonal regeneration. To overcome the obstacle of the cavity, we have explored the extent to which axonal substrates can be bioengineered through electrospinning, a process that uses an electrical field to produce fine fibres of synthetic or biological molecules. Recently, we demonstrated the potential of electrospinning to generate an aligned matrix that can influence the directionality and growth of axons. Here, we show that this matrix can be supplemented with nerve growth factor and chondroitinase ABC to provide trophic support and neutralize glial-derived inhibitory proteins. Moreover, we show how air-gap electrospinning can be used to generate a cylindrical matrix that matches the shape of the cord. Upon implantation in a completely transected rat spinal cord, matrices supplemented with NGF and chondroitinase ABC promote significant functional recovery. An examination of these matrices post-implantation shows that electrospun aligned monofilaments induce a more robust cellular infiltration than unaligned monofilaments. Further, a vascular network is generated in these matrices, with some endothelial cells using the electrospun fibres as a growth substrate. The presence of axons within these implanted matrices demonstrates that they facilitate axon regeneration following spinal cord injury. Collectively, these results demonstrate the potential of electrospinning to generate an aligned substrate that can provide trophic support, directional guidance cues and regeneration-inhibitory neutralizing compounds to regenerating axons following spinal cord injury. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Axones/metabolismo , Condroitina ABC Liasa , Factor de Crecimiento Nervioso , Traumatismos de la Médula Espinal/terapia , Regeneración de la Medula Espinal/efectos de los fármacos , Andamios del Tejido/química , Animales , Axones/patología , Condroitina ABC Liasa/química , Condroitina ABC Liasa/farmacología , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/farmacología , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
3.
J Control Release ; 161(3): 910-7, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22634093

RESUMEN

Spinal cord injury (SCI) remains a major challenge for regenerative medicine. Following SCI, axon growth inhibitors and other inflammatory responses prevent functional recovery. Previous studies have demonstrated that rolipram, an anti-inflammatory and cyclic adenosine monophosphate preserving small molecule, improves spinal cord regeneration when delivered systemically. However, more recent studies showed that rolipram has some adverse effects in spinal cord repair. Here, we developed a drug-delivery platform for the local delivery of rolipram into the spinal cord. The potential of drug-eluting microfibrous patches for continuous delivery of high and low-dose rolipram concentrations was characterized in vitro. Following C5 hemisections, athymic rats were treated with patches loaded with low and high doses of rolipram. In general, animals treated with low-dose rolipram experienced greater functional and anatomical recovery relative to all other groups. Outcomes from the high-dose rolipram treatment were similar to those with no treatment. In addition, high-dose treated animals experienced reduced survival rates suggesting that systemic toxicity was reached. With the ability to control the release of drug dosage locally within the spinal cord, drug-eluting microfibrous patches demonstrate the importance of appropriate local release-kinetics of rolipram, proving their usefulness as a therapeutic platform for the study and repair of SCI.


Asunto(s)
Antiinflamatorios/administración & dosificación , Sistemas de Liberación de Medicamentos , Inhibidores de Fosfodiesterasa/administración & dosificación , Rolipram/administración & dosificación , Traumatismos de la Médula Espinal/tratamiento farmacológico , Alginatos/administración & dosificación , Alginatos/química , Animales , Antiinflamatorios/química , Excipientes/administración & dosificación , Excipientes/química , Femenino , Ácido Glucurónico/administración & dosificación , Ácido Glucurónico/química , Ácidos Hexurónicos/administración & dosificación , Ácidos Hexurónicos/química , Hidrogeles , Ácido Láctico/administración & dosificación , Ácido Láctico/química , Membranas Artificiales , Inhibidores de Fosfodiesterasa/química , Poliésteres , Polímeros/administración & dosificación , Polímeros/química , Propanoles/administración & dosificación , Propanoles/química , Ratas , Ratas Desnudas , Rolipram/química , Regeneración de la Medula Espinal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA