Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.697
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Fish Dis ; 47(8): e13953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616496

RESUMEN

Ferritin, transferrin, and transferrin receptors I and II play a vital role in iron metabolism, health, and indication of iron deficiency anaemia in fish. To evaluate the use of high-iron diets to prevent or reverse channel catfish (Ictalurus punctatus) anaemia of unknown causes, we investigated the expression of these iron-regulatory genes and proteins in channel catfish fed plant-based diets. Catfish fingerlings were fed five diets supplemented with 0 (basal), 125, and 250 mg/kg of either inorganic iron or organic iron for 2 weeks. Ferritin, transferrin, and transferrin receptor I and II mRNA and protein expression levels in fish tissues (liver, intestine, trunk kidney, and head kidney) and plasma were determined. Transferrin (iron transporter) and TfR (I and II) genes were generally highly expressed in fish fed the basal diet compared to those fed the iron-supplemented diets. In contrast, ferritin (iron storage) genes were more expressed in the trunk kidney of fish fed the iron-supplemented diets than in those fed the basal diet. Our results demonstrate that supplementing channel catfish plant-based diets with iron from either organic or inorganic iron sources affected the expression of the iron-regulatory genes and increased body iron status in the fish.


Asunto(s)
Alimentación Animal , Dieta , Ferritinas , Ictaluridae , Hierro , Receptores de Transferrina , Transferrina , Animales , Ictaluridae/genética , Ferritinas/genética , Ferritinas/metabolismo , Ferritinas/sangre , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transferrina/metabolismo , Transferrina/genética , Dieta/veterinaria , Alimentación Animal/análisis , Hierro/metabolismo , Suplementos Dietéticos/análisis , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades de los Peces , Hierro de la Dieta/administración & dosificación , Hierro de la Dieta/metabolismo , Expresión Génica/efectos de los fármacos
2.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630337

RESUMEN

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Asunto(s)
Muerte Celular , Etanol , Neuronas , Fármacos Neuroprotectores , Extractos Vegetales , Hojas de la Planta , Sterculia , Animales , Ratas , Caspasa 3/metabolismo , Etanol/administración & dosificación , Etanol/química , Etanol/toxicidad , Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Ratas Wistar , Sterculia/química , Hojas de la Planta/química , Plantas Medicinales/química , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Lactato Deshidrogenasas/metabolismo , Proteína GAP-43/análisis , Apoptosis/genética , Estrés Oxidativo/genética , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/patología , Cerebelo/fisiología , Masculino , Femenino , Células Cultivadas , Muerte Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Fitoquímicos/administración & dosificación , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Cromatografía Líquida con Espectrometría de Masas , Metabolismo Secundario
3.
Front Immunol ; 15: 1319698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646543

RESUMEN

This study explored the impacts of supplementation of different levels of coated methionine (Met) in a high-plant protein diet on growth, blood biochemistry, antioxidant capacity, digestive enzymes activity and expression of genes related to TOR signaling pathway in gibel carp (Carassius auratus gibeilo). A high-plant protein diet was formulated and used as a basal diet and supplemented with five different levels of coated Met at 0.15, 0.30, 0.45, 0.60 and 0.75%, corresponding to final analyzed Met levels of 0.34, 0.49, 0.64, 0.76, 0.92 and 1.06%. Three replicate groups of fish (initial mean weight, 11.37 ± 0.02 g) (20 fish per replicate) were fed the test diets over a 10-week feeding period. The results indicated that with the increase of coated Met level, the final weight, weight gain (WG) and specific growth rate initially boosted and then suppressed, peaking at 0.76% Met level (P< 0.05). Increasing dietary Met level led to significantly increased muscle crude protein content (P< 0.05) and reduced serum alanine aminotransferase activity (P< 0.05). Using appropriate dietary Met level led to reduced malondialdehyde concentration in hepatopancreas (P< 0.05), improved superoxide dismutase activity (P< 0.05), and enhanced intestinal amylase and protease activities (P< 0.05). The expression levels of genes associated with muscle protein synthesis such as insulin-like growth factor-1, protein kinase B, target of rapamycin and eukaryotic initiation factor 4E binding protein-1 mRNA were significantly regulated, peaking at Met level of 0.76% (P< 0.05). In conclusion, supplementing optimal level of coated Met improved on fish growth, antioxidant capacity, and the expression of TOR pathway related genes in muscle. The optimal dietary Met level was determined to be 0.71% of the diet based on quadratic regression analysis of WG.


Asunto(s)
Alimentación Animal , Antioxidantes , Suplementos Dietéticos , Metionina , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Metionina/administración & dosificación , Serina-Treonina Quinasas TOR/metabolismo , Antioxidantes/metabolismo , Alimentación Animal/análisis , Carpa Dorada/crecimiento & desarrollo , Carpa Dorada/genética , Carpa Dorada/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
4.
Blood Adv ; 8(12): 3076-3091, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38531064

RESUMEN

ABSTRACT: Yin Yang 1 (YY1) and structural maintenance of chromosomes 3 (SMC3) are 2 critical chromatin structural factors that mediate long-distance enhancer-promoter interactions and promote developmentally regulated changes in chromatin architecture in hematopoietic stem/progenitor cells (HSPCs). Although YY1 has critical functions in promoting hematopoietic stem cell (HSC) self-renewal and maintaining HSC quiescence, SMC3 is required for proper myeloid lineage differentiation. However, many questions remain unanswered regarding how YY1 and SMC3 interact with each other and affect hematopoiesis. We found that YY1 physically interacts with SMC3 and cooccupies with SMC3 at a large cohort of promoters genome wide, and YY1 deficiency deregulates the genetic network governing cell metabolism. YY1 occupies the Smc3 promoter and represses SMC3 expression in HSPCs. Although deletion of 1 Smc3 allele partially restores HSC numbers and quiescence in YY1 knockout mice, Yy1-/-Smc3+/- HSCs fail to reconstitute blood after bone marrow transplant. YY1 regulates HSC metabolic pathways and maintains proper intracellular reactive oxygen species levels in HSCs, and this regulation is independent of the YY1-SMC3 axis. Our results establish a distinct YY1-SMC3 axis and its impact on HSC quiescence and metabolism.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Células Madre Hematopoyéticas , Factor de Transcripción YY1 , Animales , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Cohesinas , Regulación de la Expresión Génica , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones Noqueados , Regiones Promotoras Genéticas , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética
5.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 891-908, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38356017

RESUMEN

Phytase is crucial in enhancing the bioavailability and release of phosphorus and other nutrients bound to phytic acid, making them more bioavailable for animal absorption. This study was carried out to inspect the effect of supplementing low phosphorus (P) diet with di-calcium phosphate (DCP) and liquid phytase enzyme (LP), which contains 1500 FTU/kg, on growth performance, intestinal morphometry, proximate body chemical composition, blood profile, immunity status, liver mitochondrial enzyme activities, the expression response and economic returns of Nile tilapia (Oreochromis niloticus). Three triplicate groups of fish (initial weight 5.405 ± 0.045 g, N = 90) were fed on three different diets for 90 days. The first was a control diet with zero DCP; the second was a control diet supplemented with 0.71% DCP; the third was a control diet supplemented with 0.03% LP. The groups were designated as CG, DCP and LP, respectively. Results showed that LP induced considerable improvements (p < 0.05) in FBW, body weight gain, weight gain rate, specific growth rate, HIS, viscero-somatic index, spleen-somatic index, feed conversion ratio, blood parameters and the histomorphometry assessment of intestinal villi absorptive capacity, compared with the other groups. Also, whole-body protein and lipid contents pointedly (p < 0.05) increased by LP, compared with the DCP group. A positive response (p < 0.05) to the phytase enzyme was noted in complexes I, III and IV of the mitochondrial liver complex enzyme activity. Likewise, the relative gene expression levels of (GHr-1, IGF-1, FAS and LPL) were notably (p < 0.05) upregulated by phytase enzyme, associated with DCP and control groups. Further, phytase recorded the highest total return and profit percentage. It can be concluded that Nile tilapia benefits from using phytase enzyme 1500 FTU/kg at 0.03% without adding DCP in terms of good performance and profits.


Asunto(s)
6-Fitasa , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Cíclidos , Dieta , Suplementos Dietéticos , Intestinos , Animales , 6-Fitasa/farmacología , 6-Fitasa/administración & dosificación , Alimentación Animal/análisis , Intestinos/efectos de los fármacos , Intestinos/anatomía & histología , Cíclidos/crecimiento & desarrollo , Cíclidos/metabolismo , Dieta/veterinaria , Regulación de la Expresión Génica/efectos de los fármacos
6.
Drug Discov Ther ; 18(1): 1-9, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417896

RESUMEN

Endometriosis (EM), also known as Zhengjia in traditional Chinese medicine, is a common disease that significantly impacts women's health. An integrated treatment approach combining traditional Chinese medicine (TCM) and western medicine has demonstrated significant clinical efficacy in the management of this condition. Specifically, it has been effective in addressing blood circulation and other diseases. MicroRNAs (miRNAs), which are molecules important in gene regulation, have been implicated in various physiologic and pathologic processes. In this review, we systematically summarized the potential mechanisms underlying the integrated EM treatment, with a focus on the role of microRNAs (miRNAs). Current research suggests that integrated TCM and western medicine treatment may exert their therapeutic effects on EM by influencing the expression of miRNAs. Through miRNA modulation, such a treatment approach may inhibit the growth of ectopic lesions and alleviate clinical symptoms. This review will shed light on the specific miRNAs that have been implicated in the integrated treatment of EM, as well as their potential mechanisms of action. By consolidating the existing evidence, we aim to provide clinicians and researchers with a clearer understanding of the therapeutic benefits of the integrated approach and potentially identify new avenues for improving clinical treatment outcomes. Ultimately, this review will contribute to the growing body of knowledge in this field, providing a basis for further research and the development of more targeted and efficient treatment strategies for EM.


Asunto(s)
Endometriosis , Medicina Tradicional China , MicroARNs , Humanos , Endometriosis/tratamiento farmacológico , Endometriosis/genética , MicroARNs/genética , Femenino , Medicina Tradicional China/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología
7.
Gene ; 893: 147936, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38381507

RESUMEN

Pollen intine serves as a protective layer situated between the pollen exine and the plasma membrane. It performs essential functions during pollen development, including maintaining the morphological structure of the pollen, preventing the loss of pollen contents, and facilitating pollen germination. The formation of the intine layer commences at the bicellular pollen stage. Pectin, cellulose, hemicellulose and structural proteins are the key constituents of the pollen intine. In Arabidopsis and rice, numerous regulatory factors associated with polysaccharide metabolism and material transport have been identified, which regulate intine development. In this review, we elucidate the developmental processes of the pollen wall and provide a concise summary of the research advancements in the development and genetic regulation of the pollen intine in Arabidopsis and rice. A comprehensive understanding of intine development and regulation is crucial for unraveling the genetic network underlying intine development in higher plants.


Asunto(s)
Arabidopsis , Oryza , Oryza/genética , Arabidopsis/genética , Redes Reguladoras de Genes , Regulación de la Expresión Génica , Polen/genética
8.
Fish Shellfish Immunol ; 145: 109359, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184182

RESUMEN

The MAPK pathway is the common intersection of signal transduction pathways such as inflammation, differentiation and proliferation and plays an important role in the process of antiviral immunity. Streptococcus agalactiae will have a great impact on tilapia aquaculture, so it is necessary to study the immune response mechanism of tilapia to S. agalactiae. In this study, we isolated the cDNA sequences of TAK1, TAB1 and TAB2 from Nile tilapia (Oreochromis niloticus). The TAK1 gene was 3492 bp in length, contained an open reading frame (ORF) of 1809 bp and encoded a polypeptide of 602 amino acids. The cDNA sequence of the TAB1 gene was 4001 bp, and its ORF was 1491 bp, which encoded 497 amino acids. The cDNA sequence of the TAB2 gene was 4792 bp, and its ORF was 2217 bp, encoding 738 amino acids. TAK1 has an S_TKc domain and a coiled coil structure; the TAB1 protein structure contains a PP2C_SIG domain and a conserved PYVDXA/TXF sequence model; and TAB2 contains a CUE domain, a coiled coil domain and a Znf_RBZ domain. Homology analysis showed that TAK1 and TAB1 had the highest homology with Neolamprologus brichardi, and TAB2 had the highest homology with Simochromis diagramma (98.28 %). In the phylogenetic tree, TAK1, TAB1 and TAB2 formed a large branch with other scleractinian fishes. The tissue expression analysis showed that the expression of TAK1, TAB1 and TAB2 was highest in the muscle. The expression of TAK1, TAB1 and TAB2 was significantly induced in most of the tested tissues after stimulation with LPS, Poly I:C and S. agalactiae. The subcellular localization results showed that TAK1 was located in the cytoplasm, and TAB1 and TAB2 had certain distributions in the cytoplasm and nucleus. Coimmunoprecipitation (Co-IP) results showed that TRAF6 did not interact with the TAK1 protein but interacted with TAB2, while TAB1 did not interact with P38γ but interacted with TAK1. There was also an interaction between TAK1 and TAB2.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Animales , Filogenia , ADN Complementario , Transducción de Señal , Aminoácidos/metabolismo , Streptococcus agalactiae/metabolismo , Proteínas de Peces/genética , Regulación de la Expresión Génica
9.
J Trace Elem Med Biol ; 83: 127376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38183920

RESUMEN

INTRODUCTION: The increasing prevalence of obesity has become a major health problem worldwide. The causes of obesity are multifactorial and could be influenced by dietary patterns and genetic factors. Obesity has been associated with a decrease in micronutrient intake and consequently decreased blood concentrations. Selenium is an essential micronutrient for human health, and its metabolism could be affected by obesity, especially severe obesity. This study aimed to identify differential methylation genes associated with serum selenium concentration in women with and without obesity. METHODOLOGY: Thirty-four patients were enrolled in the study and divided into two groups: Obese (Ob) n = 20 and Non-Obese (NOb) n = 14, according to the Body Mass Index (BMI). Anthropometry, body composition, serum selenium, selenium intake, and biochemical parameters were evaluated. DNA extraction and bisulfite conversion were performed to hybridize the samples on the 450k Methylation Chip Infinium Beadchip (Illumina). Bioinformatics analysis was performed using the R program and the Champ package. The differentially methylated regions (DMRs) were identified using the Bumphunter method. In addition, logarithmic conversion was performed for the analysis of serum selenium and methylation. RESULTS: In the Ob group, the body weight, BMI, fat mass, and free fat mass were higher than in the NOb group, as expected. Interestingly, the serum selenium was lower in the Ob than in the NOb group without differences in selenium intake. One DMR corresponding to the CPT1B gene, involved in lipid oxidation, was related to selenium levels. This region was hypermethylated in the Ob group, indicating that the intersection between selenium deficiency and hypermethylation could influence the expression of the CPT1B gene. The transcriptional analysis confirmed the lower expression of the CPT1B gene in the Ob group. CONCLUSION: Studies connecting epigenetics to environmental factors could offer insights into the mechanisms involving the expression of genes related to obesity and its comorbidities. Here we demonstrated that the mineral selenium might play an essential role in lipid oxidation via epigenetic and transcriptional regulation of the CPT1B gene in obesity.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Epigénesis Genética , Obesidad , Selenio , Femenino , Humanos , Carnitina O-Palmitoiltransferasa/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica , Lípidos , Obesidad/genética , Obesidad/metabolismo , Selenio/metabolismo
10.
Trop Anim Health Prod ; 56(1): 30, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38159113

RESUMEN

The use of essential oils has recently increased in the poultry sector. The aim of this study was to investigate the effects of essential oil mixture (juniper, mint, oregano and rosemary oil) on fatty acid oxidation and lipogenic gene expression in geese. Research groups were formed as C (control; no additives), EK1 (0.4 ml/l essential oil mixture supplemented) and EK2 (0.8 ml/l essential oil mixture supplemented). Relative expression levels of genes included in lipogenesis (ACCα, ChREBP, FASN, LXRα and SREBP-1) expression levels of genes included in fatty acid oxidation (ACOX1, CPT1, CPT1A, PPARα and PPARγ) were measured using RT-qPCR. Group EK1 upregulates the mRNA expression levels of genes involved in lipogenesis such as ACCα, ChREBP and SREBP-1, while it downregulates the mRNA expression in levels of all genes involved in fatty acid oxidation. Group EK2 increases the mRNA expression levels of genes involved in lipogenesis such as ACCα, FASN and SREBP-1, while it decreased mRNA expression at the levels of all genes involved in fatty acid oxidation, as in the other group. In the study, adding an essential oil mixture to drinking water is predicted to increase fatty liver because it upregulates genes related to fat synthesis (lipogenesis) and downregulates genes related to fat degradation (fatty acid oxidation).


Asunto(s)
Lipogénesis , Aceites Volátiles , Animales , Lipogénesis/genética , Hígado/metabolismo , Gansos/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Regulación de la Expresión Génica , Ácidos Grasos/metabolismo , ARN Mensajero/metabolismo
11.
Cells ; 12(19)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37830605

RESUMEN

Environmental triggers often work via signal transduction cascades that modulate the epigenome and transcriptome of cell types involved in the disease process. Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system being characterized by a combination of recurring inflammation, demyelination and progressive loss of axons. The mechanisms of MS onset are not fully understood and genetic variants may explain only some 20% of the disease susceptibility. From the environmental factors being involved in disease development low vitamin D levels have been shown to significantly contribute to MS susceptibility. The pro-hormone vitamin D3 acts via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) as a high affinity ligand to the transcription factor VDR (vitamin D receptor) and is a potent modulator of the epigenome at thousands of genomic regions and the transcriptome of hundreds of genes. A major target tissue of the effects of 1,25(OH)2D3 and VDR are cells of innate and adaptive immunity, such as monocytes, dendritic cells as well as B and T cells. Vitamin D induces immunological tolerance in T cells and reduces inflammatory reactions of various types of immune cells, all of which are implicated in MS pathogenesis. The immunomodulatory effects of 1,25(OH)2D3 contribute to the prevention of MS. However, the strength of the responses to vitamin D3 supplementation is highly variegated between individuals. This review will relate mechanisms of individual's vitamin D responsiveness to MS susceptibility and discuss the prospect of vitamin D3 supplementation as a way to extinguish the autoimmunity in MS.


Asunto(s)
Esclerosis Múltiple , Humanos , Vitamina D/metabolismo , Colecalciferol , Regulación de la Expresión Génica , Vitaminas , Transducción de Señal
12.
Cell Rep ; 42(10): 113232, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37824328

RESUMEN

TRPM7 (transient receptor potential cation channel subfamily M member 7) is a chanzyme with channel and kinase domains essential for embryo development. Using gamete-specific Trpm7-null lines, we report that TRPM7-mediated Mg2+ influx is indispensable for reaching the blastocyst stage. TRPM7 is expressed dynamically from gametes to blastocysts; displays stage-specific localization on the plasma membrane, cytoplasm, and nucleus; and undergoes cleavage that produces C-terminal kinase fragments. TRPM7 underpins Mg2+ homeostasis, and excess Mg2+ but not Zn2+ or Ca2+ overcomes the arrest of Trpm7-null embryos; expressing Trpm7 mRNA restores development, but mutant versions fail or are partially rescued. Transcriptomic analyses of Trpm7-null embryos reveal an abundance of oxidative stress-pathway genes, confirmed by mitochondrial dysfunction, and a reduction in transcription factor networks essential for proliferation; Mg2+ supplementation corrects these defects. Hence, TRPM7 underpins Mg2+ homeostasis in preimplantation embryos, prevents oxidative stress, and promotes gene expression patterns necessary for developmental progression and cell-lineage specification.


Asunto(s)
Desarrollo Embrionario , Magnesio , Canales Catiónicos TRPM , Animales , Ratones , Citoplasma/metabolismo , Regulación de la Expresión Génica , Células Germinativas/metabolismo , Canales Catiónicos TRPM/metabolismo , Magnesio/metabolismo
13.
Int J Biol Macromol ; 253(Pt 5): 127201, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37793513

RESUMEN

Sexual size dimorphism (SSD) characterized by different body size between females and males have been reported in various animals. Gonadectomy experiments have implied important regulatory roles of the gonad in SSD. Among multiple factors from the gonad, TGF-ß superfamily (especially BMP/GDF family) attracted our interest due to its pleiotropy in growth and reproduction regulations. Thus, whether BMP/GDF family members serve as crucial regulators for SSD was studied in a typically female-biased SSD flatfish named Chinese tongue sole (Cynoglossus semilaevis). Firstly, a total of 26 BMP/GDF family members were identified. The PPI network analysis showed that they may interact with ACVR2a, ACVR2b, ACVR1, BMPR2, SMAD3, BMPR1a, and other proteins. Subsequently, DAP-seq was employed to reveal the binding sites for yin yang 1 (yy1), a transcription factor involved in gonad function and cell growth partly by regulating TGF-ß superfamily. The results revealed that two yy1 homologues yy1a and yy1b in C. semilaevis could regulate Hippo signaling pathway, mTOR signaling pathway, and AMPK signaling pathway. Moreover, BMP/GDF family genes including bmp2, bmp4, bmp5, gdf6a, and gdf6b were important components of Hippo pathway. In future, the crosstalk among yy1a, yy1b, and TGF-ß family would provide more insight into sexual size dimorphism in C. semilaevis.


Asunto(s)
Peces Planos , Caracteres Sexuales , Masculino , Animales , Femenino , Peces Planos/genética , Regulación de la Expresión Génica , Genoma , Proteínas Morfogenéticas Óseas/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
14.
Biosci Rep ; 43(10)2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815922

RESUMEN

YY1 is a ubiquitously expressed, intrinsically disordered transcription factor involved in neural development. The oligomeric state of YY1 varies depending on the environment. These structural changes may alter its DNA binding ability and hence its transcriptional activity. Just as YY1's oligomeric state can impact its role in transcription, so does its interaction with other proteins such as FOXP2. The aim of this work is to study the structure and dynamics of YY1 so as to determine the influence of oligomerisation and associations with FOXP2 on its DNA binding mechanism. The results confirm that YY1 is primarily a disordered protein, but it does consist of certain specific structured regions. We observed that YY1 quaternary structure is a heterogenous mixture of oligomers, the overall size of which is dependent on ionic strength. Both YY1 oligomerisation and its dynamic behaviour are further subject to changes upon DNA binding, whereby increases in DNA concentration result in a decrease in the size of YY1 oligomers. YY1 and the FOXP2 forkhead domain were found to interact with each other both in isolation and in the presence of YY1-specific DNA. The heterogeneous, dynamic multimerisation of YY1 identified in this work is, therefore likely to be important for its ability to make heterologous associations with other proteins such as FOXP2. The interactions that YY1 makes with itself, FOXP2 and DNA form part of an intricate mechanism of transcriptional regulation by YY1, which is vital for appropriate neural development.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica
15.
Biochem Pharmacol ; 218: 115866, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37863327

RESUMEN

The aryl hydrocarbon receptor (AhR) is a crucial cytosolic evolutionary conserved ligand-activated transcription factor and a pleiotropic signal transducer. The biosensor activity of the AhR is attributed to the promiscuity of its ligand-binding domain. Evidence suggests exposure to environmental toxins such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and halogenated aromatic hydrocarbons activates the AhR signaling pathway. The constitutive activation of the receptor signaling system leads to multiple health adversities and enhances the risk of several cancers, including breast cancer (BC). This review evaluates several mechanisms that integrate the tumor-inducing property of such environmental contaminants with the AhR pathway assisting in BC tumorigenesis, progress and metastasis. Intriguingly, immune evasion is identified as a prominent hallmark in BC. Several emerging pieces of evidence have identified AhR as a potent immunosuppressive effector in several cancers. Through AhR signaling pathways, some tumors can avoid immune detection. Thus the relevance of AhR in the immunomodulation of breast tumors and its putative mode of action in the breast tumor microenvironment are discussed in this review. Additionally, the work also explores BC stemness and its associated inflammation in response to several environmental cues. The review elucidates the context-dependent ambiguous behavior of AhR either as an oncogene or a tumor suppressor with respect to its ligand. Conclusively, this holistic piece of literature attempts to potentiate AhR as a promising pharmacological target in BC and updates on the therapeutic manipulation of its various exogenous and endogenous ligands.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Transducción de Señal , Regulación de la Expresión Génica , Microambiente Tumoral
16.
Int J Biol Macromol ; 253(Pt 1): 126650, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37666400

RESUMEN

Oleosin (OLE) is vital to stabilize lipid droplet for seed triacylglycerol (TAG) storage. This work aimed to determine key OLE and to unravel mechanism that governed seed oil accumulation of Prunus sibirica for developing biodiesel. An integrated assay of global identification of LD-related protein and the cross-accessions/developing stages comparisons associated with oil accumulative amount and OLE transcript level was performed on seeds of 12 plus trees of P. sibirica to identify OLE1 (15.5 kDa) as key oleosin protein crucial for high seed oil accumulation. The OLE1 gene and its promoter were cloned from P. sibirica seeds, and overexpression of PsOLE1 in Arabidopsis was conducted under the controls of native promoter and constitutive CaMV35S promoter, respectively. PsOLE1 promoter had seed-specific cis-elements and showed seed specificity, by which PsOLE1 was specifically expressed in seeds. Ectopic overexpression of PsOLE1, especially driven by its promoter, could facilitate seed development and oil accumulation with an increase in unsaturated FAs, and upregulate transcript of TAG assembly enzymes, but suppress transcript of LD/TAG-hydrolyzed lipases and transporters, revealing a role of native promoter-mediated transcription of PsOLE1 in seed development and oil accumulation. PsOLE1 and its promoter have considerable potential for engineering oil accumulation in oilseed plants.


Asunto(s)
Arabidopsis , Prunus , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica , Arabidopsis/genética , Arabidopsis/metabolismo , Semillas , Aceites de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Fish Shellfish Immunol ; 142: 109110, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774903

RESUMEN

GATA3 belongs to the GATA family, and it could interact with the target gene promoter. It has been reported to play a central role in regulating lymphocyte differentiation. In this study, the GATA3 cDNA sequence was identified by a homologous clone and the RACE technology from Japanese flounder (Paralichthys olivaceus). The full-length of the GATA3 cDNA sequence was 2904 bp, including 1332 bp open reading frame (ORF), 265 bp 5 '-untranslated region (5' UTR), and 1308 bp 3 '-UTR, encoding 443 amino acids. GATA3 protein sequence was conserved in vertebrates and invertebrates, including two zinc finger domains. qRT-PCR showed that the expression of GATA3 was high in the gill, kidney, and spleen. Expression of GATA3 slowly increased at the earlier stages and culminated at the late gastrula and somatic stages. Immunohistochemistry (IHC) results showed that the GATA3 protein was expressed in lymphocyte cells, undifferentiated basal and pillar cells of the gills, as well as lymphocyte cells and melanin macrophages of the kidney. The expression of GATA3 was significantly regulated in tissues and different types of lymphocytes after stimulation with Edwardsiella tarda. Dual-luciferase reporter assay indicated that the GATA3 protein could directly interact with promoters of target genes involved in the immune response. These findings suggested that GATA3 plays a major role in regulating the immune response. This study provided a theoretical basis for the immune response mechanism of teleost and a useful reference for later research on fish immunology.


Asunto(s)
Enfermedades de los Peces , Lenguado , Animales , ADN Complementario/genética , Secuencia de Aminoácidos , Inmunidad Innata/genética , Macrófagos/metabolismo , Proteínas de Peces/química , Edwardsiella tarda/fisiología , Filogenia , Regulación de la Expresión Génica
18.
Genes (Basel) ; 14(8)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37628599

RESUMEN

The application of nano drug delivery systems, particularly those utilizing natural bioactive compounds with anticancer properties, has gained significant attention. In this study, a novel nano-phytosome-loaded phenolic rich fraction (PRF) derived from Allium ampeloprasum L. was developed. The antitumor activity of the formulation was evaluated in BALB/c mice with TUBO colon carcinoma. The PRF-loaded nano-phytosome (PRF-NPs) exhibited a sphere-shaped structure (226 nm) and contained a diverse range of phenolic compounds. Animal trials conducted on TUBO tumor-bearing mice demonstrated that treatment with PRF-NPs at a dosage of 50 mg TPC/Kg/BW resulted in significant improvements in body weight and food intake, while reducing liver enzymes and lipid peroxidation. The expression of apoptosis-related genes, such as Bax and caspase-3, was upregulated, whereas Bcl2 was significantly downregulated (p < 0.05). Furthermore, the expression of GPx and SOD genes in the liver was notably increased compared to the control group. The findings suggest that the phytosomal encapsulation of the phenolic rich fraction derived from Allium ampeloprasum L. can enhance the bioavailability of natural phytochemicals and improve their antitumor properties. The development of PRF-NPs as a nano drug delivery system holds promise for effective breast cancer treatment.


Asunto(s)
Allium , Regulación de la Expresión Génica , Allium/química , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Fitosomas , Extractos Vegetales/farmacología , Fenoles/farmacología , Nanoestructuras , Femenino , Animales , Ratones , Ratones Endogámicos BALB C , Peroxidación de Lípido , Hígado/efectos de los fármacos , Hígado/enzimología , Peso Corporal , Antineoplásicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos
19.
Gen Comp Endocrinol ; 341: 114334, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37302764

RESUMEN

Kisspeptin, a product of the Kiss1 gene is considered a potent stimulator of gonadotropin release, by interacting with its receptor, the G protein-coupled receptor 54. Kiss1 neurons are known to mediate the positive and negative feedback effects of oestradiol on GnRH neurons that control the pulsatile and surge secretion of GnRH. While in spontaneously ovulating mammals the GnRH/LH surge is initiated by a rise in ovarian oestradiol secreted from maturing follicles, in induced ovulators, the primary trigger is the mating stimulus. Damaraland mole rats (Fukomys damarensis) are cooperatively breeding, subterranean rodents that exhibit induced ovulation. We have previously described in this species the distribution and differential expression pattern of Kiss1-expressing neurons in the hypothalamus of males and females. Here we examine whether oestradiol (E2) regulates the hypothalamic Kiss1 expression in a similar way as described for spontaneously ovulating rodent species. By means of in situ hybridisation, we measured Kiss1 mRNA among groups of ovary-intact, ovariectomized (OVX) and OVX females treated with E2 (OVX + E2). In the arcuate nucleus (ARC), Kiss1 expression increased after ovariectomy and decreased with E2 treatment. In the preoptic region, Kiss1 expression after gonadectomy was similar to the level of wild-caught gonad-intact controls, but was dramatically upregulated with E2 treatment. The data suggest that, similar to other species, Kiss1 neurons in the ARC, which are inhibited by E2, play a role in the negative feedback control on GnRH release. The exact role of the Kiss1 neuron population in the preoptic region, which is stimulated by E2, remains to be determined.


Asunto(s)
Estradiol , Kisspeptinas , Masculino , Animales , Femenino , Estradiol/farmacología , Estradiol/metabolismo , Kisspeptinas/metabolismo , Ratas Topo/metabolismo , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Expresión Génica , Regulación de la Expresión Génica
20.
Zhongguo Zhong Yao Za Zhi ; 48(11): 3066-3073, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381965

RESUMEN

This study aimed to investigate the effect of Wenyang Zhenshuai Granules(WYZSG) on autophagy and apoptosis of myocardial cells in rats with sepsis via regulating the expression of microRNA-132-3p(miR-132-3p)/uncoupling protein 2(UCP2). Sixty SD rats were randomly divided into modeling group(n=50) and sham operation group(n=10). The sepsis rat model was constructed by cecal ligation and perforation in the modeling group. The successfully modeled rats were randomly divided into WYZSG low-, medium-and high-dose groups, model group and positive control group. Rats in the sham operation group underwent opening and cecum division but without perforation and ligation. Hematoxylin-eosin(HE) staining was used to observe the pathological changes of rat myocardial tissue. Myocardial cell apoptosis was detected by TdT-mediated dUTP nick end labeling(TUNEL) assay. Real-time quantitative polymerase chain reaction(RT-qPCR) was performed to detect the expression of miR-132-3p and the mRNA expressions of UCP2, microtubule-associated protein light chain 3(LC3-Ⅱ/LC3-Ⅰ), Beclin-1 and caspase-3 in rat myocardial tissue. The protein expressions of UCP2, LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3 in myocardial tissue were detected by Western blot. Dual luciferase reporter assay was used to verify the regulatory relationship between miR-132-3p and UCP2. The myocardial fibers of sepsis model rats were disordered, and there were obvious inflammatory cell infiltration as well as myocardial cell edema and necrosis. With the increase of the WYZSG dose, the histopathological changes of myocardium were improved to varying degrees. Compared with the conditions in the sham operation group, the survival rate and left ventricular ejection fraction(LVEF) of rats in the model group, positive control group and WYZSG low-, medium-and high-dose groups were decreased, and the myocardial injury score and apoptosis rate were increased. Compared with the model group, the positive control group and WYZSG low-, medium-and high-dose groups had elevated survival rate and LVEF, and lowered myocardial injury score and apoptosis rate. The expression of miR-132-3p and the mRNA and protein expressions of UCP2 in myocardial tissue in the model group, positive control group and WYZSG low-, medium-and high-dose groups were lower, while the mRNA and protein expressions of LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3 were higher than those in the sham operation group. Compared with model group, the positive control group and the WYZSG low-, medium-and high-dose groups had an up-regulation in the expression of miR-132-3p and the mRNA and protein expressions of UCP2, while a down-regulation in the mRNA and protein expressions of LC3-Ⅱ/LC3-Ⅰ, Beclin-1 and caspase-3. WYZSG inhibited excessive autophagy and apoptosis of myocardial cells in septic rats and improved myocardial injury, possibly by regulating the expression of miR-132-3p/UCP2.


Asunto(s)
Apoptosis , Autofagia , Medicamentos Herbarios Chinos , Regulación de la Expresión Génica , Miocitos Cardíacos , Animales , Ratas , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Medicina Tradicional China , MicroARNs/genética , Miocitos Cardíacos/efectos de los fármacos , Sepsis/tratamiento farmacológico , Sepsis/fisiopatología , Proteína Desacopladora 2/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA