Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.088
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 29-39, 2024 Jan 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38615163

RESUMEN

OBJECTIVES: Trigeminal neuralgia (TN) is a common neuropathic pain. Voltage-gated potassium channel (Kv) has been confirmed to be involved in the occurrence and development of TN, but the specific mechanism is still unclear. MicroRNA may be involved in neuropathic pain by regulating the expression of Kv channels and neuronal excitability in trigeminal ganglion (TG). This study aims to explore the relationship between Kv1.1 and miR-21-5p in TG with a TN model, evaluate whether miR-21-5p has a regulatory effect on Kv1.1, and to provide a new target and experimental basis for the treatment of TN. METHODS: A total of 48 SD rats were randomly divided into 6 groups: 1) a sham group (n=12), the rats were only sutured at the surgical incision without nerve ligation; 2) a sham+agomir NC group (n=6), the sham rats were microinjected with agomir NC through stereotactic brain injection in the surgical side of TG; 3) a sham+miR-21-5p agomir group (n=6), the sham rats were microinjected with miR-21-5p agomir via stereotactic brain injection in the surgical side of TG; 4) a TN group (n=12), a TN rat model was constructed using the chronic constriction injury of the distal infraorbital nerve (dIoN-CCI) method with chromium intestinal thread; 5) a TN+antagonist NC group (n=6), TN rats were microinjected with antagonist NC through stereotactic brain injection method in the surgical side of TG; 6) a TN+miR-21-5p antagonist group (n=6), TN rats were microinjected with miR-21-5p antagonist through stereotactic brain injection in the surgical side of TG. The change of mechanical pain threshold in rats of each group after surgery was detected. The expressions of Kv1.1 and miR-21-5p in the operative TG of rats were detected by Western blotting and real-time reverse transcription polymerase chain reaction. Dual luciferase reporter genes were used to determine whether there was a target relationship between Kv1.1 and miR-21-5p and whether miR-21-5p directly affected the 3'-UTR terminal of KCNA1. The effect of brain stereotaxic injection was evaluated by immunofluorescence assay, and then the analogue of miR-21-5p (agomir) and agomir NC were injected into the TG of rats in the sham group by brain stereotaxic apparatus to overexpress miR-21-5p. The miR-21-5p inhibitor (antagomir) and antagomir NC were injected into TG of rats in the TN group to inhibit the expression of miR-21-5p. The behavioral changes of rats before and after administration were observed, and the expression changes of miR-21-5p and Kv1.1 in TG of rats after intervention were detected. RESULTS: Compared with the baseline pain threshold, the facial mechanical pain threshold of rats in the TN group was significantly decreased from the 5th to 15th day after the surgery (P<0.05), and the facial mechanical pain threshold of rats in the sham group was stable at the normal level, which proved that the dIoN-CCI model was successfully constructed. Compared with the sham group, the expression of Kv1.1 mRNA and protein in TG of the TN group was down-regulated (both P<0.05), and the expression of miR-21-5p was up-regulated (P<0.05). The results of dual luciferase report showed that the luciferase activity of rno-miR-21-5p mimics and KCNA1 WT transfected with 6 nmol/L or 20 nmol/L were significantly decreased compared with those transfected with mimic NC and wild-type KCNA1 WT, respectively (P<0.001). Compared with low dose rno-miR-21-5p mimics (6 nmol/L) co-transfection group, the relative activity of luciferase in the high dose rno-miR-21-5p mimics (20 nmol/L) cotransfection group was significantly decreased (P<0.001). The results of immunofluorescence showed that drugs were accurately injected into TG through stereotaxic brain. After the expression of miR-21-5p in the TN group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were increased. After overexpression of miR-21-5p in the sham group, the mechanical pain threshold and the expression of Kv1.1 mRNA and protein in TG were decreased. CONCLUSIONS: Both Kv1.1 and miR-21-5p are involved in TN and miR-21-5p can regulate Kv1.1 expression by binding to the 3'-UTR of KCNA1.


Asunto(s)
Canal de Potasio Kv.1.1 , MicroARNs , Neuralgia , Neuralgia del Trigémino , Animales , Ratas , Antagomirs , Regulación hacia Abajo , Luciferasas , MicroARNs/genética , Neuralgia/genética , Ratas Sprague-Dawley , ARN Mensajero , Neuralgia del Trigémino/genética , Canal de Potasio Kv.1.1/genética
2.
J Agric Food Chem ; 72(17): 9717-9734, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38624258

RESUMEN

Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Regulación hacia Abajo , Extractos Vegetales , Plantas Medicinales , Receptor ErbB-2 , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Plantas Medicinales/química , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Terminalia/química , Mucuna/química
3.
Aging (Albany NY) ; 16(7): 5916-5928, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38536006

RESUMEN

BACKGROUND: Fluorouracil (5-FU) might produce serious cardiac toxic reactions. miRNA-199a-5p is a miRNA primarily expressed in myocardial cells and has a protective effect on vascular endothelium. Under hypoxia stress, the expression level of miRNA-199a-5p was significantly downregulated and is closely related to cardiovascular events such as coronary heart disease, heart failure, and hypertension. We explored whether 5-FU activates the endoplasmic reticulum stress ATF6 pathway by regulating the expression of miRNA-199a-5p in cardiac toxicity. METHODS: This project established a model of primary cardiomyocytes derived from neonatal rats and treated them with 5-FU in vitro. The expression of miRNA-199a-5p and its regulation were explored in vitro and in vivo. RESULTS: 5-FU decreases the expression of miRNA-199a-5p in cardiomyocytes, activates the endoplasmic reticulum stress ATF6 pathway, and increases the expression of GRP78 and ATF6, affecting the function of cardiomyocytes, and induces cardiac toxicity. The rescue assay further confirmed that miRNA-199a-5p supplementation can reduce the cardiotoxicity caused by 5-FU, and its protective effect on cardiomyocytes depends on the downregulation of the endoplasmic reticulum ATF6 signaling pathway. CONCLUSIONS: 5-FU can down-regulate expression of miRNA-199a-5p, then activate the endoplasmic reticulum stress ATF6 pathway, increase the expression of GRP78 and ATF6, affect the function of cardiomyocytes, and induce cardiac toxicity.


Asunto(s)
Factor de Transcripción Activador 6 , Cardiotoxicidad , Regulación hacia Abajo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Fluorouracilo , MicroARNs , Miocitos Cardíacos , Transducción de Señal , Animales , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , MicroARNs/metabolismo , MicroARNs/genética , Ratas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Fluorouracilo/toxicidad , Fluorouracilo/efectos adversos , Cardiotoxicidad/metabolismo , Cardiotoxicidad/genética , Cardiotoxicidad/etiología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Cultivadas , Ratas Sprague-Dawley , Masculino
4.
Sci Rep ; 14(1): 4287, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383655

RESUMEN

The SARS-CoV-2 virus, belonging to the Coronavirus genus, which poses a threat to human health worldwide. Current therapies focus on inhibiting viral replication or using anti-inflammatory/immunomodulatory compounds to enhance host immunity. This makes the active ingredients of traditional Chinese medicine compounds ideal therapies due to their proven safety and minimal toxicity. Previous research suggests that andrographolide and baicalin inhibit coronaviruses; however, their synergistic effects remain unclear. Here, we studied the antiviral mechanisms of their synergistic use in vitro and in vivo. We selected the SARS-CoV-2 pseudovirus for viral studies and found that synergistic andrographolide and baicalein significantly reduced angiotensin-converting enzyme 2 protein level and viral entry of SARS-CoV-2 into cells compared to singal compound individually and inhibited the major protease activity of SARS-CoV-2. This mechanism is essential to reduce the pathogenesis of SARS-CoV-2. In addition, their synergistic use in vivo also inhibited the elevation of pro-inflammatory cytokines, including IL-6 and TNF-α-the primary cytokines in the development of acute respiratory distress syndrome (the main cause of COVID-19 deaths). In conclusion, this study shows that synergistic andrographolide and baicalein treatment acts as potent inhibitors of coronavirus mechanisms in vitro and in vivo-and is more effective together than in isolation.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Diterpenos , Flavonoides , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Regulación hacia Abajo , SARS-CoV-2/fisiología , Citocinas/metabolismo , Antivirales/farmacología , Antivirales/metabolismo
5.
Nanotechnology ; 35(19)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38320329

RESUMEN

The phytochemicals found inCaralluma pauciflorawere studied for their ability to reduce silver nitrate in order to synthesise silver nanoparticles (AgNPs) and characterise their size and crystal structure. Thunbergol, 1,1,6-trimethyl-3-methylene-2-(3,6,9,13-tetram, Methyl nonadecanoate, Methyl cis-13,16-Docosadienate, and (1R,4aR,5S)-5-[(E)-5-Hydroxy-3-methylpent were the major compounds identified in the methanol extract by gas chromatography-mass spectrum analysis. UV/Vis spectra, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscope with Energy Dispersive Xâray Analysis (EDAX), Dynamic Light Scattering (DLS) particle size analyser and atomic force microscope (AfM) were used to characterise theCaralluma paucifloraplant extract-based AgNPs. The crystal structure and estimated size of the AgNPs ranged from 20.2 to 43 nm, according to the characterization data. The anti-cancer activity of silver nanoparticles (AgNPs) synthesised fromCaralluma paucifloraextract. The AgNPs inhibited more than 60% of the AGS cell lines and had an IC50 value of 10.9640.318 g, according to the findings. The cells were further examined using fluorescence microscopy, which revealed that the AgNPs triggered apoptosis in the cells. Furthermore, the researchers looked at the levels of reactive oxygen species (ROS) in cells treated with AgNPs and discovered that the existence of ROS was indicated by green fluorescence. Finally, apoptotic gene mRNA expression analysis revealed that three target proteins (AKT, mTOR, and pI3K) were downregulated following AgNP therapy. Overall, the findings imply that AgNPs synthesised from Caralluma pauciflora extract could be used to treat human gastric cancer.


Asunto(s)
Apocynaceae , Nanopartículas del Metal , Neoplasias Gástricas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apocynaceae/metabolismo , Nanopartículas del Metal/química , Neoplasias Gástricas/tratamiento farmacológico , Regulación hacia Abajo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Plata/farmacología , Plata/metabolismo , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Antibacterianos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
6.
Nano Lett ; 24(9): 2894-2903, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407042

RESUMEN

Harnessing the potential of tumor-associated macrophages (TAMs) to engulf tumor cells offers promising avenues for cancer therapy. Targeting phagocytosis checkpoints, particularly the CD47-signal regulatory protein α (SIRPα) axis, is crucial for modulating TAM activity. However, single checkpoint inhibition has shown a limited efficacy. In this study, we demonstrate that ferrimagnetic vortex-domain iron oxide (FVIO) nanoring-mediated magnetic hyperthermia effectively suppresses the expression of CD47 protein on Hepa1-6 tumor cells and SIRPα receptor on macrophages, which disrupts CD47-SIRPα interaction. FVIO-mediated magnetic hyperthermia also induces immunogenic cell death and polarizes TAMs toward M1 phenotype. These changes collectively bolster the phagocytic ability of macrophages to eliminate tumor cells. Furthermore, FVIO-mediated magnetic hyperthermia concurrently escalates cytotoxic T lymphocyte levels and diminishes regulatory T cell levels. Our findings reveal that magnetic hyperthermia offers a novel approach for dual down-regulation of CD47 and SIRPα, reshaping the tumor microenvironment to stimulate immune responses, culminating in significant antitumor activity.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Antígeno CD47 , Regulación hacia Abajo , Inmunoterapia , Fagocitosis , Fenómenos Magnéticos , Neoplasias/patología , Microambiente Tumoral
7.
Sci Total Environ ; 922: 171335, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38423332

RESUMEN

Given the widespread presence of Pseudomonas aeruginosa in water and its threat to human health, the metabolic changes in Pseudomonas aeruginosa when exposed to polystyrene microplastics (PS-MPs) exposure were studied, focusing on molecular level. Through non-targeted metabolomics, a total of 64 differential metabolites were screened out under positive ion mode and 44 under negative ion mode. The content of bacterial metabolites changed significantly, primarily involving lipids, nucleotides, amino acids, and organic acids. Heightened intracellular oxidative damage led to a decrease in lipid molecules and nucleotide-related metabolites. The down-regulation of amino acid metabolites, such as L-Glutamic and L-Proline, highlighted disruptions in cellular energy metabolism and the impaired ability to synthesize proteins as a defense against oxidation. The impact of PS-MPs on organic acid metabolism was evident in the inhibition of pyruvate and citrate, thereby disrupting the cells' normal participation in energy cycles. The integration of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that PS-MPs mainly caused changes in metabolic pathways, including ABC transporters, Aminoacyl-tRNA biosynthesis, Purine metabolism, Glycerophospholipid metabolism and TCA cycle in Pseudomonas aeruginosa. Most of the differential metabolites enriched in these pathways were down-regulated, demonstrating that PS-MPs hindered the expression of metabolic pathways, ultimately impairing the ability of cells to synthesize proteins, DNA, and RNA. This disruption affected cell proliferation and information transduction, thus hampering energy circulation and inhibiting cell growth. Findings of this study supplemented the toxic effects of microplastics and the defense mechanisms of microorganisms, in turn safeguarding drinking water safety and human health.


Asunto(s)
Pseudomonas aeruginosa , Contaminantes Químicos del Agua , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Poliestirenos/toxicidad , Regulación hacia Abajo , Aminoácidos
8.
Mol Biol Rep ; 51(1): 61, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170326

RESUMEN

BACKGROUND: Breast adenocarcinoma cells (MCF-7) are characterized by the overexpression of apoptotic marker genes and proliferative cell nuclear antigen (PCNA), which promote cancer cell proliferation. Thymol, derived from Nigella sativa (NS), has been investigated for its potential anti-proliferative and anticancer properties, especially its ability to suppress Cyclin D1 and PCNA expression, which are crucial in the proliferation of cancer cells. METHODS: The cytotoxicity of thymol on MCF-7 cells was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release methods. Thymol was tested at increasing concentrations (0-1000 µM) to evaluate its impact on MCF-7 cell growth. Additionally, Cyclin D1 and PCNA gene expression in thymol-treated and vehicle control groups of MCF-7 were quantified using real-time Polymerase Chain Reaction (RT-qPCR). Protein-ligand interactions were also investigated using the CB-Dock2 server. RESULTS: Thymol significantly inhibited MCF-7 cell growth, with a 50% inhibition observed at 200 µM. The gene expression of Cyclin D1 and PCNA was down-regulated in the thymol-treated group relative to the vehicle control. The experimental results were verified through protein-ligand interaction investigations. CONCLUSIONS: Thymol, extracted from NS, demonstrated specific cytotoxic effects on MCF-7 cells by suppressing the expression of Cyclin D1 and PCNA, suggesting its potential as an effective drug for MCF-7. However, additional in vivo research is required to ascertain its efficacy and safety in medical applications.


Asunto(s)
Neoplasias de la Mama , Nigella sativa , Humanos , Femenino , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Células MCF-7 , Neoplasias de la Mama/genética , Timol/farmacología , Timol/uso terapéutico , Nigella sativa/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Antígenos Nucleares/uso terapéutico , Ciclina D1/genética , Ciclina D1/metabolismo , Regulación hacia Abajo , Ligandos , Proliferación Celular
9.
Int J Psychophysiol ; 197: 112301, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218562

RESUMEN

Despite extensive clinical research on neurofeedback (NF) in attention-deficit/hyperactivity disorder (ADHD), few studies targeted the optimization of attention performance in healthy children. As a crucial component of attention networks, the executive control network, involved in resolving response conflicts and allocating cognitive resources, is closely linked to theta activity. Here, we aimed to answer whether theta down-regulating NF can enhance healthy children's attention performance, especially the executive control network. Sixty children aged 6-12 years were randomly assigned to the NF and waitlist control groups. The NF group received theta down-regulation NF training for five days (a total of 100 mins), and the attention performance of both groups was measured by the attention network test (ANT) in the pre, post-NF, and 7-day follow-up. The electroencephalographic (EEG) results demonstrated a significant decrease in resting-state theta amplitude within sessions. For the behavioral results, the NF group exhibited significant improvements in overall attention performance and the efficiency of the executive control network relative to the control group in the post-NF and follow-up assessment, whereas the alerting and orienting networks remained unchanged. These findings proved the feasibility of theta down-regulating NF and its positive effect on attention in the healthy children population. In particular, the facilitation of the efficiency of the executive control network and the unaltered performance of the other two attention networks in the NF group may support the causality between theta rhythm and the executive control network.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Neurorretroalimentación , Niño , Humanos , Neurorretroalimentación/métodos , Función Ejecutiva , Regulación hacia Abajo , Electroencefalografía , Ritmo Teta/fisiología
10.
Neurobiol Aging ; 135: 60-69, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185053

RESUMEN

Alzheimer's disease (AD) is more prevalent in women than men, supposing due to the decline of estrogens in menopause, accompanied by increased gonadotropins such as luteinizing hormone (LH). We and others found that the transcription factor early growth response-1 (EGR1) regulates cholinergic function including the expression of acetylcholinesterase (AChE) and plays a significant role in cognitive decline of AD. Here we investigated in APP/PS1 mice by ovariectomy (OVX) and estradiol (E2) supplementation or inhibition of LH the effect on hippocampus-related cognition and related molecular changes. We found that OVX-associated cognitive impairment was accompanied by increased dorsal hippocampal EGR1 expression, which was rescued by downregulating peripheral LH rather than by supplementing E2. We also found in postmortem AD brains a higher expression of pituitary LH-mRNA and higher EGR1 expression in the posterior hippocampus. Both, in human and mice, there was a significant positive correlation between respectively posterior/dorsal hippocampal EGR1 and peripheral LH expression. We conclude that peripheral increased LH and increased posterior hippocampal EGR1 plays a significant role in AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Femenino , Animales , Humanos , Hormona Luteinizante/metabolismo , Regulación hacia Abajo , Acetilcolinesterasa , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Enfermedad de Alzheimer/metabolismo , Cognición , Ovariectomía , Ratones Transgénicos , Modelos Animales de Enfermedad , Hipocampo/metabolismo
11.
Cancer Biol Ther ; 25(1): 2284849, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38051132

RESUMEN

OBJECTIVE: This study aims to investigate the effect of red ginseng polysaccharide (RGP) on gastric cancer (GC) development and explore its mechanism. METHODS: GC cell lines AGS were treated with varying concentrations of RGP (50, 100, and 200 µg/mL). AGS cells treated with 200 µg/mL RGP were transfected with aquaporin 3 (AQP3) overexpression vector. Cell proliferation, viability, and apoptosis were evaluated by MTT, colony formation assay, and flow cytometry, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of AQP3. The levels of Fe2+, malondialdehyde, and lactate dehydrogenase were measured using their respective detection kits, and the reactive oxygen species levels was determined by probe 2',7'-dichlorodihydrofluorescein diacetate. The expression of ferroptosis-related protein and PI3K/Akt pathway-related protein were assessed by western blot. In vivo experiments in nude mice were performed and the mice were divided into four groups (n = 5/group) which gavage administrated with 150 mg/kg normal saline, and 75, 150, 300 mg/kg RGP, respectively. Their tumor weight and volume were recorded. RESULTS: RGP treatment effectively inhibited the proliferation and viability of AGS cells in a dosage-dependent manner and induced apoptosis. It induced ferroptosis in AGS cells, as well as inhibiting the expression of PI3K/Akt-related proteins. AQP3 overexpression could reversed the effect of RGP treatment on ferroptosis. Confirmatory in vivo experiments showed that RGP could reduce the growth of implanted tumor, with increased RGP concentration resulting in greater tumor inhibitory effects. CONCLUSION: RGP might have therapeutic potential against GC, effectively inhibiting the proliferation and viability of AGS cells.


Asunto(s)
Ferroptosis , Panax , Neoplasias Gástricas , Animales , Ratones , Neoplasias Gástricas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Regulación hacia Abajo , Acuaporina 3/genética , Acuaporina 3/metabolismo , Ratones Desnudos , Proliferación Celular , Panax/metabolismo , Línea Celular Tumoral
12.
J Ethnopharmacol ; 319(Pt 3): 117225, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37797877

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cervical cancer is one of the most common malignancies in women that continues to be a public health problem worldwide. Human papillomavirus (HPV) infection is closely related as the causative agent of almost all cases of cervical cancer. Currently, there is no effective treatment for the persistence of HPV. Although vaccines have shown promising results in recent years, they are still a costly strategy for developing countries and have no therapeutic effect on existing infections, which is why the need arises to search for new strategies that can be used in treatment, suppressing oncogenic HPV and disease progression. Extracts of Schisandra Chinensis and Pueraria lobata have been used in traditional medicine, and it has been shown in recent years that some of their bioactive compounds have pharmacological, antioxidant, antitumor, apoptotic, and proliferation effects in HPV-positive cells. However, its mechanism of action has yet to be fully explored. AIM OF THE STUDY: The following study aimed to determine the chemical composition, antioxidant activity, and potential antiproliferative and viral oncogene effects of natural extracts of S. chinensis and P. lobata on HPV-18 positive cervical cancer cells. MATERIALS AND METHODS: The HPV-18-positive HeLa cells were treated for 24 and 48 h with the ethanolic extracts of S chinensis and P. lobata. Subsequently, cell viability was evaluated using the resazurin method, the effect on the cell cycle of the extracts (1.0, 10, and 100 µg/mL) was measured by flow cytometry, the gene of expression of the E6/E7, P53, BCL-2, and E2F-1 were determined by RT-PCR and the protein expression of p53, Ki-67, x|and Bcl-2 by immunohistochemistry. Additionally, the chemical characterization of the two extracts was carried out using LC-MS, and the total phenolics content (TPC), Total flavonoid content (TFC), and DPPH radical scavenging capacity were determined. Data were analyzed using the Mann-Whitney and Kruskal Wallis U test with GraphPad Prism 6 software. RESULTS: The natural extracts of Schisandra chinensis and Pueraria lobata induced down-regulation of E6 HPV oncogene (p<0.05) and a strong up-regulation of P53 (p<0.05), E2F-1 (p<0.05), and Bcl-2 (p<0.05) gene expression. Simultaneously, the natural extracts tend to increase the p53 protein levels and arrest the cell cycle of HeLa in the G1/S phase (p<0.05). Investigated extracts were characterized by the occurrence of bioactive lignans and isoflavones in S. chinensis and P. lobata, respectively. CONCLUSION: The extracts of S. chinensis and P. lobata within their chemical characterization mainly present lignan and isoflavone-type compounds, which are probably responsible for inhibiting the expression of the HPV E6 oncogene and inducing an increase in the expression of p53, Bcl -2 and E2F-1 producing cell cycle detection in S phase in HeLa cells. Therefore, these extracts are good candidates to continue studying their antiviral and antiproliferative potential in cells transformed by HPV.


Asunto(s)
Infecciones por Papillomavirus , Pueraria , Schisandra , Neoplasias del Cuello Uterino , Humanos , Femenino , Células HeLa , Virus del Papiloma Humano , Proteína p53 Supresora de Tumor/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Regulación hacia Abajo , Infecciones por Papillomavirus/tratamiento farmacológico , Oncogenes , Proteínas Proto-Oncogénicas c-bcl-2 , Antioxidantes
13.
Cell Death Dis ; 14(12): 806, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065955

RESUMEN

Radiotherapy is an important strategy in the comprehensive treatment of esophageal squamous cell carcinoma (ESCC). However, effectiveness of radiotherapy is still restricted by radioresistance. Herein, we aimed to understand the mechanisms underlying ESCC radioresistance, for which we looked into the potential role of YY1. YY1 was upregulated in radioresistant tissues and correlated with poor prognosis of patients with ESCC. YY1 depletion enhanced the radiosensitivity of ESCC in vitro and in vivo. Multi-group sequencing showed that downregulation of YY1 inhibited the transcriptional activity of Kinesin Family Member 3B (KIF3B), which further activated the Hippo signaling pathway by interacting with Integrin-beta1 (ITGB1). Once the Hippo pathway was activated, its main effector, Yes-associated protein 1 (YAP1), was phosphorylated in the cytoplasm and its expression reduced in the nucleus, thus enhancing the radiosensitivity by regulating its targeted genes. Our study provides new insights into the mechanisms underlying ESCC radioresistance and highlights the potential role of YY1 as a therapeutic target for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Tolerancia a Radiación , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/radioterapia , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Cinesinas/genética , Cinesinas/metabolismo , Tolerancia a Radiación/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
14.
Molecules ; 28(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764423

RESUMEN

(1) Background: Solanum nigrum L. is a plant of the genus Solanum in the family Solanaceae and is commonly used to treat tumors. Solasonin (SS) is a steroidal alkaloid extracted from Solanum nigrum L. that has anti-colorectal cancer (CRC) activity. (2) Methods: Column chromatography, semi-preparative HPLC and cellular activity screening were used to isolate potential anti-CRC active compounds in Solanum nigrum L., and structure identification using 1H-NMR and 13C-NMR techniques. Expression levels of HDAC in CRC were mined in the UALCAN database. The in vitro effects of SS on SW620 cell line and its mechanism were examined via Western blot, EdU staining, flow cytometry and immunofluorescence. CRC xenograft model and IHC staining were mainly used to evaluate the role of SS in vivo. (3) Results: The results showed that SS was the most potent anti-CRC component in Solanum nigrum L., which induced apoptosis and cell cycle arrest in the SW620 cell line. HDAC was highly expressed in CRC. The treatment of SW620 cell line with SS resulted in a significant downregulation of HDAC, an increase in the level of P53 acetylation and a subsequent increase in the level of P21. The in vivo validation results showed that SS could effectively inhibit CRC growth, which was associated with the downregulation of HDAC. (4) Conclusions: SS treatment for CRC mainly works through the induction of apoptosis and cycle arrest, and its mechanism of action is mainly related to HDAC-induced P53 acetylation, and the HDAC/P53 signaling pathway may be a potential pathway for the treatment of CRC.


Asunto(s)
Neoplasias , Solanum nigrum , Solanum , Humanos , Acetilación , Proteína p53 Supresora de Tumor/genética , Regulación hacia Abajo
15.
J Transl Med ; 21(1): 597, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670360

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is a major subtype of breast cancer, with limited therapeutic drugs in clinical. Epidermal growth factor receptor (EGFR) is reported to be overexpressed in various TNBC cells. Cantharidin is an effective ingredient in many clinical traditional Chinese medicine preparations, such as Delisheng injection, Aidi injection, Disodium cantharidinate and vitamin B6 injection. Previous studies showed that cantharidin had satisfactory pharmacological activity on a variety of tumors. In this study, we aimed to study the therapeutic potential of cantharidin for TNBC treatment by targeting EGFR, and expound its novel regulator miR-607. METHODS: The effect of cantharidin on breast cancer in vivo was evaluated by 4T1 mice model. Then the effects of cantharidin on TNBC cells was assessed by the MTT, colony formation, and AnnexinV-PE/7AAD staining. Cantharidin acts on EGFR were verified using the cell membrane chromatography, RT-PCR, Western blotting, MTT, and so on. Mechanistic studies were explored by dual-luciferase report assay, RT-PCR, western blotting, and immunofluorescence staining assay. RESULTS: Cantharidin inhibited TNBC cell growth and induce apoptosis by targeting EGFR. miR-607 was a novel EGFR regulator and exhibited suppressive functions on TNBC cell behaviors. Mechanistic study showed that cantharidin blocked the downstream PI3K/AKT/mTOR and ERK/MAPK signaling pathway. CONCLUSION: Our results revealed that cantharidin may be served as a potential candidate for TNBC treatment by miR-607-mediated downregulation of EGFR.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Cantaridina , Regulación hacia Abajo , Fosfatidilinositol 3-Quinasas , Receptores ErbB , Apoptosis
16.
Open Biol ; 13(9): 230171, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37699519

RESUMEN

Alterations in the neuromuscular system underlie several neuromuscular diseases and play critical roles in the development of sarcopenia, the age-related loss of muscle mass and function. Mammalian Myostatin (MST) and GDF11, members of the TGF-ß superfamily of growth factors, are powerful regulators of muscle size in both model organisms and humans. Myoglianin (MYO), the Drosophila homologue of MST and GDF11, is a strong inhibitor of synaptic function and structure at the neuromuscular junction in flies. Here, we identified Plum, a transmembrane cell surface protein, as a modulator of MYO function in the larval neuromuscular system. Reduction of Plum in the larval body-wall muscles abolishes the previously demonstrated positive effect of attenuated MYO signalling on both muscle size and neuromuscular junction structure and function. In addition, downregulation of Plum on its own results in decreased synaptic strength and body weight, classifying Plum as a (novel) regulator of neuromuscular function and body (muscle) size. These findings offer new insights into possible regulatory mechanisms behind ageing- and disease-related neuromuscular dysfunctions in humans and identify potential targets for therapeutic interventions.


Asunto(s)
Drosophila melanogaster , Prunus domestica , Animales , Humanos , Envejecimiento , Proteínas Morfogenéticas Óseas , Regulación hacia Abajo , Drosophila , Factores de Diferenciación de Crecimiento , Larva , Mamíferos
17.
Exp Eye Res ; 235: 109639, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37659709

RESUMEN

Docosahexaenoic acid (DHA; 22:6) plays a key role in vision and is the precursor for very-long-chain polyunsaturated fatty acids (VLC-PUFAs). The release of 32- and 34-carbon VLC-PUFAs and DHA from sn-1 and sn-2 of phosphatidylcholine (PC) leads to the synthesis of cell-survival mediators, the elovanoids (ELVs) and neuroprotectin D1 (NPD1), respectively. Macula and periphery from age-related macular degeneration (AMD) donor retinas were assessed for the availability of DHA-related lipids by LC-MS/MS-based lipidomic analysis and MALDI-molecular imaging. We found reduced retina DHA and VLC-PUFA pathways to synthesize omega-3 ELVs from precursors that likely resulted in altered disks and photoreceptor loss. Additionally, we compared omega-3 (n-3) fatty acid with DHA (22:6) and omega-6 (n-6) fatty acid with arachidonic acid (AA; 20:4) pathways. n-3 PC(22:6/22:6, 44:12) and n-6 PC(20:4/20:4, 40:8) showed differences among male/female, macula/periphery, and normal/AMD retinas. Periphery of AMD retina males increased 44:12 abundance, while normal females increased 40:8 (all macula had an upward 40:8 tendency). We also showed that female AMD switched from n-3 to n-6 fatty acids; most changes in AMD occurred in the periphery of female AMD retinas. DHA and VLC-PUFA release from PCs leads to conversion in pro-survival NPD1 and ELVs. The loss of the neuroprotective precursors of ELVs in the retina periphery from AMD facilitates uncompensated stress and cell loss. In AMD, the female retina loses peripheral rods VLC-PUFAs to about 33% less than in males limiting ELV formation and its protective bioactivity.


Asunto(s)
Ácidos Grasos Omega-3 , Degeneración Macular , Femenino , Masculino , Humanos , Regulación hacia Abajo , Cromatografía Liquida , Espectrometría de Masas en Tándem
18.
Pharm Biol ; 61(1): 1298-1309, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606265

RESUMEN

CONTEXT: Danggui Buxue Decoction (DBD), a traditional Chinese medicine formula, has the potential to enhance the antitumor effect of gemcitabine in non-small cell lung cancer (NSCLC) treatment by increasing gemcitabine's active metabolites. However, whether gemcitabine affects the pharmacokinetics of DBD's major components remains unclear. OBJECTIVE: This study evaluates the herb-drug interaction between DBD's major components and gemcitabine and validates the underlying pharmacokinetic mechanism. MATERIALS AND METHODS: The pharmacokinetics of 3.6 g/kg DBD with and without a single-dose administration of 50 mg/kg gemcitabine was investigated in Sprague-Dawley rats. The effects of gemcitabine on intestinal permeability, hepatic microsomal enzymes in rat tissues, and CYP3A overexpressing HepG2 cells were determined using western blot analysis. RESULTS: The combination of gemcitabine significantly altered the pharmacokinetic profiles of DBD's major components in rats. The Cmax and AUC of calycosin-7-O-ß-d-glucoside notably increased through sodium-glucose transporter 1 (SGLT-1) expression promotion. The AUC of ligustilide and ferulic acid was also significantly elevated with the elimination half-life (t1/2) prolonged by 2.4-fold and 7.8-fold, respectively, by down-regulating hepatic CYP3A, tight junction proteins zonula occludens-1 (ZO-1) and occludin expression. DISCUSSION AND CONCLUSIONS: Gemcitabine could modulate the pharmacokinetics of DBD's major components by increasing intestinal permeability, enhancing transporter expression, and down-regulating CYP3A. These findings provide critical information for clinical research on DBD as an adjuvant for NSCLC with gemcitabine and help make potential dosage adjustments more scientifically and rationally.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratas , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Gemcitabina , Citocromo P-450 CYP3A , Regulación hacia Abajo , Ratas Sprague-Dawley , Neoplasias Pulmonares/tratamiento farmacológico
19.
FASEB J ; 37(9): e23120, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37527279

RESUMEN

The α7nAChR is crucial to the anti-inflammatory reflex, and to the expression of neuropeptides that control food intake, but its expression can be decreased by environmental factors. We aimed to investigate whether microRNA modulation could be an underlying mechanism in the α7nAchR downregulation in mouse hypothalamus following a short-term exposure to an obesogenic diet. Bioinformatic analysis revealed Let-7 microRNAs as candidates to regulate Chrna7, which was confirmed by the luciferase assay. Mice exposed to an obesogenic diet for 3 days had increased Let-7a and decreased α7nAChR levels, accompanied by hypothalamic fatty acids and TNFα content. Hypothalamic neuronal cells exposed to fatty acids presented higher Let-7a and TNFα levels and lower Chrna7 expression, but when the cells were pre-treated with TLR4 inhibitor, Let-7a, TNFα, and Chrna7 were rescued to normal levels. Thus, the fatty acids overload trigger TNFα-induced Let-7 overexpression in hypothalamic neuronal cells, which negatively regulates α7nAChR, an event that can be related to hyperphagia and obesity predisposition in mice.


Asunto(s)
Factor de Necrosis Tumoral alfa , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Ratones , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ácidos Grasos , Regulación hacia Abajo , Hipotálamo/metabolismo
20.
J Ovarian Res ; 16(1): 176, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633943

RESUMEN

BACKGROUND: Traditional Chinese medicine has been used for a long time to treat a variety of gynecological diseases. Among various traditional Chinese medicine, Dingkun Pill (DK) has been used for the treatment of female gynecological diseases. However, DK therapeutic effect on PCOS and the target tissue for its potential effect need to be explored. This study aims to explore the therapeutic effect of DK for PCOS in mice from three aspects: metabolism, endocrine and fertility, and determine whether the brown adipose tissue is the target organ to alleviate the PCOS phenotype. METHODS: PCOS mouse model was constructed by subcutaneous injection of DHEA. The estrous cycle, ovulation, and pregnancy outcome was examined in mice. The level of hormone including the LH, FSH, estrogen and testosterone in the serum were measured by ELISA. Both the glucose sensitivity and insulin sensitivity were determined in mice with different treatment. The histomorphology and lipid contents in the brown adipose tissue were analyzed. RNA-Seq was conducted for the brown adipose tissue and different expression of critical metabolism marker genes was confirmed by real-time PCR. RESULTS: The data showed that the fertility in PCOS mice with DK treatment was significantly increased, and the metabolic disorder was partially restored. Both the whiten of brown adipose tissue and reduced UCP1 expression induced by DHEA was rescued by the DK. The RNA-Seq data further demonstrated both the DHEA induced downregulation of lipolysis genes and oxidative phosphorylation genes were at least partially rescued by DK in the brown adipose tissue. CONCLUSIONS: DK has therapeutic effect on PCOS in DHEA treated mice and the brown adipose tissue is at least one critical target organ to alleviate the PCOS. This is achieved by not only regulating the lipid mobilization of brown adipose, but also restoring its thermogenic function.


Asunto(s)
Síndrome del Ovario Poliquístico , Femenino , Animales , Ratones , Embarazo , Humanos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Tejido Adiposo Pardo , Fertilidad , Regulación hacia Abajo , Deshidroepiandrosterona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA