Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.548
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Integr Cancer Ther ; 23: 15347354241247223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646808

RESUMEN

BACKGROUND: Luteolin, a common dietary flavonoid found in plants, has been shown to have anti-cancer properties. However, its exact mechanisms of action in non-small cell lung cancer (NSCLC) are still not fully understood, particularly its role in regulating broader genomic networks and specific gene targets. In this study, we aimed to elucidate the role of microRNAs (miRNAs) in NSCLC treated with luteolin, using A549 cells as a model system. MATERIALS AND METHODS: miRNA profiling was conducted on luteolin-treated A549 cells using Exiqon microarrays, with validation of selected miRNAs by qRT-PCR. Bioinformatic analysis identified the regulatory roles of miRNAs in biological processes and pathways following luteolin treatment. Computational algorithms were employed to identify potential target genes. A549 cells were transfected with miR-106a-5p mimic and inhibitor or their corresponding controls. The expression levels of 2 genes, twist basic helix-loop-helix transcription factor 1 (TWIST1) and matrix metallopeptidase 2 (MMP2), and cell migration were assessed. RESULTS: miRNA profiling identified 341 miRNAs, with 18 exhibiting significantly altered expression (P < 0.05). Subsequent qRT-PCR analysis confirmed altered expression of 6 selected miRNAs. KEGG and GO analyses revealed significant alterations in pathways and biological processes crucial for tumor biology. TWIST1 and MMP2, which both contain conserved miR-106a-5p binding sites, exhibited an inverse correlation with the expression levels of miR-106a-5p. Dual-luciferase reporter assays confirmed TWIST1 and MMP2 as direct targets of miR-106a-5p. Luteolin treatment led to a reduction in A549 cell migration, and this reduction was further amplified by the overexpression of miR-106a-5p. CONCLUSION: Luteolin inhibits A549 cell migration by modulating the miRNA landscape, shedding light on its mechanisms and laying the foundation for miRNA-based therapeutic approaches for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Luteolina , Metaloproteinasa 2 de la Matriz , MicroARNs , Proteínas Nucleares , Proteína 1 Relacionada con Twist , Regulación hacia Arriba , Humanos , Luteolina/farmacología , MicroARNs/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética
2.
J Ethnopharmacol ; 330: 118228, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38643863

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Prostate cancer (PCa) is the most common malignancy of the male genitourinary system and currently lacks effective treatment. Semen Impatientis, the dried ripe seed of Impatiens balsamina L., is described by the Chinese Pharmacopoeia as a traditional Chinese medicine (TCM) and is used in clinical practice to treat tumors, abdominal masses, etc. In our previous study, the ethyl acetate extracts of Semen Impatientis (EAESI) was demonstrated to be the most effective extract against PCa among various extracts. However, the biological effects of EAESI against PCa in vivo and the specific antitumor mechanisms involved remain unknown. AIM OF THE STUDY: In this study, we aimed to investigate the antitumor effect of EAESI on PCa in vitro and in vivo by performing network pharmacology analysis, transcriptomic analysis, and experiments to explore and verify the underlying mechanisms involved. MATERIALS AND METHODS: The antitumor effect of EAESI on PCa in vitro and in vivo was investigated via CCK-8, EdU, flow cytometry, and wound healing assays and xenograft tumor models. Network pharmacology analysis and transcriptomic analysis were employed to explore the underlying mechanism of EAESI against PCa. Activating transcription factor 3 (ATF3) and androgen receptor (AR) were confirmed to be the targets of EAESI against PCa by RT‒qPCR, western blotting, and rescue assays. In addition, the interaction between ATF3 and AR was assessed by coimmunoprecipitation, immunofluorescence, and nuclear-cytoplasmic separation assays. RESULTS: EAESI decreased cell viability, inhibited cell proliferation and migration, and induced apoptosis in AR+ and AR- PCa cells. Moreover, EAESI suppressed the growth of xenograft tumors in vivo. Network pharmacology analysis revealed that the hub targets of EAESI against PCa included AR, AKT1, TP53, and CCND1. Transcriptomic analysis indicated that activating transcription factor 3 (ATF3) was the most likely critical target of EAESI. EAESI downregulated AR expression and decreased the transcriptional activity of AR through ATF3 in AR+ PCa cells; and EAESI promoted the expression of ATF3 and exerted its antitumor effect via ATF3 in AR+ and AR- PCa cells. CONCLUSIONS: EAESI exerts good antitumor effects on PCa both in vitro and in vivo, and ATF3 and AR are the critical targets through which EAESI exerts antitumor effects on AR+ and AR- PCa cells.


Asunto(s)
Acetatos , Factor de Transcripción Activador 3 , Ratones Desnudos , Farmacología en Red , Neoplasias de la Próstata , Receptores Androgénicos , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Animales , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Acetatos/química , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Transcriptoma/efectos de los fármacos , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
3.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269569

RESUMEN

Cancer stem cells (CSCs) are a small subpopulation of tumor cells harboring properties that include self-renewal, multi-lineage differentiation, tumor reconstitution, drug resistance and invasiveness, making them key players in tumor relapse. In the present paper, we develop new CSC models and analyze the molecular pathways involved in survival to identify targets for the establishment of novel therapies. Endometrial carcinoma-derived stem-like cells (ECSCs) were isolated from carcinogenic gynecological tissue and analyzed regarding their expression of prominent CSC markers. Further, they were treated with the MYC-signaling inhibitor KJ-Pyr-9, chemotherapeutic agent carboplatin and type II diabetes medication metformin. ECSC populations express common CSC markers, such as Prominin-1 and CD44 antigen as well as epithelial-to-mesenchymal transition markers, Twist, Snail and Slug, and exhibit the ability to form free-floating spheres. The inhibition of MYC signaling and treatment with carboplatin as well as metformin significantly reduced the cell survival of ECSC-like cells. Further, treatment with metformin significantly decreased the mitochondrial membrane potential of ECSC-like cells, while the extracellular lactate concentration was increased. The established ECSC-like populations represent promising in vitro models to further study the contribution of ECSCs to endometrial carcinogenesis. Targeting MYC signaling as well as mitochondrial bioenergetics has shown promising results in the diminishment of ECSCs, although molecular signaling pathways need further investigations.


Asunto(s)
Carboplatino/farmacología , Neoplasias Endometriales/metabolismo , Metformina/farmacología , Mitocondrias/metabolismo , Células Madre Neoplásicas/citología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piridinas/farmacología , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209099

RESUMEN

Natural compounds have been recognized as valuable sources for anticancer drug development. In this work, different parts from Momordica cochinchinensis Spreng were selected to perform cytotoxic screening against human prostate cancer (PC-3) cells. Chromatographic separation and purification were performed for the main constituents of the most effective extract. The content of the fatty acids was determined by Gas Chromatography-Flame Ionization Detector (GC-FID). Chemical structural elucidation was performed by spectroscopic means. For the mechanism of the apoptotic induction of the most effective extract, the characteristics were evaluated by Hoechst 33342 staining, sub-G1 peak analysis, JC-1 staining, and Western blotting. As a result, extracts from different parts of M. cochinchinensis significantly inhibited cancer cell viability. The most effective stem extract induced apoptosis in PC-3 cells by causing nuclear fragmentation, increasing the sub-G1 peak, and changing the mitochondrial membrane potential. Additionally, the stem extract increased the pro-apoptotic (caspase-3 and Noxa) mediators while decreasing the anti-apoptotic (Bcl-xL and Mcl-1) mediators. The main constituents of the stem extract are α-spinasterol and ligballinol, as well as some fatty acids. Our results demonstrated that the stem extract of M. cochinchinensis has cytotoxic and apoptotic effects in PC-3 cells. These results provide basic knowledge for developing antiproliferative agents for prostate cancer in the future.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Momordica/química , Extractos Vegetales/farmacología , Tallos de la Planta/química , Antineoplásicos Fitogénicos/química , Apoptosis/genética , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Relación Estructura-Actividad
5.
Oxid Med Cell Longev ; 2022: 6268755, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222800

RESUMEN

Among natural macromolecules, the polyphenol extract from Annurca flesh (AFPE) apple could play a potential therapeutic role for a large spectrum of human cancer also by exerting antioxidant properties. Thyroid cancer is a common neoplasia in women, and it is in general responsive to treatments although patients may relapse and metastasize or therapy-related side effects could occur. In this study, we explored the effects of AFPE on papillary (TPC-1) and anaplastic (CAL62) thyroid cancer cell line proliferation and viability. We found that AFPE exposure induced a reduction of cell proliferation and cell viability in dose-dependent manner. The effect was associated with the reduction of phosphorylation of Rb protein. To study the mechanisms underlying the biological effects of AFPE treatment in thyroid cancer cells, we investigated the modulation of miRNA (miR) expression. We found that AFPE treatment increased the expression of the miR-141, miR-145, miR-200a-5p, miR-425, and miR-551b-5p. Additionally, since natural polyphenols could exert their beneficial effects through the antioxidant properties, we investigated this aspect, and we found that AFPE treatment reduced the production of reactive oxygen species (ROS) in CAL62 cells. Moreover, AFPE pretreatment protects against hydrogen peroxide-induced oxidative stress in thyroid cancer cell lines. Taken together, our findings suggest that AFPE, by acting at micromolar concentration in thyroid cancer cell lines, may be considered a promising adjuvant natural agent for thyroid cancer treatment approach.


Asunto(s)
Antineoplásicos/farmacología , Malus/química , Polifenoles/farmacología , Antineoplásicos/química , Antioxidantes/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Frutas/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/genética , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Proteína de Retinoblastoma/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología
6.
Food Chem Toxicol ; 161: 112816, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35131361

RESUMEN

The present study demonstrates the efficacy of fruit extract of Pithecellobium dulce (FPD) against Dalton's lymphoma ascites (DLA) cell lines in vitro and in vivo (DLA induced ascitic and solid tumor). Administration of FPD induced apoptosis in DLA cells via p53 regulation both in vitro and in vivo. Cell viability was quantified by MTT assay. Apoptotic cells were determined by qualitative (staining methods) and quantitative analysis (Annexin-propidium iodide based flow cytometry). Expression of pro-apoptotic markers (Caspase 3, Caspase 9, and Bax) were markedly elevated, while expression of anti-apoptotic proteins (Bcl 2 and Bcl XL) were downregulated in tumor cells. FPD administration effectively reduced tumor burden, increased mean survival time via modulating NF-kB, and reduced the level of proinflammatory cytokines (IL-6, IL-1ß, GM-CSF and TNF-α). Phytochemical screening of FPD by GC/MS analysis divulged the presence of several novel bioactive chemical constituents. Further, bioactive components identified from extract were evaluated for drug-like properties by Lipinski rule of five and properties. Naringenin, nootkatone, and gallic acid showed good drug-like properties and good pharmacokinetic profiles compared to other bioactive constituents in the extract.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Citocinas/metabolismo , Fabaceae/química , Frutas/química , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Citocinas/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales , Extractos Vegetales/química , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Biochem Pharmacol ; 197: 114940, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120895

RESUMEN

Programmed death ligand-1 (PD-L1) and indoleamine 2, 3-dioxygenase 1 (IDO1) are immune checkpoints induced by interferon-γ (IFN-γ) in the tumor microenvironment, leading to immune escape of tumors. Myricetin (MY) is a flavonoid distributed in many edible and medicinal plants. In this study, MY was identified to inhibit IFN-γ-induced PD-L1 expression in human lung cancer cells. It also reduced the expression of IDO1 and the production of kynurenine which is the product catalyzed by IDO1, while didn't show obvious effect on the expression of major histocompatibility complex-I (MHC-I), a crucial molecule for antigen presentation. In addition, the function of T cells was evaluated using a co-culture system consist of lung cancer cells and the Jurkat-PD-1 T cell line overexpressing PD-1. MY restored the survival, proliferation, CD69 expression and interleukin-2 (IL-2) secretion of Jurkat-PD-1 T cells suppressed by IFN-γ-treated lung cancer cells. Mechanistically, IFN-γ up-regulated PD-L1 and IDO1 at the transcriptional level through the JAK-STAT-IRF1 axis, which was targeted and inhibited by MY. Together, our research revealed a new mechanism of MY mediated anti-tumor activity and highlighted the potential implications of MY in tumor immunotherapy.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Flavonoides/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Interferón gamma/farmacología , Neoplasias Pulmonares/metabolismo , Células A549 , Antígeno B7-H1/biosíntesis , Antígeno B7-H1/genética , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/fisiología , Células HCT116 , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/biosíntesis , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Células Jurkat , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
8.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163058

RESUMEN

Melanoma is a highly malignant solid tumor characterized by an elevated growth and propagation rate. Since, often, melanoma treatment cannot prevent recurrences and the appearance of metastasis, new anti-melanoma agents need to be discovered. Salvia miltiorrhiza roots are a source of diterpenoid derivatives, natural compounds with several biological activities, including antiproliferative and anticancer effects. Seven diterpenoid derivatives were purified from S. miltiorrhiza roots and identified by NMR and MS analysis. Tanshinone IIA and cryptotanshinone were detected as the main components of S. miltiorrhiza root ethanol extract. Although their antitumor activity is already known, they have been confirmed to induce a reduction in A375 and MeWo melanoma cell growth. Likewise, salviolone has been shown to impair the viability of melanoma cells without affecting the growth of normal melanocytes. The underlying anticancer activity of salviolone has been investigated and compared to that of cryptotanshinone in A375 cells, showing an increased P21 protein expression in a P53-dependent manner. In that way, salviolone, even more than cryptotanshinone, displays a multitarget effect on cell-cycle-related proteins. Besides, it modulates the phosphorylation level of the signal transducer and activator of transcription (STAT)3. Unexpectedly, salviolone and cryptotanshinone induce sustained activation of the extracellular signal-regulated kinases (ERK)1/2 and the protein kinase B (Akt). However, the blockage of ERK1/2 or Akt activities suggests that kinase activation does not hinder their ability to inhibit A375 cell growth. Finally, salviolone and cryptotanshinone inhibit to a comparable extent some crucial malignancy features of A375 melanoma cells, such as colony formation in soft agar and metalloproteinase-2 activity. In conclusion, it has been shown for the first time that salviolone, harboring a different molecular structure than tanshinone IIA and cryptotanshinone, exhibits a pleiotropic effect against melanoma by hampering cell cycle progression, STAT3 signaling, and malignant phenotype of A375 melanoma cells.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Diterpenos/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Melanoma/metabolismo , Salvia miltiorrhiza/química , Abietanos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diterpenos/química , Diterpenos/aislamiento & purificación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Fenantrenos/farmacología , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
9.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163062

RESUMEN

Triple-negative breast cancer (TNBC) is unresponsive to typical hormonal treatments, causing it to be one of the deadliest forms of breast cancer. Investigating alternative therapies to increase survival rates for this disease is essential. The goal of this study was to assess cytotoxicity and apoptosis mechanisms of prenylated stilbenoids in TNBC cells. The prenylated stilbenoids arachidin-1 (A-1) and arachidin-3 (A-3) are analogs of resveratrol (RES) produced in peanut upon biotic stress. The anticancer activity of A-1 and A-3 isolated from peanut hairy root cultures was determined in TNBC cell lines MDA-MB-231 and MDA-MB-436. After 24 h of treatment, A-1 exhibited higher cytotoxicity than A-3 and RES with approximately 11-fold and six-fold lower IC50, respectively, in MDA-MB-231 cells, and nine-fold and eight-fold lower IC50, respectively, in MDA-MB-436 cells. A-1 did not show significant cytotoxicity in the non-cancerous cell line MCF-10A. While A-1 blocked cell division in G2-M phases in the TNBC cells, it did not affect cell division in MCF-10A cells. Furthermore, A-1 induced caspase-dependent apoptosis through the intrinsic pathway by activating caspase-9 and PARP cleavage, and inhibiting survivin. In conclusion, A-1 merits further research as a potential lead molecule for the treatment of TNBC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Arachis/química , Caspasa 9/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Estilbenos/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Raíces de Plantas/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
10.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163459

RESUMEN

Cisplatin and other platinum-based drugs, such as carboplatin, ormaplatin, and oxaliplatin, have been widely used to treat a multitude of human cancers. However, a considerable proportion of patients often relapse due to drug resistance and/or toxicity to multiple organs including the liver, kidneys, gastrointestinal tract, and the cardiovascular, hematologic, and nervous systems. In this study, we sought to provide a comprehensive review of the current state of the science highlighting the use of cisplatin in cancer therapy, with a special emphasis on its molecular mechanisms of action, and treatment modalities including the combination therapy with natural products. Hence, we searched the literature using various scientific databases., such as MEDLINE, PubMed, Google Scholar, and relevant sources, to collect and review relevant publications on cisplatin, natural products, combination therapy, uses in cancer treatment, modes of action, and therapeutic strategies. Our search results revealed that new strategic approaches for cancer treatment, including the combination therapy of cisplatin and natural products, have been evaluated with some degree of success. Scientific evidence from both in vitro and in vivo studies demonstrates that many medicinal plants contain bioactive compounds that are promising candidates for the treatment of human diseases, and therefore represent an excellent source for drug discovery. In preclinical studies, it has been demonstrated that natural products not only enhance the therapeutic activity of cisplatin but also attenuate its chemotherapy-induced toxicity. Many experimental studies have also reported that natural products exert their therapeutic action by triggering apoptosis through modulation of mitogen-activated protein kinase (MAPK) and p53 signal transduction pathways and enhancement of cisplatin chemosensitivity. Furthermore, natural products protect against cisplatin-induced organ toxicity by modulating several gene transcription factors and inducing cell death through apoptosis and/or necrosis. In addition, formulations of cisplatin with polymeric, lipid, inorganic, and carbon-based nano-drug delivery systems have been found to delay drug release, prolong half-life, and reduce systemic toxicity while other formulations, such as nanocapsules, nanogels, and hydrogels, have been reported to enhance cell penetration, target cancer cells, and inhibit tumor progression.


Asunto(s)
Productos Biológicos/farmacología , Cisplatino/farmacología , Neoplasias/tratamiento farmacológico , Animales , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Cisplatino/química , Cisplatino/uso terapéutico , Composición de Medicamentos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos
11.
Sci Rep ; 12(1): 1039, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058516

RESUMEN

Cotton plant provides economically important fiber and cottonseed, but cottonseed contributes 20% of the crop value. Cottonseed value could be increased by providing high value bioactive compounds and polyphenolic extracts aimed at improving nutrition and preventing diseases because plant polyphenol extracts have been used as medicinal remedy for various diseases. The objective of this study was to investigate the effects of cottonseed extracts on cell viability and gene expression in human colon cancer cells. COLO 225 cells were treated with ethanol extracts from glanded and glandless cottonseed followed by MTT and qPCR assays. Cottonseed extracts showed minor effects on cell viability. qPCR assay analyzed 55 mRNAs involved in several pathways including DGAT, GLUT, TTP, IL, gossypol-regulated and TTP-mediated pathways. Using BCL2 mRNA as the internal reference, qPCR analysis showed minor effects of ethanol extracts from glanded seed coat and kernel and glandless seed coat on mRNA levels in the cells. However, glandless seed kernel extract significantly reduced mRNA levels of many genes involved in glucose transport, lipid biosynthesis and inflammation. The inhibitory effects of glandless kernel extract on gene expression may provide a useful opportunity for improving nutrition and healthcare associated with colon cancer. This in turn may provide the potential of increasing cottonseed value by using ethanol extract as a nutrition/health intervention agent.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Gossypium/química , Extractos Vegetales/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , ARN Mensajero , Semillas/química
12.
Gene ; 818: 146207, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35063579

RESUMEN

INTRODUCTION: Berberine was one of the active components in Chinese herb and exerted tumor suppressive role in cancer progression, but the exact antitumor mechanism is still not clearly clarified. In the present study, bioinformatics analysis was performed on COAD patients from TCGA, HPA database, UALCAN and GEPIA 2 platform. We also explored the role of berberine on progression of human colon cancers in vitro and in vivo and clarified weather the antitumor effects of berberine was mediated by Wnt/beta-catenin pathway. METHODS: Cell viability was determined by MTT assay. The protein levels were tested by western blotting and the distribution of ß-catenin was observed by confocal microscope. RESULTS: The results showed the levels of CTNNB1 mRNA was increased in colon cancer patients than normal controls. The diagnostic value of CTNNB1 was AUC = 0.882 (CI:0.854-0.911) with sensitivity of 1.000 and specificity of 0.777. The promoter methylation level of CTNNB1 in COAD patients was significantly decreased. Moreover, univariate analysis and multivariate analysis results showed the expression of CTNNB1 in COAD patients was associated with T stage (p = 0.010), pathological stage (p = 0.025) and perineural invasion (p = 0.025). Furthermore, the in vitro assay results showed ß-catenin signaling was highly activated in human colon cancer cells and berberine inhibited the cell viability of colon cancer cells in vitro and in vivo in a dose-and time-dependent manner. Moreover, berberine induced the translocation of ß-catenin to cytoplasm from nucleus. CONCLUSION: The levels of CTNNB1 mRNA was increased in colon cancer patients than normal controls. Berberine inhibited the proliferation of colon cancer cells by regulating the beta-catenin signaling pathway.


Asunto(s)
Berberina/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Progresión de la Enfermedad , Transducción de Señal , beta Catenina/metabolismo , Anciano , Animales , Berberina/farmacología , Estudios de Casos y Controles , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/genética , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Análisis Multivariante , Regiones Promotoras Genéticas/genética , Modelos de Riesgos Proporcionales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , beta Catenina/genética
13.
Hum Exp Toxicol ; 41: 9603271221080236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099304

RESUMEN

OBJECTIVE: Cytochrome P450 3A5 (CYP3A5) is a highly polymorphic gene and the encoded protein variants differ in catalytic activity, leading to inter-individual variation in metabolic ability. The aim of the current study was to investigate the effects of seven allelic variants on the ability of CYP3A5 to metabolize sorafenib in vitro and further explore the impacts of CYP3A5 polymorphism on the proliferation and apoptosis of hepatocellular carcinoma cell line (HepG2) induced by sorafenib. METHODS: Wild-type and variant CYP3A5 enzymes were expressed in Spodoptera frugiperda insect cells using a baculovirus dual-expression system, and protein expression was checked by western blot. The enzymes were incubated with sorafenib at 37°C for 30 min, and formation of the major metabolite sorafenib N-oxide was assayed using ultra-performance liquid chromatography and tandem mass spectrometry. Intrinsic clearance values (Vmax/Km) were calculated for each enzyme. Additionally, recombinant HepG2 cells transfecting with CYP3A5 variants were used to investigate the effects of sorafenib on the proliferation of HepG2 cells. RESULTS: Intrinsic clearance of the six variants CYP3A5*2, CYP3A5*3A, CYP3A5*3C, CYP3A5*4, CYP3A5*5, and CYP3A5*7 was 26.41-71.04% of the wild-type (CYP3A5*1) value. In contrast, the clearance value of the variant CYP3A5*6 was significantly higher (174.74%). Additionally, the decreased ATP levels and cell viability and the increased cell apoptosis in HepG2 cells transfected with CYP3A5*2, CYP3A5*3A, CYP3A5*3C, CYP3A5*4, CYP3A5*5, and CYP3A5*7 were observed, whereas, the increased ATP levels and cell viability and the reduced cell apoptosis in HepG2 cells transfected with CYP3A5*6 were also investigated when compared to CYP3A5*1. CONCLUSION: Our results suggest that CYP3A5 polymorphism influences sorafenib metabolism and pharmacotherapeutic effect in hepatic carcinomas. These data may help explain differential response to drug therapy for hepatocellular carcinoma, and they support the need for individualized treatment.


Asunto(s)
Antineoplásicos/toxicidad , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Citocromo P-450 CYP3A/genética , Neoplasias Hepáticas/tratamiento farmacológico , Sorafenib/toxicidad , Sorafenib/uso terapéutico , Antineoplásicos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Polimorfismo Genético , Sorafenib/metabolismo , Células Tumorales Cultivadas
14.
Asian Pac J Cancer Prev ; 23(1): 151-160, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35092383

RESUMEN

BACKGROUND: Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death in females worldwide. Schleichera oleosa (kusum tree) belongs to the Sapindaceae family commonly found in many states of India. This plant is traditionally being used in various pathological conditions. METHODS: In vitro studies were performed using seed extract of Schleichera oleosa. Different concentrations of seed extracts were treated on MCF-7 breast cancer cell line and its effect on migration and colony formation were observed. BRCA1 and p16 gene expression was analyzed by real-time PCR and Western blotting. RESULTS: We have analyzed anticancer and anti-metastatic effects of seed extract in breast cancer and IC50 was 140µg/ml concentration. Further, its inhibitory role in cell migration and colony formation was at 140µg/ml (P<0.0001) concentration and reduced significantly growth of sphere at 140 µg (P<0.0031) and 150µg (P<0.0010) concentration after 5 days of treatment. The apoptosis study was shown a significant increase at 140 µg (P<0.0001) in apoptotic cells. Expression of BRCA1 and p16 were found to be over-expressed as 1.4 and 1.7 fold, respectively, at 140µg/ml concentration after 24 h of treatment at the transcription level. BRCA1 protein was up-regulated but p16 expression down-regulated at 140 to 150µg/ml (One-Way ANOVA, P<0.0001) concentration. CONCLUSION: In this study, we found a significant role of S. Oleosa seed extract has an anti-cancer as well as anti-metastatic via up-regulation of BRCA1 and p16 genes in breast cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Genes BRCA1/efectos de los fármacos , Genes p16/efectos de los fármacos , Extractos Vegetales/farmacología , Sapindaceae , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Semillas , Regulación hacia Arriba
15.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008943

RESUMEN

Flubendazole, belonging to benzimidazole, is a broad-spectrum insect repellent and has been repurposed as a promising anticancer drug. In recent years, many studies have shown that flubendazole plays an anti-tumor role in different types of cancers, including breast cancer, melanoma, prostate cancer, colorectal cancer, and lung cancer. Although the anti-tumor mechanism of flubendazole has been studied, it has not been fully understood. In this review, we summarized the recent studies regarding the anti-tumor effects of flubendazole in different types of cancers and analyzed the related mechanisms, in order to provide the theoretical reference for further studies in the future.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Mebendazol/análogos & derivados , Animales , Antineoplásicos/química , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estudios Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Monitoreo de Drogas , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mebendazol/química , Mebendazol/farmacología , Mebendazol/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Especificidad de Órganos/efectos de los fármacos , Transducción de Señal , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Ethnopharmacol ; 289: 115010, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35065248

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium hypoglaucum (Kunmingshanhaitang in Chinese) is a plant of the genus Tripterygium which have been used as anti-tumor folk medicines in Yi and Bai ethnic groups in Yunnan province, China for hundreds of years. Terpenoids from T. hypoglaucum presented therapeutic effects on multiple tumors. But there were few studies about pancreatic cancer treatment of these terpenoids. Pancreatic cancer is an aggressive malignancy and lacked of specific drugs. Currently, anti-tumor drugs have poor therapeutic effect and prognosis for pancreatic cancer. AIM OF THE STUDY: This study aimed to elucidate the terpenoids from T. hypoglaucum and illuminate their anti-pancreatic cancer bioactivities. MATERIAL AND METHODS: Terpenoids were obtained through sequential chromatographic methods including silica gel, MCI gel, Sephadex LH-20, and preparative HPLC. Their structures were determined by HRESIMS, 1D and 2D NMR spectroscopic analysis. The absolute configurations of some new diterpenoids were assigned through comparison of experimental and calculated circular dichroism spectra. The cytotoxicity of isolates was measured using the MTT method on human pancreatic cancer cells SW1990. The effects on expressions of AKT, Erk1/2, p-AKT, p-Erk1/2, and Bax proteins in human pancreatic cancer cells SW1990 of these compounds were determined by western blotting assays. RESULTS: Eleven new (compounds 1∼11) and fourteen known terpenoids (compounds 12∼25) were isolated from the underground parts of T. hypoglaucum. These compounds were belonged to abietane diterpenoids, isoprimara diterpenoids, ent-kaurane diterpenoids, oleanane triterpenoids, and friedelane triterpenoids. Compounds 5, 7, 8, 9, 16, 18, 22, 24, and 25 possessed significant cytotoxicity against SW1990 cells with IC50 values of 19.28 ± 4.39, 9.91 ± 2.23, 27.32 ± 5.89, 56.43 ± 6.92, 0.16 ± 0.05, 0.58 ± 0.15, 0.81 ± 0.04, 0.48 ± 0.11, and 10.01 ± 1.39 µM respectively. After compounds 16, 22, and 24 been treated with the pancreatic cancer cells in medium and high doses, the protein expressions of AKT, p-AKT, Erk, and p-Erk were not remarkably reduced and the expressions of Bax protein were significantly increased. CONCLUSION: This study indicated that terpenoids from T. hypoglaucum could inhibit human pancreatic cancer cells SW1990. Especially, compounds 16, 22, and 24 possessed significant cytotoxicity against SW1990 cells with low IC50 values and could increase the expressions of Bax protein. These compounds shared a wide variety of structural characteristics which provided us more candidate molecules for the development of anti-pancreatic cancer drugs and further prompted us to investigate their anti-pancreatic mechanisms.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Terpenos/farmacología , Tripterygium/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Terpenos/administración & dosificación , Terpenos/aislamiento & purificación , Proteína X Asociada a bcl-2/genética
17.
Bioengineered ; 13(1): 1575-1589, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35012428

RESUMEN

The present study attempts to explore the effective components, action targets, and potential mechanism of nightshade for colon cancer treatment. The relationship network diagram of 'traditional Chinese medicine - component - target - disease' was firstly constructed by employing network pharmacology. Experiments were conducted in vivo and in vitro to verify the influence of quercetin, the core effective component of nightshade, on colon cancer. Meanwhile, the regulatory effects of quercetin on core targets and main signaling pathways were determined. Based on the network diagram of 'traditional Chinese medicine - component - target - disease' and KEGG analysis, quercetin might exhibit certain effects on colon cancer treatment by regulating the biological behavior of core targets related to cell apoptosis in tumors including PIK3R1, PIK3CA, Akt1, and Akt2. Furthermore, quercetin has been demonstrated in vitro experiments to suppress the proliferation and migration of colon cancer cells whereas promote their apoptosis in a dose-dependent fashion. In vivo experiments indicate that quercetin had an antitumor effect on human colon cancer SW480 cells in nude mice bearing tumors. Furthermore, PIK3CA could bind to quercetin directly, which is validated by immunocoprecipitation. Therefore, the activation of PI3K/AKT phosphorylation was inhibited by quercetin and moreover the expressions of apoptotic proteins caspase-3 and Bcl2-Associated X protein (BAX) were up-regulated. In conclusion, the potential mechanism of nightshade lies in the activation of the PI3K/AKT signaling pathway inhibited by quercetin, thus promoting apoptosis of colon cancer cells for colon cancer treatment.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Quercetina/administración & dosificación , Solanum/química , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Farmacología en Red , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Gene ; 816: 146172, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34995734

RESUMEN

OBJECTIVE: Synovial sarcoma (SS) is a malignant soft tissue sarcoma and its natural history is a long, indolent clinical course followed by high rate of local recurrence and distant metastasis. Current therapies are still limited in increasing satisfactory of 5-year survival, especially for patients with recurrence and metastasis. Accordingly, finding new therapeutic drug for SS treatment is clinically urgent need. Diallyl trisulfide (DATS), a bioactive compound derived from garlic, is reported as a promising anti-cancer agent for various carcinomas. However, its effect on anti-SS remains unknown. This study investigated the anti-SS effect of DATS in human synovial sarcoma SW982 cells. METHODS: CCK-8 assay were used to examine the cell viability. High-content Imaging System was used to examine the apoptosis, intracellular ROS and autophagy. Flow cytometry was used to detect cell cycle. qPCR and Western blot were used to examine the expression of related mRNA and protein. High-throughput RNA-sequencing and bio-information analysis were used to investigate the mRNA profiling. RESULTS: The results showed a suppressive effect of DATS on tumor biology of SW982 cells including inducing apoptosis, triggering G2/M cell cycle arrest, elevating intracellular ROS and damaging mitochondria. Further high-throughput RNA-sequencing analysis clarified a comprehensive molecular portrait for DATS-induced transcriptional regulation. Besides, protein-protein interaction (PPI) analysis demonstrated that a network consisted of FOXM1, CCNA2, CCNB1, MYBL2, PLK1 and CDK1 might be response for DATS-induced G2/M cell cycle arrest and increased intracellular ROS. Notably, protein feature analysis revealed structure enrichment in microtubule network like kinesin motors domain, and tubulin domain. Molecular function analysis suggested that DATS-induced dysfunction of microtubule network might be the major cause for its effect on cell cycle arrest and successive apoptosis. Furthermore, 28 hub genes (including KIF2C, PLK1, CDK1, BIRC5, CCNB2, CENPF, TPX2, TOP2A and so on) were determined. Finally, pathway analysis showed that DATS-induced differentially expressed genes were mainly involved in cell cycle. CONCLUSION: Collectively, our findings for the first time provided the DATS-induced cellular response and transcriptional profiling of SW982 cells, which proposes that suppression of DATS on SS is multi-targeted and represent a therapeutic evidence for SS.


Asunto(s)
Compuestos Alílicos/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Sarcoma Sinovial/tratamiento farmacológico , Sulfuros/uso terapéutico , Autofagia/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Bases de Datos Genéticas , Ensayos de Selección de Medicamentos Antitumorales , Citometría de Flujo , Ajo/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , ARN Mensajero , ARN Neoplásico/química , Especies Reactivas de Oxígeno/metabolismo , Sarcoma Sinovial/genética , Análisis de Secuencia de ARN , Transcriptoma
19.
Molecules ; 27(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011526

RESUMEN

In vitro anti-proliferative activity of Pinus palustris extract and its purified abietic acid was assessed against different human cancer cell lines (HepG-2, MCF-7 and HCT-116) compared to normal WI-38 cell line. Abietic acid showed more promising IC50 values against MCF-7 cells than pine extract (0.06 µg/mL and 0.11 µM, respectively), with insignificant cytotoxicity toward normal fibroblast WI-38 cells. Abietic acid triggered both G2/M cell arrest and subG0-G1 subpopulation in MCF-7, compared to SubG0-G1 subpopulation arrest only for the extract. It also induced overexpression of key apoptotic genes (Fas, FasL, Casp3, Casp8, Cyt-C and Bax) and downregulation of both proliferation (VEGF, IGFR1, TGF-ß) and oncogenic (C-myc and NF-κB) genes. Additionally, abietic acid induced overexpression of cytochrome-C protein. Furthermore, it increased levels of total antioxidants to diminish carcinogenesis and chemotherapy resistance. P. palustris is a valuable source of active abietic acid, an antiproliferative agent to MCF-7 cells through induction of apoptosis with promising future anticancer agency in breast cancer therapy.


Asunto(s)
Abietanos/farmacología , Antineoplásicos Fitogénicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Pinus/química , Extractos Vegetales/farmacología , Abietanos/química , Antineoplásicos Fitogénicos/química , Antioxidantes/química , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Humanos , Inmunohistoquímica , Células MCF-7 , Extractos Vegetales/química
20.
Clin Exp Pharmacol Physiol ; 49(1): 134-144, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34448246

RESUMEN

At present, there are still many problems in the treatment of lung cancer, such as high cost, side effects and low quality of life. The advantages of traditional Chinese medicine (TCM) in the treatment of lung cancer are reflected. Berberine has been increasingly popular in colorectal cancer treatment, but little is known about its bioactivity against non-small cell lung cancer (NSCLC). Cell proliferation, cell apoptosis, cDNA microarray, gene and protein expression, and NSCLC transplanted tumour growth were performed. Berberine suppressed NSCLC cell proliferation and colony formation in vitro and inhibited NSCLC tumour growth in subcutaneously transplanted tumour lung tumour models, leading to prolonged survival of tumour-bearing mice. However, berberine did not induce the cleavage of Caspase 3 and PARP1, and could not induce apoptosis in all NSCLC cells. Moreover, 646 genes were differentially expressed upon berberine administration, which were involved in seven signal pathways, such as DNA replication. In cDNA microarray, berberine downregulated the expression of RRM1, RRM2, LIG1, POLE2 that involving DNA repair and replication. Our findings demonstrate that berberine inhibits NSCLC cells growth through repressing DNA repair and replication rather than through apoptosis. Berberine could be used as a promising therapeutic candidate for NSCLC patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Berberina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Berberina/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA