Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35162958

RESUMEN

The development of nerve conduits with a three-dimensional porous structure has attracted great attention as they closely mimic the major features of the natural extracellular matrix of the nerve tissue. As low levels of reactive oxygen species (ROS) function as signaling molecules to promote cell proliferation and growth, this study aimed to fabricate protoporphyrin IX (PpIX)-immobilized cellulose (CEPP) monoliths as a means to both guide and stimulate nerve regeneration. CEPP monoliths can be fabricated via a simple thermally induced phase separation method and surface modification. The improved nerve tissue regeneration of CEPP monoliths was achieved by the activation of mitogen-activated protein kinases, such as extracellular signal-regulated kinases (ERKs). The resulting CEPP monoliths exhibited interconnected microporous structures and uniform morphology. The results of in vitro bioactivity assays demonstrated that the CEPP monoliths with under 0.54 ± 0.07 µmol/g PpIX exhibited enhanced photodynamic activity on Schwann cells via the generation of low levels of ROS. This photodynamic activation of the CEPP monoliths is a cell-safe process to stimulate cell proliferation without cytotoxic side effects. In addition, the protein expression of phospho-ERK increased considerably after the laser irradiation on the CEPP monoliths with low content of PpIX. Therefore, the CEPP monoliths have a potential application in nerve tissue regeneration as new nerve conduits.


Asunto(s)
Celulosa/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Protoporfirinas/farmacología , Células de Schwann/citología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Terapia por Luz de Baja Intensidad , Regeneración Nerviosa , Tejido Nervioso/química , Fosforilación , Protoporfirinas/química , Ratas , Especies Reactivas de Oxígeno/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Células de Schwann/efectos de la radiación
2.
J Ethnopharmacol ; 283: 114677, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34562563

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Skin barrier dysfunction can lead to water and electrolyte loss, triggering homeostatic imbalances that can trigger atopic dermatitis and anaphylaxis. Panax ginseng C.A. Meyer is a traditional Chinese medicinal herb with known therapeutic benefits for the treatment of skin diseases, including photodamage repair effects and reduction of pigmentation. However, few reports exist that describe effectiveness of ginseng active components for repair of skin barrier damage. MATERIALS AND METHODS: Ginseng oligosaccharide extract (GSO) was prepared from P. ginseng via water extraction followed by ethanol precipitation and resin and gel purification. GSO composition and structural characteristics were determined using LC-MS, HPLC, FT-IR, and NMR. To evaluate GSO as a skin barrier repair-promoting treatment, skin of UVB-irradiated BALB/c hairless mice was treated with or without GSO then skin samples were evaluated for epidermal thickness, transepidermal water loss (TEWL), and stratum corneum water content. In addition, UVB-exposed skin samples and HaCaT cells were analyzed to assess GSO treatment effects on levels of epidermal cornified envelope (CE) protein and other skin barrier proteins, such as filaggrin (FLG), involucrin (IVL), and aquaporin-3 (AQP3). Meanwhile, GSO treatment was also evaluated for effects on UVB-irradiated hairless mouse skin and HaCaT cells based on levels of serine protease inhibitor Kazal type-5 (SPINK5), trypsin-like kallikrein-related peptidase 5 (KLK5), chymotrypsin-like KLK7, and desmoglein 1 (DSG1). These proteins are associated with UVB-induced skin barrier damage manifesting as dryness and desquamation. RESULTS: GSO was shown to consist of oligosaccharides comprised of seven distinct types of monosaccharides with molecular weights of approximately 1 kDa that were covalently linked together via ß-glycosidic bonds. In vivo, GSO applied to dorsal skin of BALB/c hairless mice attenuated UVB-induced epidermal thickening and moisture loss. Furthermore, GSO ameliorated UVB-induced reductions of levels of FLG, IVL, and AQP3 proteins. Additionally, GSO treatment led to increased DSG1 protein levels due to decreased expression of KLK7. In vitro, GSO treatment of UVB-irradiated HaCaT cells led to increases of FLG, IVL, and AQP3 mRNA levels and corresponding proteins, while mRNA levels of desquamation-related proteins SPINK5, KLK5, KLK7, and DSG1 and associated protein levels were restored to normal levels. CONCLUSION: A P. ginseng oligosaccharide preparation repaired UVB-induced skin barrier damage by alleviating skin dryness and desquamation symptoms, highlighting its potential as a natural cosmetic additive that can promote skin barrier repair after UVB exposure.


Asunto(s)
Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Oligosacáridos/farmacología , Panax/química , Rayos Ultravioleta/efectos adversos , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Células HaCaT , Humanos , Ratones , Ratones Pelados
3.
Mol Med Rep ; 24(5)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34558633

RESUMEN

Radiation­induced lung tissue injury is an important reason for the limited application of radiotherapy on thoracic malignancies. Previously, we reported that administration of Jiawei­Maxing­Shigan decoction (JMSD) attenuated the radiation­induced epithelial­mesenchymal transition (EMT) in alveolar epithelial cells (AECs) via TGF­ß/Smad signaling. The present study aimed to examine the role of protein phosphatase Mg2+/Mn2+­dependent 1A (PPM1A) in the anti­EMT activity of JMSD on AECs. The components in the aqueous extract of JMSD were identified by high­performance liquid chromatography coupled with electrospray mass spectrometry. Primary rat type II AECs were treated with radiation (60Co γ­ray at 8 Gy) and JMSD­medicated serum. PPM1A was overexpressed and knocked down in the AECs via lentivirus transduction and the effects of JMSD administration on the key proteins related to TGF­ß1/Smad signaling were measured by western blotting. It was found that radiation decreased the PPM1A expression in the AECs and JMSD­medicated serum upregulated the PPM1A expressions in the radiation­induced AECs. PPM1A overexpression increased the E­cadherin level but decreased the phosphorylated (p­)Smad2/3, vimentin and α­smooth muscle actin (α­SMA) levels in the AECs. By contrast, the PPM1A knockdown decreased the E­cadherin level and increased the p­Smad2/3, vimentin and α­SMA levels in the AECs and these effects could be blocked by SB431542 (TGF­ß1/Smad signaling inhibitor). JMSD administration increased the E­cadherin level and decreased the p­Smad2/3, vimentin and α­SMA levels in the AECs; however, these effects could be blocked by siPPM1A­2. In conclusion, PPM1A is a key target of JMSD administration for the attenuation of the radiation­induced EMT in primary type II AECs via the TGF­ß1/Smad pathway.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de la radiación , Proteína Fosfatasa 2C/metabolismo , Células Epiteliales Alveolares/efectos de la radiación , Animales , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Proteína Fosfatasa 2C/genética , Ratas , Proteínas Smad/genética , Proteínas Smad/metabolismo , Espectrometría de Masa por Ionización de Electrospray
4.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065959

RESUMEN

Brain tissue may be especially sensitive to electromagnetic phenomena provoking signs of neural stress in cerebral activity. Fifty-four adult female Sprague-Dawley rats underwent ELISA and immunohistochemistry testing of four relevant anatomical areas of the cerebrum to measure biomarkers indicating induction of heat shock protein 70 (HSP-70), glucocorticoid receptors (GCR) or glial fibrillary acidic protein (GFAP) after single or repeated exposure to 2.45 GHz radiation in the experimental set-up. Neither radiation regime caused tissue heating, so thermal effects can be ruled out. A progressive decrease in GCR and HSP-70 was observed after acute or repeated irradiation in the somatosensory cortex, hypothalamus and hippocampus. In the limbic cortex; however, values for both biomarkers were significantly higher after repeated exposure to irradiation when compared to control animals. GFAP values in brain tissue after irradiation were not significantly different or were even lower than those of nonirradiated animals in all brain regions studied. Our results suggest that repeated exposure to 2.45 GHz elicited GCR/HSP-70 dysregulation in the brain, triggering a state of stress that could decrease tissue anti-inflammatory action without favoring glial proliferation and make the nervous system more vulnerable.


Asunto(s)
Cerebro/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Biomarcadores/metabolismo , Cerebro/efectos de la radiación , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Hipocampo/metabolismo , Hipocampo/efectos de la radiación , Hipotálamo/metabolismo , Hipotálamo/efectos de la radiación , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/efectos de la radiación
5.
Photochem Photobiol Sci ; 20(4): 571-583, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33895984

RESUMEN

Envenoming caused by snakebites is a very important neglected tropical disease worldwide. The myotoxic phospholipases present in the bothropic venom disrupt the sarcolemma and compromise the mechanisms of energy production, leading to myonecrosis. Photobiomodulation therapy (PBMT) has been used as an effective tool to treat diverse cases of injuries, such as snake venom-induced myonecrosis. Based on that, the aim of this study was to analyze the effects of PBMT through low-level laser irradiation (904 nm) on the muscle regeneration after the myonecrosis induced by Bothrops jararacussu snake venom (Bjssu) injection, focusing on myogenic regulatory factors expression, such as Pax7, MyoD, and Myogenin (MyoG). Male Swiss mice (Mus musculus), 6-8-week-old, weighing 22 ± 3 g were used. Single sub-lethal Bjssu dose or saline was injected into the right mice gastrocnemius muscle. At 3, 24, 48, and 72 h after injections, mice were submitted to PBMT treatment. When finished the periods of 48 and 72 h, mice were euthanized and the right gastrocnemius were collected for analyses. We observed extensive inflammatory infiltrate in all the groups submitted to Bjssu injections. PBMT was able to reduce the myonecrotic area at 48 and 72 h after envenomation. There was a significant increase of MyoG mRNA expression at 72 h after venom injection. The data suggest that beyond the protective effect promoted by PBMT against Bjssu-induced myonecrosis, the low-level laser irradiation was able to stimulate the satellite cells, thus enhancing the muscle repair by improving myogenic differentiation.


Asunto(s)
Bothrops , Venenos de Crotálidos/toxicidad , Regulación de la Expresión Génica/efectos de la radiación , Terapia por Láser , Miogenina/metabolismo , Necrosis/terapia , Animales , Diferenciación Celular , Terapia por Luz de Baja Intensidad , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/efectos de la radiación , Miogenina/genética
6.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540902

RESUMEN

Human epidermal keratinocytes are constantly exposed to UV radiation. As a result, there is a significant need for safe and effective compounds to protect skin cells against this environmental damage. This study aimed to analyze the effect of phytocannabinoid-cannabinoid (CBD)-on the proteome of UVA/B irradiated keratinocytes. The keratinocytes were cultured in a three-dimensional (3D) system, designed to mimic epidermal conditions closely. The obtained results indicate that CBD protected against the harmful effects of UVA/B radiation. CBD decreased the expression of proinflammatory proteins, including TNFα/NFκB and IκBKB complex and decreased the expression of proteins involved in de novo protein biosynthesis, which are increased in UVA/B-irradiated cells. Additionally, CBD enhanced the UV-induced expression of 20S proteasome subunits. CBD also protected protein structures from 4-hydroxynonenal (HNE)-binding induced by UV radiation, which primarily affects antioxidant enzymes. CBD-through its antioxidant/anti-inflammatory activity and regulation of protein biosynthesis and degradation-protects skin cells against UVA/B-induced changes. In the future, its long-term use in epidermal cells should be investigated.


Asunto(s)
Cannabidiol/farmacología , Queratinocitos/efectos de los fármacos , Proteoma/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Rayos Ultravioleta , Aldehídos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cannabidiol/química , Técnicas de Cultivo de Célula , Células Cultivadas , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Quinasa I-kappa B/metabolismo , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Estructura Molecular , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Análisis de Componente Principal , Proteoma/efectos de la radiación , Transducción de Señal/efectos de la radiación , Factor de Necrosis Tumoral alfa/metabolismo
7.
Sci Rep ; 11(1): 621, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436686

RESUMEN

Late Onset Alzheimer's Disease is the most common cause of dementia, characterized by extracellular deposition of plaques primarily of amyloid-ß (Aß) peptide and tangles primarily of hyperphosphorylated tau protein. We present data to suggest a noninvasive strategy to decrease potentially toxic Aß levels, using repeated electromagnetic field stimulation (REMFS) in primary human brain (PHB) cultures. We examined effects of REMFS on Aß levels (Aß40 and Aß42, that are 40 or 42 amino acid residues in length, respectively) in PHB cultures at different frequencies, powers, and specific absorption rates (SAR). PHB cultures at day in vitro 7 (DIV7) treated with 64 MHz, and 1 hour daily for 14 days (DIV 21) had significantly reduced levels of secreted Aß40 (p = 001) and Aß42 (p = 0.029) peptides, compared to untreated cultures. PHB cultures (DIV7) treated at 64 MHz, for 1 or 2 hour during 14 days also produced significantly lower Aß levels. PHB cultures (DIV28) treated with 64 MHz 1 hour/day during 4 or 8 days produced a similar significant reduction in Aß40 levels. 0.4 W/kg was the minimum SAR required to produce a biological effect. Exposure did not result in cellular toxicity nor significant changes in secreted Aß precursor protein-α (sAPPα) levels, suggesting the decrease in Aß did not likely result from redirection toward the α-secretase pathway. EMF frequency and power used in our work is utilized in human magnetic resonance imaging (MRI, thus suggesting REMFS can be further developed in clinical settings to modulate Aß deposition.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Campos Electromagnéticos , Feto/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Precursor de Proteína beta-Amiloide/genética , Encéfalo/efectos de la radiación , Feto/efectos de la radiación , Humanos , Magnetoterapia , Prohibitinas
8.
Mol Biol Rep ; 48(2): 1233-1241, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33475929

RESUMEN

The literature has shown the beneficial effects of microcurrent (MC) therapy on tissue repair. We investigated if the application of MC at 10 µA/90 s could modulate the expression of remodeling genes transforming growth factor beta (Tgfb), connective tissue growth factor (Ctgf), insulin-like growth factor 1 (Igf1), tenascin C (Tnc), Fibronectin (Fn1), Scleraxis (Scx), Fibromodulin (Fmod) and tenomodulin in NIH/3T3 fibroblasts in a wound healing assay. The cell migration was analyzed between days 0 and 4 in both fibroblasts (F) and fibroblasts + MC (F+MC) groups. On the 4th day, cell viability and gene expression were also analyzed after daily MC application. Higher expression of Ctgf and lower expression of Tnc and Fmod, respectively, were observed in the F+MC group in relation to F group (p < 0.05), and no difference was observed between the groups for the genes Tgfb, Fn1 and Scx. In cell migration, a higher number of cells in the scratch region was observed in group F+MC (p < 0.05) compared to group F on the 4th day, and the cell viability assay showed no difference between the groups. In conclusion, MC therapy at an intensity/time of 10 µA/90 s with 4 daily applications did not affect cell viability, stimulated fibroblasts migration with the involvement of Ctgf, and reduced the Tnc and Fmod expression.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/genética , Terapia por Estimulación Eléctrica , Fibromodulina/genética , Tenascina/genética , Cicatrización de Heridas/efectos de la radiación , Animales , Movimiento Celular/efectos de la radiación , Fibronectinas/genética , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Células 3T3 NIH , Factor de Crecimiento Transformador beta1/genética , Cicatrización de Heridas/genética
9.
Sci Rep ; 11(1): 1843, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469071

RESUMEN

At high latitudes, approximately 10% of people suffer from depression during the winter season, a phenomenon known as seasonal affective disorder (SAD). Shortened photoperiod and/or light intensity during winter season are risk factors for SAD, and bright light therapy is an effective treatment. Interestingly, reduced retinal photosensitivity along with the mood is observed in SAD patients in winter. However, the molecular basis underlying seasonal changes in retinal photosensitivity remains unclear, and pharmacological intervention is required. Here we show photoperiodic regulation of dopamine signaling and improvement of short day-attenuated photosensitivity by its pharmacological intervention in mice. Electroretinograms revealed dynamic seasonal changes in retinal photosensitivity. Transcriptome analysis identified short day-mediated suppression of the Th gene, which encodes tyrosine hydroxylase, a rate-limiting enzyme for dopamine biosynthesis. Furthermore, pharmacological intervention in dopamine signaling through activation of the cAMP signaling pathway rescued short day-attenuated photosensitivity, whereas dopamine receptor antagonists decreased photosensitivity under long-day conditions. Our results reveal molecular basis of seasonal changes in retinal photosensitivity in mammals. In addition, our findings provide important insights into the pathogenesis of SAD and offer potential therapeutic interventions.


Asunto(s)
Dopamina/metabolismo , Luz , Fotoperiodo , Retina/fisiología , Estaciones del Año , Transducción de Señal , Animales , Electrorretinografía , Regulación de la Expresión Génica/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Retina/diagnóstico por imagen , Retina/metabolismo , Retina/efectos de la radiación , Trastorno Afectivo Estacional/etiología , Trastorno Afectivo Estacional/genética , Trastorno Afectivo Estacional/fisiopatología , Temperatura
10.
Lasers Med Sci ; 36(6): 1201-1208, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33037560

RESUMEN

The aim of the present study was to investigate the effects of photobiomodulation (PBM) therapy on the expression of heat shock protein 70 (HSP70) and tissue repair in an experimental model of collagenase-induced Achilles tendinitis. Thirty Wistar rats (aged 12 weeks) were randomly distributed among control group (n = 8), tendinitis group (n = 11), and LED group (n = 11). Tendinitis was induced in the tendinitis and LED groups through a peritendinous injection of collagenase (100 µl). The LED group animals received the first irradiation 1 h after injury. A 630 ± 20 nm, 300-mW continuous wave light-emitting diode (LED), spot size 1 cm2, was placed in contact with the skin. One point over the tendon was irradiated for 30 s, delivering 9 J (9 J/cm2). LED irradiation was performed once daily for 7 days, with the total energy delivered being 63 J. The tendons were surgically removed and expression of the HSP70 protein was calculated using semi-quantitative analyses of immunohistochemistry (HSCORE). Number of fibroblasts and amount of collagen were measured using histological and histochemical analyses. An increase in the mean HSCORE for HSP70, in the number of fibroblasts, and in the amount of collagen were found in the LED group compared with those in the tendinitis and control group (P ≤ 0.05). PBM therapy increased the expression of the HSP70, number of fibroblasts, and amount of collagen in the acute Achilles tendinitis in rats.


Asunto(s)
Tendón Calcáneo/patología , Tendón Calcáneo/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Proteínas HSP70 de Choque Térmico/metabolismo , Terapia por Luz de Baja Intensidad , Tendinopatía/metabolismo , Tendinopatía/radioterapia , Animales , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Masculino , Ratas , Ratas Wistar , Tendinopatía/patología
11.
Lasers Med Sci ; 36(4): 791-802, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32638240

RESUMEN

Compensatory hypertrophy (CH) occurs due to excessive mechanical load on a muscle, promoting an increase in the size of muscle fibers. In clinical practice, situations such as partial nerve injuries, denervation, and muscle imbalance caused by trauma to muscles and nerves or diseases that promote the loss of nerve conduction can induce CH in muscle fibers. Photobiomodulation (PBM) has demonstrated beneficial effects on muscle tissue during CH. The aim of the present study was to evaluate the effect of PBM on the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) as well as type 2 metalloproteinases (MMP-2) during the process of CH due to excessive load on the plantaris muscle in rats. Forty-five Wistar rats weighing 250 g were divided into three groups: control group (n = 10), hypertrophy (H) group (n = 40), and H + PBM group (n = 40). CH was induced through the ablation of synergist muscles of the plantaris muscle. The tendons of the gastrocnemius and soleus muscles were isolated and sectioned to enable the partial removal of each of muscle. The preserved plantaris muscle below the removed muscles was submitted to excessive functional load. PBM was performed with low-level laser (AsGaAl, λ = 780 nm; 40 mW; energy density: 10 J/cm2; 10 s on each point, 8 points; 3.2 J). Animals from each group were euthanized after 7 and 14 days. The plantaris muscles were carefully removed and sent for analysis of the gene and protein expression of IL-6 and TNF-α using qPCR and ELISA, respectively. MMP-2 activity was analyzed using zymography. The results were submitted to statistical analysis (ANOVA + Tukey's test, p < 0.05). The protein expression analysis revealed an increase in IL-6 levels in the H + PBM group compared to the H group and a reduction in the H group compared to the control group. A reduction in TNF-α was found in the H and H + PBM groups compared to the control group at 7 days. The gene expression analysis revealed an increase in IL-6 in the H + PBM group compared to the H group at 14 days as well as an increase in TNF-α in the H + PBM group compared to the H group at 7 days. Increases in MMP-2 were found in the H and H + PBM groups compared to the control group at both 7 and 14 days. Based on findings in the present study, it is concluded that PBM was able to modulate pro-inflammatory cytokines that are essential for the compensatory hypertrophy process. However, it has not shown a modulation effect directly in MMP-2 activity during the same period evaluated.


Asunto(s)
Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Terapia por Luz de Baja Intensidad , Músculo Esquelético/patología , Músculo Esquelético/efectos de la radiación , Animales , Hipertrofia/metabolismo , Hipertrofia/patología , Hipertrofia/radioterapia , Interleucina-6/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Músculo Esquelético/metabolismo , Ratas , Ratas Wistar , Tendones/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
J Photochem Photobiol B ; 214: 112100, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33316625

RESUMEN

Photobiomodulation (PBM) is reported to impart a range of clinical benefits, from the healing of chronic wounds to athletic performance enhancement. The increasing prevalence of this therapy conflicts with the lack of understanding concerning specific cellular mechanisms induced by PBM. Herein, we systematically explore the literature base, specifically related to PBM (within the range 600-1070 nm) and its influence on dermal fibroblasts. The existing research in this field is appraised through five areas: cellular proliferation and viability; cellular migration; ATP production and mitochondrial membrane potential; cellular protein expression and synthesis; and gene expression. This review demonstrates that when fibroblasts are irradiated in vitro within a set range of intensities, they exhibit a multitude of positive effects related to the wound healing process. However, the development of an optimal in vitro framework is paramount to improve the reliability and validity of research in this field.


Asunto(s)
Fibroblastos/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Cicatrización de Heridas/efectos de la radiación , Línea Celular , Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Fibroblastos/citología , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Técnicas In Vitro , Proteínas/genética , Proteínas/metabolismo , Piel
13.
J Photochem Photobiol B ; 213: 112082, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33221627

RESUMEN

Multifunctional quantum dots (QDs) with photothermal therapy (PTT) potential loaded with an anticancer drug and labelled with a targeting agent can be highly effective nano-agents for tumour specific, image-guided PTT/chemo combination therapy of cancer. Ag-chalcogenides are promising QDs with good biocompatibility. Ag2S QDs are popular theranostic agents for imaging in near-infrared with PTT potential. However, theranostic applications of AgInS2 QDs emitting in the visible region and its PTT potential need to be explored. Here, we first present a simple synthesis of small, glutathione (GSH) coated AgInS2 QDs with peak emission at 634 nm, 21% quantum yield, and excellent long-term stability without an inorganic shell. Ag2S-GSH QDs emitting in the near-infrared region (peak emission = 822 nm) were also produced. Both QDs were tagged with folic acid (FA) and conjugated with methotrexate (MTX). About 3-fold higher internalization of FA-tagged QDs by folate-receptor (FR) overexpressing HeLa cells than HT29 and A549 cells was observed. Delivery of MTX by QD-FA-MTX reduced the IC50 of the drug from 10 µg/mL to 2.5-5 µg/mL. MTX release was triggered at acidic pH, which was further enhanced with local temperature increase created by laser irradiation. Irradiation of AgInS2-GSH QDs at 640 nm (300 mW) for 10 min, caused about 10 °C temperature increase but did not cause any thermal ablation of cells. On the other hand, Ag2S-GSH-FA based PTT effectively and selectively killed HeLa cells with 10 min 808 nm laser irradiation via mostly necrosis with an IC50 of 5 µg Ag/mL. Under the same conditions, IC50 of MTX was reduced to 0.21 µg/mL if Ag2S-GSH-FA.


Asunto(s)
Antineoplásicos/química , Receptor 1 de Folato/metabolismo , Ácido Fólico/metabolismo , Metotrexato/química , Puntos Cuánticos/química , Plata/química , Células A549 , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Terapia Combinada , Relación Dosis-Respuesta a Droga , Liberación de Fármacos , Receptor 1 de Folato/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Células HT29 , Células HeLa , Humanos , Hipertermia Inducida , Metotrexato/farmacología , Terapia Fototérmica , Exposición a la Radiación , Nanomedicina Teranóstica
14.
Bioelectromagnetics ; 41(7): 511-525, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32841426

RESUMEN

Power-frequency electromagnetic fields (PF-EMFs) at 50 Hz are potential health risk factors. This study aimed to explore the effects of long-term exposure to 50-Hz PF-EMFs on general physiological conditions in Sprague-Dawley (SD) rats. During a 24-week exposure period, the body mass and water and food intake of the animals were recorded regularly. The hematologic parameters were detected every 12 weeks, and blood chemistry analyses were performed every 4 weeks. After sacrifice, morphology was identified by hematoxylin-eosin, Masson, and immunohistochemical staining. Fibrosis-related gene expression and oxidative stress status were also detected. Compared with the control group, exposure to 30, 100, or 500 µT PF-EMF did not exert any effect on body mass, food intake, or water intake. Similarly, no significant differences were found in hematologic parameters or blood chemistry analyses among these groups. Furthermore, morphological assays showed that exposure to PF-EMFs had no influence on the structure of the liver or kidney. Finally, fibrosis-related gene expression and oxidative stress status were unaltered by PF-EMF exposure. The present study indicates that 24 weeks of exposure to PF-EMFs at intensities of 30, 100, or 500 µT might not affect hemograms, blood chemistry, fibrosis, or oxidative stress in the liver or kidney in SD rats. © 2020 Bioelectromagnetics Society.


Asunto(s)
Análisis Químico de la Sangre , Campos Electromagnéticos/efectos adversos , Riñón/patología , Riñón/efectos de la radiación , Cirrosis Hepática/etiología , Estrés Oxidativo/efectos de la radiación , Animales , Regulación de la Expresión Génica/efectos de la radiación , Pruebas Hematológicas , Riñón/metabolismo , Cirrosis Hepática/sangre , Cirrosis Hepática/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
15.
PLoS One ; 15(8): e0236689, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32785240

RESUMEN

OBJECTIVE: To compare the effects of photobiomodulation therapy (PBMT) and pharmacological therapy (glucocorticoids and non-steroidal anti-inflammatory drugs) applied alone and in different combinations in mdx mice. METHODS: The animals were randomized and divided into seven experimental groups treated with placebo, PBMT, prednisone, non-steroidal anti-inflammatory drug (NSAIDs), PBMT plus prednisone and PBMT plus NSAID. Wild type animals were used as control. All treatments were performed during 14 consecutive weeks. Muscular morphology, protein expression of dystrophin and functional performance were assessed at the end of the last treatment. RESULTS: Both treatments with prednisone and PBMT applied alone or combined, were effective in preserving muscular morphology. In addition, the treatments with PBMT (p = 0.0005), PBMT plus prednisone (p = 0.0048) and PBMT plus NSAID (p = 0.0021) increased dystrophin gene expression compared to placebo-control group. However, in the functional performance the PBMT presented better results compared to glucocorticoids (p<0.0001). In contrast, the use of NSAIDs did not appear to add benefits to skeletal muscle tissue in mdx mice. CONCLUSION: We believe that the promising and optimistic results about the PBMT in skeletal muscle of mdx mice may in the future contribute to this therapy to be considered a safe alternative for patients with Duchenne Muscular Dystrophy (DMD) in a washout period (between treatment periods with glucocorticoids), allowing them to remain receiving effective and safe treatment in this period, avoiding at this way periods without administration of any treatment.


Asunto(s)
Distrofina/genética , Terapia por Luz de Baja Intensidad , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/efectos de la radiación , Distrofia Muscular de Duchenne/terapia , Animales , Antiinflamatorios no Esteroideos/farmacología , Terapia Combinada , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Glucocorticoides/farmacología , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Prednisona/farmacología
16.
Mol Biol Rep ; 47(8): 5763-5772, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32666439

RESUMEN

Adverse environmental conditions such as UV radiation induce oxidative and aging events leading to severe damage to human skin cells. Natural products such as plant extracts have been implicated in the skin anti-oxidant and anti-aging cellular protection against environmental stress. Moreover, environmental factors have been shown to impact chromatin structure leading to altered gene expression programs with profound changes in cellular functions. In this study, we assessed the in vitro effect of a leaf extract from Vitis vinifera L. on UV-stressed primary human dermal fibroblasts, focusing on gene expression and DNA methylation as an epigenetic factor. Expression analysis of two genes known to be implicated in skin anti-aging, SIRT1and HSP4, demonstrated significant induction in the presence of the extract under normal or UVA conditions. In addition, DNA methylation profiling of SIRT1 and HSP47 promoters showed that the V. vinifera L. extract induced changes in the DNA methylation pattern of both genes that may be associated with SIRT1 and HSP47 gene expression. Our study shows for the first time transcriptional and DNA methylation alterations on human skin fibroblasts exposed to UV stress and suggest a protective effect of a V. vinifera extract possibly through transcriptional regulation of critical skin anti-aging genes.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Piel/efectos de la radiación , Vitis/química , Antioxidantes/farmacología , Células Cultivadas , Metilación de ADN , Epigénesis Genética , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Piel/citología , Piel/metabolismo , Rayos Ultravioleta
17.
Sci Rep ; 10(1): 9655, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541845

RESUMEN

Intervertebral disc (IVD) degeneration with chronic low back pain is associated with neo-vascularisation into the deeper IVD regions. During this process, endothelial cells (ECs), which are primarily responsible for angiogenesis, interact with the adjacent annulus fibrosus (AF) cells, which are the first line of defence against the invasion of vascular structures into deeper IVD regions. However, the accumulation of inflammatory and catabolic enzymes that results from this interaction promotes matrix degradation and an inflammatory response. Thus, regulating the production of these mediators and catabolic enzymes could ameliorate IVD degeneration. Photobiomodulation (PBM) therapy is a non-invasive stimulation known to have biologically beneficial effects on wound healing, tissue repair, and inflammation. Here, we examined the effects of PBM, administered at various wavelengths (645, 525, and 465 nm) and doses (16, 32, and 64 J/cm2), on EC-stimulated human AF cells. Our results show that PBM selectively inhibited the EC-mediated production of inflammatory mediators, catabolic enzymes, and neurotrophins by human AF cells in a dose- and wavelength-dependent manner. These results suggest that PBM could be a superior and advanced treatment strategy for IVD degeneration.


Asunto(s)
Anillo Fibroso/citología , Medios de Cultivo Condicionados/química , Células Endoteliales/citología , Matriz Extracelular/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Terapia por Luz de Baja Intensidad/métodos , Neovascularización Patológica/metabolismo , Adulto , Anillo Fibroso/metabolismo , Anillo Fibroso/efectos de la radiación , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Células Endoteliales/química , Matriz Extracelular/genética , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/radioterapia , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Persona de Mediana Edad , Modelos Biológicos , Neovascularización Patológica/radioterapia
18.
Lasers Med Sci ; 35(8): 1841-1848, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32483748

RESUMEN

Photobiomodulation (PBM) has been used to modulate the inflammatory and immune responses, pain relief, and to promote wound healing. PBM is widely used in dental practice and its cellular effects should be investigated. The aim was to evaluate if PBM changes proteins cell death-related, such as caspase-6 and Bcl-2, in periodontal ligament cells. Eighteen mice were divided in three groups (n = 6), i.e., (I) control, (II) 3 J cm-2, and (III) 30 J cm-2. Low power infrared laser (830 nm) parameters were power at 10 mW, energy densities at 3 and 30 J cm-2 in continuous emission mode, exposure time of 15 and 150 s, respectively for 4 days in a row. Twenty-four hours after last irradiation, the animals were euthanized, and their jaws were fixed and decalcified. Caspase-6 and Bcl-2 were analyzed by real-time polymerase chain reaction and immunocytochemical techniques, and DNA fragmentation was evaluated by TUNEL. Statistical differences were not significant to caspase-6 mRNA relative levels in tissues from jaws at both energy densities, but a significant increase of Bcl-2 mRNA relative levels was obtained at 30 J cm-2 group. Also, 30 J cm-2 group showed caspase-6 positive-labeled cells decreased and Bcl-2 positive-labeled cells significantly increased. TUNEL-labeled cells demonstrated DNA fragmentation decreased at 30 J cm-2. PBM can alter Bcl-2 mRNA relative level and both caspase-6 and Bcl-2 protein, modulating cell survival, as well as to reduce DNA fragmentation. More studies must be performed in order to obtain conclusive results about photobiostimulation effects using infrared low-level laser in apoptosis process as to achieve the optimum dosage.


Asunto(s)
Apoptosis/efectos de la radiación , Terapia por Luz de Baja Intensidad , Ligamento Periodontal/citología , Animales , Supervivencia Celular/efectos de la radiación , Fragmentación del ADN/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/genética , Cicatrización de Heridas/efectos de la radiación
19.
Sci Rep ; 10(1): 7982, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409683

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Among the most common manifestations of PD are sleep problems, which are coupled with the adverse effects of dopaminergic therapies (DT). A non-pharmacological solution for these sleep problems has been sought to avoid additional pharmacological intervention. Here, we show that bright light therapy (BLT) is effective for improving sleep in Japanese PD patients receiving DT. Furthermore, experimental evaluation of peripheral clock gene expression rhythms revealed that most PD patients receiving DT who experienced improved sleep following BLT showed a circadian phase shift, indicating the existence of a correlation between circadian modulation and sleep improvement. Conversely, this result indicates that sleep problems in PD patients receiving DT may arise at least in part as a result of circadian dysfunction. Indeed, we found that chronic dopaminergic stimulation induced a rapid attenuation of autonomous oscillations of clock gene expression in ex vivo cultured mouse suprachiasmatic nucleus (SCN) at the single neuron level. In conclusion, BLT is a promising medical treatment for improving sleep in PD patients receiving DT. This BLT-induced improvement may be due to the restoration of circadian function.


Asunto(s)
Ritmo Circadiano , Luz , Enfermedad de Parkinson/fisiopatología , Sueño , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Fototerapia , Sueño/genética , Sueño/efectos de la radiación
20.
Mol Cell Endocrinol ; 512: 110854, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32422399

RESUMEN

Many seasonally-breeding species use daylength to time reproduction. Light-induced release of progonadal hormones involves a complex cascade of responses both inside and outside the brain. In this study, we used induction of early growth response 1 (Egr-1), the protein product of an immediate early gene, to evaluate the time course of such responses in male white-throated sparrows (Zonotrichia albicollis) exposed to a single long day. Induction of Egr-1 in the pars tuberalis began ∼11 h after dawn. This response was followed ∼6 h later by dramatic induction in the tuberal hypothalamus, including in the ependymal cells lining the third ventricle. At approximately the same time, Egr-1 was induced in dopaminergic and vasoactive intestinal peptide neurons in the tuberal hypothalamus and in dopaminergic neurons of the premammillary nucleus. We noted no induction in gonadotropin-releasing hormone (GnRH) neurons until 2 h after dawn the following morning. Overall, our results indicate that Egr-1 responses in GnRH neurons occur rather late during photostimulation, compared with responses in other cell populations, and that such induction may reflect new synthesis related to GnRH depletion rather than stimulation by light cues.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Hipotálamo/metabolismo , Fotoperiodo , Conducta Sexual Animal , Gorriones/metabolismo , Animales , Regulación de la Expresión Génica/efectos de la radiación , Hipotálamo/efectos de la radiación , Luz , Masculino , Estaciones del Año , Conducta Sexual Animal/efectos de la radiación , Pájaros Cantores/metabolismo , Gorriones/fisiología , Factores de Tiempo , Distribución Tisular/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA