Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 298(1): 101446, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826421

RESUMEN

The catabolism of pectin from plant cell walls plays a crucial role in the virulence of the phytopathogen Dickeya dadantii. In particular, the timely expression of pel genes encoding major pectate lyases is essential to circumvent the plant defense systems and induce massive pectinolytic activity during the maceration phase. Previous studies identified the role of a positive feedback loop specific to the pectin-degradation pathway, whereas the precise signals controlling the dynamics of pectate lyase expression were unclear. Here, we show that the latter is controlled by a metabolic switch involving both glucose and pectin. We measured the HPLC concentration profiles of the key metabolites related to these two sources of carbon, cAMP and 2-keto-3-deoxygluconate, and developed a dynamic and quantitative model of the process integrating the associated regulators, cAMP receptor protein and KdgR. The model describes the regulatory events occurring at the promoters of two major pel genes, pelE and pelD. It highlights that their activity is controlled by a mechanism of carbon catabolite repression, which directly controls the virulence of D. dadantii. The model also shows that quantitative differences in the binding properties of common regulators at these two promoters resulted in a qualitatively different role of pelD and pelE in the metabolic switch, and also likely in conditions of infection, justifying their evolutionary conservation as separate genes in this species.


Asunto(s)
Represión Catabólica , Dickeya , Pectinas , Proteínas Bacterianas/metabolismo , Dickeya/metabolismo , Digestión , Enterobacteriaceae/metabolismo , Regulación Bacteriana de la Expresión Génica , Pectinas/metabolismo , Polisacárido Liasas/química
2.
Appl Microbiol Biotechnol ; 104(11): 5081-5094, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32274561

RESUMEN

Deubiquitination is an essential regulatory step in the Ub-dependent pathway. Deubiquitinating enzymes (DUBs) mediate the removal of ubiquitin moieties from substrate proteins, which are involved in many regulatory mechanisms. As a component of the DUB module (Ubp8/Sgf11/Sus1/Sgf73) in the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex, Ubp8 plays a crucial role in both Saccharomyces cerevisiae and humans. In S. cerevisiae, Ubp8-mediated deubiquitination regulates transcriptional activation processes. To investigate the contributions of Ubp8 to physiological and pathological development of filamentous fungi, we generated the deletion mutant of ortholog MoUBP8 (MGG-03527) in Magnaporthe oryzae (syn. Pyricularia oryzae). The ΔMoubp8 strain showed reduced sporulation, pathogenicity, and resistance to distinct stresses. Even though the conidia of the ΔMoubp8 mutant were delayed in appressorium formation, the normal and abnormal (none-septum or one-septum) conidia could finally form appressoria. Reduced melanin in the ΔMoubp8 mutant is highly responsible for the attenuated pathogenicity since the appressoria of the ΔMoubp8 mutant was much more fragile than those of the wild type, due to the defective turgidity. The weakened ability to detoxify or scavenge host-derived reactive oxygen species (ROS) further restricted the invasion of the pathogen. We also showed that carbon derepression, on the one hand, rendered the ΔMoubp8 strain highly sensitive to allyl alcohol, on the other hand, it enhances the resistance of the MoUBP8 defective strain to deoxyglucose. Overall, we suggest that MoUbp8 is not only required for sporulation, melanin formation, appressoria development, and pathogenicity but also involved in carbon catabolite repression of M. oryzae.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/patogenicidad , Carbono/metabolismo , Represión Catabólica , Enzimas Desubicuitinizantes/genética , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Ascomicetos/genética , Enzimas Desubicuitinizantes/metabolismo , Proteínas Fúngicas/metabolismo , Hordeum/microbiología , Cebollas/microbiología , Oryza/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Ubiquitinación , Virulencia
3.
Proc Natl Acad Sci U S A ; 117(11): 6003-6013, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32111691

RESUMEN

Filamentous fungi, such as Neurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling of N. crassa on 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors in N. crassa and characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


Asunto(s)
Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Pectinas/metabolismo , Polisacáridos/metabolismo , Factores de Transcripción/metabolismo , Biocombustibles , Biomasa , Represión Catabólica , Pared Celular/química , Regulación Fúngica de la Expresión Génica , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Neurospora crassa/metabolismo , RNA-Seq
4.
Biotechnol Bioeng ; 117(4): 1247-1252, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31903546

RESUMEN

myo-Inositol (MI) as a dietary supplement can provide various health benefits. One major challenge to its efficient biosynthesis is to achieve proper distribution of carbon flux between growth and production. Herein, this challenge was overcome by synergetic utilization of glucose and glycerol. Specifically, glycerol was catabolized to support cell growth while glucose was conserved as the building block for MI production. Growth and production were coupled via the phosphotransferase system, and both modules were optimized to achieve efficient production. First, the optimal enzyme combination was established for the production module. It was observed that enhancing the production module resulted in both increased MI production and better cell growth. In addition, glucose was shown to inhibit glycerol utilization via carbon catabolite repression and the inhibition was released by over-expressing glycerol kinase. Furthermore, the inducible promoter was replaced by strong constitutive promoters to avoid inducer use. With these efforts, the final strain produced MI with both high titer and yield. In fed-batch cultivation, 76 g/L of MI was produced, showing scale-up potential. This study provides a promising strategy to achieve rational distribution of carbon flux.


Asunto(s)
Glucosa/metabolismo , Glicerol/metabolismo , Inositol/biosíntesis , Reactores Biológicos/microbiología , Carbono/metabolismo , Represión Catabólica/fisiología , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
Molecules ; 23(10)2018 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-30322137

RESUMEN

2-Ketogluconate (2KGA) is an organic acid that is important for pharmaceutical, cosmetic, and environmental applications. Pseudomonas plecoglossicida JUIM01 strain is an important industrial 2KGA producer in China. In this paper, we found that P. plecoglossicida JUIM01 could convert glucose to 2KGA extracellularly, and the formed 2KGA was subsequently consumed after glucose was exhausted during the fermentation process. Experiments of glucose and 2KGA supplementation during fermentation process revealed that, only when glucose was exhausted, the strain started to consume the product 2KGA. Then, the mechanism of this phenomenon was investigated at transcription and protein levels, and the results indicated that P. plecoglossicida JUIM01 possesses carbon catabolite repression of 2KGA metabolism by glucose. Next, increasing the supply of glucose could attenuate 2KGA consumption and enhance the 2KGA yield from glucose. Finally, fed-batch fermentation of P. plecoglossicida JUIM01 resulted in 205.67 g/L of 2KGA with a productivity of 6.86 g/L/h and yield of 0.953 g/g glucose. These results can provide references for the industrial fermentation production of 2KGA and other fermentation products.


Asunto(s)
Carbono/metabolismo , Gluconatos/metabolismo , Pseudomonas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes , Represión Catabólica , Fermentación , Perfilación de la Expresión Génica , Glucosa/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo
6.
Braz. j. microbiol ; 48(3): 602-606, July-Sept. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-889128

RESUMEN

Abstract Expression of pectinolytic genes is regulated by catabolic repression limiting the production of pectin lyase (PL) if the natural inducer, pectin, is missing from the growth medium. Here, we report the isolation of Penicillium griseoroseum mutants resistant to 2-deoxy-d-glucose (DG) that show resistance to catabolite repression and overproduce PL. Three spontaneous and nine UV-induced mutants were obtained. Some mutants produced sectors (segments morphologically different) that were also studied. The mutants were analyzed for pectinases production on pectinase-agar plates and five mutants and two sectors showing larger clearing zones than the wild type were selected for quantitative assay. Although PL production higher than the wild type has been found, phenotype instability was observed for most of the mutants and, after transfers to nonselective medium, the DG resistance was no longer present. Only mutants M03 and M04 were stable maintaining the DG-resistance phenotype. When growing for 120 h in liquid medium containing glucose with or without pectin, both mutants showed higher PL production. In the presence of glucose as sole carbon source, the mutant M03 produced 7.8-fold more PL than the wild type. Due its phenotypic stability and PL overproduction, the mutant M03 presents potential for industrial applications.


Asunto(s)
Proteínas Fúngicas/metabolismo , Penicillium/enzimología , Polisacárido Liasas/metabolismo , Represión Catabólica , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Proteínas Fúngicas/genética , Mutación , Pectinas/metabolismo , Penicillium/genética , Penicillium/metabolismo
7.
Braz J Microbiol ; 48(3): 602-606, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28237679

RESUMEN

Expression of pectinolytic genes is regulated by catabolic repression limiting the production of pectin lyase (PL) if the natural inducer, pectin, is missing from the growth medium. Here, we report the isolation of Penicillium griseoroseum mutants resistant to 2-deoxy-d-glucose (DG) that show resistance to catabolite repression and overproduce PL. Three spontaneous and nine UV-induced mutants were obtained. Some mutants produced sectors (segments morphologically different) that were also studied. The mutants were analyzed for pectinases production on pectinase-agar plates and five mutants and two sectors showing larger clearing zones than the wild type were selected for quantitative assay. Although PL production higher than the wild type has been found, phenotype instability was observed for most of the mutants and, after transfers to nonselective medium, the DG resistance was no longer present. Only mutants M03 and M04 were stable maintaining the DG-resistance phenotype. When growing for 120h in liquid medium containing glucose with or without pectin, both mutants showed higher PL production. In the presence of glucose as sole carbon source, the mutant M03 produced 7.8-fold more PL than the wild type. Due its phenotypic stability and PL overproduction, the mutant M03 presents potential for industrial applications.


Asunto(s)
Proteínas Fúngicas/metabolismo , Penicillium/enzimología , Polisacárido Liasas/metabolismo , Represión Catabólica , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Proteínas Fúngicas/genética , Mutación , Pectinas/metabolismo , Penicillium/genética , Penicillium/metabolismo
8.
Metallomics ; 8(11): 1193-1203, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27714092

RESUMEN

In a recent work we showed that magnesium (MgII) plays an important role in industrial ethanol production, overcoming the negative effect of the excess of minerals, particularly copper, present in sugarcane juice, with a consequent increase in ethanol yield. This cation has been reported to be involved in several steps of yeast metabolism, acting mainly as a co-factor of several enzymes of fermentation metabolism and protecting yeast cells from stressful conditions. However, despite many physiological investigations, its effect in the molecular mechanisms that control such metabolic activities remains unclear and to date no information concerning its influence on gene expression has been provided. The present work took advantage of the DNA microarray technology to analyse the global gene expression in yeast cells upon fermentation in MgII-supplemented medium. The results of the fermentation parameters confirmed the previous report on the increase in ethanol yield by MgII. Moreover, the gene expression data revealed an unexpected set of up-regulated genes currently assigned as being negatively-regulated by glucose, which belong to respiratory and energy metabolism, the stress response and the glyoxalate cycle. On the other hand, genes involved in ribosome biogenesis were down-regulated. Computational analysis provided evidence for a regulatory network commanded by key transcriptional factors that may be responsible for the biological action of MgII in yeast cells. In this scenario, MgII seems to act by reprogramming the yeast metabolism by releasing many genes from glucose catabolite repression with positive consequences for ethanol production and maintenance of cell viability.


Asunto(s)
Represión Catabólica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Magnesio/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Metabolismo Energético/efectos de los fármacos , Etanol/metabolismo , Fermentación/efectos de los fármacos , Redes Reguladoras de Genes , Glucosa/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma
9.
Curr Microbiol ; 63(4): 319-26, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21761218

RESUMEN

Due to the effect of catabolite repression, sugar mixtures cannot be metabolized in a rapid and efficient way implicating in lower productivity in bioprocesses using lignocellulosic hydrolysates. In gram-negative bacteria, this mechanism is mediated by the phosphotransferase system (PTS), which concomitantly internalizes and phosphorylates sugars. In this study, we isolated a UV mutant of Burkholderia sacchari, called LFM828, which transports hexoses and pentoses by a non-PTS uptake system. This mutant presented released glucose catabolite repression over the pentoses. In mixtures of glucose, xylose, and arabinose, specific growth rates and the specific sugar consumption rates were, respectively, 10 and 23% higher in LFM828, resulting in a reduced time to exhaust all sugars in the medium. However, in polyhydroxybutyrate (PHB) biosynthesis experiments it was necessary the supplementation of yeast extract to maintain higher values of growth rate and sugar consumption rate. The deficient growth in mineral medium was partially recovered by replacing the ammonium nitrogen source by glutamate. It was demonstrated that the ammonium metabolism is not defective in LFM828, differently from ammonium, glutamate can also be used as carbon and energy allowing an improvement on the carbohydrates utilization for PHB production in LFM828. In contrast, higher rates of ammonia consumption and CO(2) production in LFM828 indicate altered fluxes through the central metabolism in LFM828 and the parental. In conclusion, PTS plays an important role in cell physiology and the elimination of its components has a significant impact on catabolite repression, carbon flux distribution, and PHB biosynthesis in B. sacchari.


Asunto(s)
Burkholderia/genética , Burkholderia/metabolismo , Represión Catabólica , Hidroxibutiratos/metabolismo , Mutación , Poliésteres/metabolismo , Transporte Biológico , Glucosa/metabolismo , Hexosas/metabolismo , Pentosas/metabolismo
10.
Appl Microbiol Biotechnol ; 89(5): 1537-49, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21246356

RESUMEN

Two deletion mutants expected to be defective in nitrogen catabolite repression (NCR) were constructed in a commercial wine yeast background M2: a ure2 mutant and a dal80 gzf3 double mutant. Wild-type and both mutant strains were fermented in Sauvignon Blanc grape juice with and without addition of di-ammonium phosphate (DAP). The dal80 gzf3 double mutant exhibited a long fermentative lag phase, which was offset by DAP addition (corresponding to 300 mg/L of N). Neither the NCR mutations nor DAP addition affected the content of volatile thiols in the final wine. Microarray analyses of transcripts in the wild-type and dal80 gzf3 double-mutant strains were performed after 2% and 70% sugars were fermented. Of 80 genes previously identified as NCR-regulated, only 13 were upregulated during fermentation of the dal80 gzf3 double-mutant strain in grape juice. Following DAP addition, 34 of the known NCR genes were downregulated, including 17 that were downregulated even in the NCR mutant strain. The results demonstrate an unexpected complexity of the NCR response that may reflect differences between strains of yeast or differences in gene regulation during alcoholic fermentation compared with standard aerobic growth.


Asunto(s)
Represión Catabólica , Etanol/metabolismo , Nitrógeno/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , Fermentación , Eliminación de Gen , Extractos Vegetales/metabolismo , Saccharomyces cerevisiae/genética , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA