Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Radioact ; 251-252: 106955, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35772319

RESUMEN

Radioactive acidic liquid waste is a common byproduct of uranium (U) and plutonium (Pu) enrichment and recycling processes whose accidental and planned release has led to a significant input of U into soils and sediments across the world, including at the U.S. DOE's Hanford site (WA, USA). Because of the particularly hazardous nature of U, it is important to predict its speciation when introduced into soils and sediments by acidic waste fluids. Of fundamental importance are the coupled effects of acid-driven mineral transformation and reactive transport on U speciation. To evaluate the effect of waste-fluid residence time and co-associated dissolved phosphate concentrations on U speciation in impacted soils and sediments, uncontaminated surface materials (from the Hanford Site) were reacted with U-containing synthetic acidic waste fluids (pH 2) amended with dissolved phosphate concentrations in both batch (no flow) and flow-through column systems for 7-365 days. By comparing dissolved U behavior and solid phase speciation as a function of flow regimen, we found that the availability of proton-promoted dissolution products (such as Si) to sequester U into uranyl silicates was dependent on waste fluid-sediment contact time as uranyl silicates were not detected in short contact time flow-through systems but were detected in no-flow, long contact time, reactors. Moreover, the dominance of uranyl phosphate as neoprecipitate U scavenger (principally in the form of meta-ankoleite) in phosphate amended systems confirmed the importance of phosphate amendments for an efficient sequestration of U in the soils and sediments. Overall, our experiments suggest that the formation of uranyl silicates in soils impacted by acidic waste fluids is likely to be limited unless reaction products are allowed to accumulate in soil pores, highlighting the importance of investigating soil U speciation in flow-through, transport-driven systems as opposed to no-flow, batch systems. This study provides insights into uranium speciation and its potential changes under acidic conditions for better prediction of risks and subsequent development of efficient remediation strategies.


Asunto(s)
Monitoreo de Radiación , Residuos Radiactivos , Uranio , Contaminantes Radiactivos del Agua , Fosfatos , Residuos Radiactivos/análisis , Suelo , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis
2.
Health Phys ; 122(5): 586-593, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35383635

RESUMEN

ABSTRACT: Clinical uses of radiopharmaceuticals imply the administration of radioactive substances that are mainly excreted through urine. The Nuclear Medicine Department at the Instituto Nacional de Cancerología (INC-COL) in Bogota, Colombia, administers radiopharmaceuticals for diagnostics and treatment to many patients, resulting in tens of cubic meters of radioactive waste water (WW) every day. As Colombian regulatory limits for liquid radioactive discharges to the sewer system are lower than in other countries, longer WW decay times are required, even when an in-house waste water treatment plant (WWTP) is used. To fulfill the requirements for controlled disposal of radioactive discharges, a complementary abatement system was implemented to retain WW for periods as long as 360 d, and was connected to the hospital´s WWTP. These holding times can cause major changes in the WW physicochemical parameters, reaching levels higher than acceptable. In this study, we evaluate the decontamination and decay efficiency of the retention system using water quality parameters and the amount of radioactivity in the effluents stored in the tanks and the WWTP. According to the results, to maintain the physicochemical parameters below acceptable levels, biological and chemical treatment of decayed WW is necessary before discharging it into urban waste water. Using the principles of dilution, retention, and decay, an integral radioactive WW management system was implemented favoring the quality of discharges and activity levels to the sewer system, with efficiencies close to 100% for WW from discharges in diagnostic procedures ranging from 98% (131I) to 100% (177Lu) for WW from discharges in therapeutic procedures. Activity concentration assessment in medically-derived radionuclides using an in-house waste water treatment plant (WWTP) and a complementary abatement system; an in-house WWTP could be used as an abatement system for short-lived radionuclides; and a tank-based abatement system attached to the in-house WWTP showed higher efficiencies for long-lived radionuclides and adequate physicochemical parameters for the discharge to the city sewage system.


Asunto(s)
Medicina Nuclear , Residuos Radiactivos , Humanos , Radioisótopos de Yodo/uso terapéutico , Residuos Radiactivos/análisis , Aguas Residuales
3.
J Hazard Mater ; 429: 128369, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35236039

RESUMEN

To properly manage nuclear wastes is critical to sustainable utilization of nuclear power and environment health. Here, we show an innovative carbiding strategy for sustainable management of radioactive graphite through digestion of carbon in H2O2. The combined action of intermolecular oxidation of graphite by MoO3 and molybdenum carbiding demonstrates success in gasifying graphite and sequestrating uranium for a simulated uranium-contaminated graphite waste. The carbiding process plays a triple role: (1) converting graphite into atomic carbon digestible in H2O2, (2) generating oxalic ligands in the presence of H2O2 to favor U-precipitation, and (3) delivering oxalic ligands to coordinate to MoVI-oxo anionic species to improve sample batching capacity. We demonstrate > 99% of uranium to be sequestrated for the simulated waste with graphite matrix completely gasifying while no detectable U-migration occurred during operation. This method has further been extended to removal of surface carbon layers for graphite monolith and thus can be used to decontaminate monolithic graphite waste with emission of a minimal amount of secondary waste. We believe this work not only provides a sustainable approach to tackle the managing issue of heavily metal contaminated graphite waste, but also indicates a promising methodology toward surface decontamination for irradiated graphite in general.


Asunto(s)
Grafito , Residuos Radiactivos , Radiactividad , Uranio , Carbono , Digestión , Residuos Peligrosos , Peróxido de Hidrógeno , Molibdeno , Residuos Radiactivos/análisis , Residuos Radiactivos/prevención & control
4.
Environ Sci Pollut Res Int ; 29(14): 20603-20616, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34741268

RESUMEN

Uranium tailing ponds are a potential major source of radioactive pollution. Solidification treatment can control the diffusion and migration of radioactive elements in uranium tailings to safeguard the surrounding ecological environment. A literature review and field investigation were conducted in this study prior to fabricating 11 solidified uranium tailing samples with different proportions of PVA fiber, basalt fiber, metakaolin, and fly ash, and the weight percentage of uranium tailings in the solidified body is 61.11%. The pore structure, volume resistivity, compressive strength, radon exhalation rate variations, and U(VI) leaching performance of the samples were analyzed. The pore size of the solidified samples is mainly between 1 and 50 nm, the pore volume is between 2.461 and 5.852 × 10-2 cm3/g, the volume resistivity is between 1020.00 and 1937.33 Ω·m, and the compressive strength is between 20.61 and 36.91 MPa. The radon exhalation rate is between 0.0397 and 0.0853 Bq·m-2·s-1. The cumulative leaching fraction of U(VI) is between 2.095 and 2.869 × 10-2 cm, and the uranium immobilization rate is between 83.46 and 85.97%. Based on a comprehensive analysis of the physical and mechanical properties, radon exhalation rates, and U(VI) leaching performance of the solidified samples, the basalt fiber is found to outperform PVA fiber overall. The solidification effect is optimal when 0.6% basalt fiber is added.


Asunto(s)
Industria Procesadora y de Extracción , Residuos Radiactivos , Contaminantes Radiactivos del Suelo , Uranio , Administración de Residuos , Ceniza del Carbón/análisis , Difusión , Sitios de Residuos Peligrosos , Protección Radiológica/métodos , Residuos Radiactivos/análisis , Radón/análisis , Silicatos/análisis , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Suelo/química , Uranio/análisis , Administración de Residuos/métodos
5.
J Hazard Mater ; 424(Pt D): 127733, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34848070

RESUMEN

The Long-term In-situ Test (LIT) of the Colloid Formation and Migration project (CFM) at the Grimsel Test Site, investigates the generation of bentonite colloids and, hence, radionuclide mobilization within a well-defined and controlled shear zone in a crystalline rock. In this context, the determination of radionuclide aqueous speciation is essential to understand whether radionuclides are easily transported or immobilized by precipitation or uptake processes in the bentonite barrier included in a repository concept for nuclear waste, and mimic in the LIT experiment. The objective of this work is to determine the aqueous speciation of seven radionuclides (i.e. 75Se(VI), 99Tc(VII),233U(VI), 237Np(V), 241Am(III), Th(IV) and 242Pu(IV)) by thermodynamic calculations in different water compositions representing the geochemical evolution through the LIT. A comparison of the results obtained from two different modelling groups allows the identification of the geochemical key parameters affecting radionuclide mobility in this context and the corresponding numerical and conceptual uncertainties. Particularly, silicate complexes of trivalent actinides and uranium(VI) carbonato complexes (i.e. CanUO2(CO3)3(4-2n) n = 1 or 2) seem to be crucial in these environments, even at reducing conditions. Conceptual uncertainties like inclusion/exclusion of tetravalent actinide-bearing colloids formation and polyselenides have clearly been identified.


Asunto(s)
Residuos Radiactivos , Uranio , Contaminantes Radiactivos del Agua , Residuos Radiactivos/análisis , Radioisótopos , Suiza , Contaminantes Radiactivos del Agua/análisis
6.
Health Phys ; 122(3): 402-408, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34966086

RESUMEN

ABSTRACT: The radiological hazard of spent nuclear fuel and radioactive waste slows down further development of nuclear energy systems. The authors evaluate timescales required to reduce the radiological hazard of accumulated waste to the reference level of natural uranium that had been consumed by the nuclear energy system. The estimate of this time scale depends on the radiological hazard metric used in the calculations. In this study, two metrics are compared: (1) the committed effective dose based on ICRP Publication 72 and (2) the lifetime radiation risk calculated with use of organ doses and recent radiation risk models recommended by ICRP. The effective dose of the waste reaches the reference level 300 y after the accumulation of waste, while lifetime attributable risk of waste converges to natural uranium in 100 y. Thus, the lifetime attributable risk (LAR) metric is more appropriate to estimate the time requirements for radioactive waste storage and disposal. The effective dose metric significantly overestimates this timescale as it is not intended for quantifying radiation-related risks.


Asunto(s)
Energía Nuclear , Monitoreo de Radiación , Residuos Radiactivos , Eliminación de Residuos , Uranio , Dosis de Radiación , Residuos Radiactivos/análisis
7.
J Environ Manage ; 280: 111703, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33288318

RESUMEN

Disused Sealed Radioactive Sources (DSRS) borehole disposal is an innovative concept recommended by international atomic energy agency (IAEA) to improve the safety and security of the management end point for these sources. A green application of Palm Oil Fuel Ash (POFA) as a supplementary material for cementitious backfill barrier in DSRS borehole disposal facility is proposed. Samples with up to 50% POFA replacement complied with the mechanical and hydraulic performance requirements for backfill barriers in retrievable radioactive waste disposal facilities. The structures of one year old OPC and optimum OPC-POFA cement backfills were evaluated using FESEM, XRD, EDXRF, BET, and TGA and their 226 Ra confinement performances were assessed. 30% POFA replacement improved the geochemical conditions by reducing competitive Ca2+ release into the disposal environment. It enhanced 226Ra confinement performance independently on the amount of water intrusion or releases below 2% of 1 Ci source. The improved performance is attributed to the higher fraction of active sites of OPC-POFA backfill compared to that of OPC backfill. 226Ra sorption onto C-S-H is irreversible, spontaneous, endothermic, and independent on the degree of the surface filling. The provided experimental data and theoretical analysis proved the feasibility of this green use of POFA in reducing the radiological hazard of 226Ra.


Asunto(s)
Residuos Radiactivos , Eliminación de Residuos , Materiales de Construcción , Aceite de Palma , Residuos Radiactivos/análisis , Agua
8.
Chemosphere ; 254: 126859, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32957279

RESUMEN

Understanding the long-term fate, stability, and bioavailability of uranium (U) in the environment is important for the management of nuclear legacy sites and radioactive wastes. Analysis of U behavior at natural analogue sites permits evaluation of U biogeochemistry under conditions more representative of long-term equilibrium. Here, we have used bulk geochemical and microbial community analysis of soils, coupled with X-ray absorption spectroscopy and µ-focus X-ray fluorescence mapping, to gain a mechanistic understanding of the fate of U transported into an organic-rich soil from a pitchblende vein at the UK Needle's Eye Natural Analogue site. U is highly enriched in the Needle's Eye soils (∼1600 mg kg-1). We show that this enrichment is largely controlled by U(VI) complexation with soil organic matter and not U(VI) bioreduction. Instead, organic-associated U(VI) seems to remain stable under microbially-mediated Fe(III)-reducing conditions. U(IV) (as non-crystalline U(IV)) was only observed at greater depths at the site (>25 cm); the soil here was comparatively mineral-rich, organic-poor, and sulfate-reducing/methanogenic. Furthermore, nanocrystalline UO2, an alternative product of U(VI) reduction in soils, was not observed at the site, and U did not appear to be associated with Fe-bearing minerals. Organic-rich soils appear to have the potential to impede U groundwater transport, irrespective of ambient redox conditions.


Asunto(s)
Agua Subterránea/química , Residuos Radiactivos/análisis , Suelo/química , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis , Compuestos Férricos , Microbiología del Suelo , Uranio/química , Compuestos de Uranio/análisis , Espectroscopía de Absorción de Rayos X
9.
Health Phys ; 118(1): 1-17, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31703016

RESUMEN

A dose-based compliance methodology was developed for Waste Control Specialists, LLC, low-level radioactive waste facility in Andrews, Texas, that allows routine environmental measurement data to be evaluated not only at the end of a year to determine regulatory compliance, but also throughout the year as new data become available, providing a continuous assessment of the facility. The first step in the methodology is a screening step to determine the potential presence of site emissions in the environment, and screening levels are established for each environmental media sampled. The screening accounts for spatial variations observed in background for soil and temporal fluctuations observed in background for air. For groundwater, the natural activity concentrations in groundwater wells at the facility are highly variable, and therefore the methodology uses ratios for screening levels. The methodology compares the ratio of gross alpha to U + U to identify potentially abnormal alpha activity and the ratio of U to U to identify the potential presence of depleted uranium. Compliance evaluation is conducted for any samples that fail the screening step. Compliance evaluation uses the radionuclide-specific measurements to first determine (1) if the dose exceeds the background dose and if so, (2) the dose consequences, so that the appropriate investigation or action occurs. The compliance evaluation is applied to all environmental samples throughout the year and on an annual basis to determine regulatory compliance. The methodology is implemented in a cloud-based software application that is also made accessible to the regulator. The benefits of the methodology over the existing system are presented.


Asunto(s)
Monitoreo del Ambiente/normas , Modelos Teóricos , Monitoreo de Radiación/métodos , Protección Radiológica/normas , Residuos Radiactivos/análisis , Uranio/análisis , Instalaciones de Eliminación de Residuos/normas , Contaminantes Radiactivos del Aire/análisis , Agua Subterránea/química , Humanos , Protección Radiológica/legislación & jurisprudencia , Instalaciones de Eliminación de Residuos/legislación & jurisprudencia , Contaminantes Radiactivos del Agua/análisis
10.
Chemosphere ; 241: 124964, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31604195

RESUMEN

Around former glass factories in south eastern Sweden, there are dozens of dumps whose radioactivity and physico-chemical properties were not investigated previously. Thus, radiometric and physico-chemical characteristics of waste at Madesjö glass dump were studied to evaluate pre-recycling storage requirements and potential radiological and environmental risks. The material was sieved, hand-sorted, leached and scanned with X-Ray Fluorescence (XRF). External dose rates and activity concentrations of Naturally Occurring Radioactive Materials from 238U, 232Th series and 40K were also measured coupled with a radiological risk assessment. Results showed that the waste was 95% glass and dominated by fine fractions (<11.3 mm) at 43.6%. The fine fraction had pH 7.8, 2.6% moisture content, 123 mg kg-1 Total Dissolved Solids, 37.2 mg kg-1 Dissolved Organic Carbon and 10.5 mg kg-1 fluorides. Compared with Swedish EPA guidelines, the elements As, Cd, Pb and Zn were in hazardous concentrations while Pb leached more than the limits for inert and non-hazardous wastes. With 40K activity concentration up to 3000 Bq kg-1, enhanced external dose rates of 40K were established (0.20 µSv h-1) although no radiological risk was found since both External Hazard Index (Hex) and Gamma Index (Iγ) were <1. The glass dump needs remediation and storage of the waste materials under a safe hazardous waste class 'Bank Account' storage cell as a secondary resource for potential future recycling.


Asunto(s)
Fenómenos Químicos , Vidrio/análisis , Contaminantes Radiactivos/análisis , Residuos Radiactivos/análisis , Residuos/análisis , Residuos Peligrosos , Radioisótopos de Potasio/análisis , Reciclaje , Espectrometría por Rayos X , Suecia , Torio/análisis , Uranio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA