Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279240

RESUMEN

In this study, we examined the effects of rumen-protected L-tryptophan supplementation on the productivity and physiological metabolic indicators in lactating Holstein cows under heat stress conditions. The study involved eight early lactating Holstein cows (days in milk = 40 ± 9 days; milk yield 30 ± 1.5 kg/day; parity 1.09 ± 0.05, p < 0.05), four cows per experiment, with environmentally controlled chambers. In each experiment, two distinct heat stress conditions were created: a low-temperature and low-humidity (LTLH) condition at 25 °C with 35-50% humidity and a high-temperature and high-humidity (HTHH) condition at 31 °C with 80-95% humidity. During the adaptation phase, the cows were subjected to LTLH and HTHH conditions for 3 days. This was followed by a 4-day heat stress phase and then by a 7-day phase of heat stress, which were complemented by supplementation with rumen-protected L-tryptophan (ACT). The findings revealed that supplementation with ACT increased dry matter intake as well as milk yield and protein and decreased water intake, heart rate, and rectal temperature in the HTHH group (p < 0.05). For plateletcrit (PCT, p = 0.0600), the eosinophil percentage (EOS, p = 0.0880) showed a tendency to be lower, while the monocyte (MONO) and large unstained cells (LUC) amounts were increased in both groups (p < 0.05). Albumin and glucose levels were lower in the HTHH group (p < 0.05). The gene expressions of heat shock proteins 70 and 90 in the peripheral blood mononuclear cells were higher in the ACT group (HTHH, p < 0.05). These results suggest that ACT supplementation improved productivity, physiological indicators, blood characteristics, and gene expression in the peripheral blood mononuclear cells of early lactating Holstein cows under heat-stress conditions. In particular, ACT supplementation objectively relieved stress in these animals, suggesting that L-tryptophan has potential as a viable solution for combating heat-stress-induced effects on the cattle in dairy farming.


Asunto(s)
Proteínas de Choque Térmico , Lactancia , Embarazo , Femenino , Bovinos , Animales , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Dieta/veterinaria , Triptófano/farmacología , Triptófano/metabolismo , Rumen , Leucocitos Mononucleares , Leche/metabolismo , Respuesta al Choque Térmico/fisiología , Suplementos Dietéticos , Expresión Génica , Calor
2.
Trop Anim Health Prod ; 55(6): 425, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38030895

RESUMEN

The aim of this study was to investigate the effect of dietary tryptophan (Trp) supplementation on serum biochemical indices, antioxidant indices, cytokine levels, mitochondrial biosynthesis, and mitochondrial morphology of heat-stressed broilers. A total of 180 female Arbor Acres broilers (18-day-old) were randomly allocated into three groups with six replicates of 10 broilers each. Broilers in thermoneutral (TN) (23 ± 1 °C) group were fed a basal diet; the other two groups were fed the basal diet supplemented with 0 or 0.18% Trp under heat stress (HS) (34 ± 1 °C for 8 h/day (h/day) and 23 ± 1°C for the remaining time) condition. The heat stress lasted for 21 days (days 21 to 42). The results indicated that heat stress reduced serum total protein content (TP) and decreased the activities of serum superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), but increased the levels of serum uric acid (UA), interleukin (IL)-1ß, IL-6, and IL-18 (P < 0.05) compared to the TN group. However, dietary supplementation with 0.18% Trp enhanced serum TP content, glutathione peroxidase (GSH-Px), SOD, catalase (CAT) activities, and T-AOC; decreased aspartate aminotransferase (AST) activities (P < 0.05); and lowered serum IL-1ß, IL-6, IL-18 contents (P < 0.05). Meanwhile, heat stress exposure downregulated the mRNA expression of mitochondrial transcription factor A (TFAM), cytochrome c oxidase subunit 1 (COX1), and cytochrome c oxidase subunit 5A (COX5A) in ileum (P < 0.05) as compared to the TN group. Dietary Trp supplementation enhanced the mitochondrial membrane potential (MMP) and the mRNA expression of TFAM, COX1 in ileum mucosa (P < 0.05) and ameliorated the damage of mitochondrial structure. Collectively, dietary supplementation with Trp could improve antioxidant capacity and mitochondrial structure and regulate mitochondrial function-related genes and decrease inflammatory response in heat-stressed broilers. Dietary Trp supplementation might be an effective nutritional strategy to protect against heat stress impairment.


Asunto(s)
Antioxidantes , Pollos , Femenino , Animales , Antioxidantes/metabolismo , Pollos/fisiología , Interleucina-18/metabolismo , Triptófano/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Interleucina-6/metabolismo , Ácido Úrico , Suplementos Dietéticos , Dieta/veterinaria , Respuesta al Choque Térmico/fisiología , Mitocondrias , Superóxido Dismutasa/metabolismo , ARN Mensajero/metabolismo , Alimentación Animal/análisis
3.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37837639

RESUMEN

This study was conducted to evaluate the effects of dietary dimethyl itaconate (DI) supplementation on oxidative stress, inflammation, and apoptosis in broilers under chronic heat stress (HS). Twenty-one-day-old male Ross 308 broilers (n = 120) were randomly allocated to 5 groups: a control group, HS group, HS + 50 mg/kg DI group, HS + 150 mg/kg DI group, and HS + 200 mg/kg DI group. The birds in the control group received the basal diets and were maintained at 21 ± 1 °C for 24 h daily. The birds in the HS group and HS + DI groups were raised at 32 ± 1 °C for 8 h daily and received basal diets containing DI at the indicated dose (0, 50, 150, or 200 mg/kg). The results showed that the contents of alanine aminotransferase, aspartate aminotransferase, and malondialdehyde (MDA) in serum were markedly elevated by exposure to chronic HS (P < 0.01), and this elevation was alleviated by 150 and 200 mg/kg DI supplementation (P < 0.05). Chronic HS-induced declines (P < 0.05) in total antioxidant capacity (T-AOC) and activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) in serum were markedly attenuated after 200 mg/kg DI treatment in broilers (P < 0.05). Moreover, broilers subjected to chronic HS exhibited higher contents of MDA, protein carbonyl, and hydrogen peroxide (P < 0.01), but lower T-AOC and activities of antioxidant enzymes (P < 0.05), as well as reduced inhibition of superoxide and hydroxyl free radicals (P < 0.01) in the liver compared to the control group; these changes were effectively mitigated by treatment with 200 mg/kg DI in broilers (P < 0.05). In addition, 50-200 mg/kg DI effectively ameliorated chronic HS-stimulated upregulation of the mRNA levels of pro-inflammatory mediators in the livers of broilers (P < 0.01). Dietary supplementation with 150 and 200 mg/kg DI significantly alleviated chronic HS challenge-induced upregulation of the mRNA levels of Bcl-2-associated X, caspase 3, and caspase 9 (P < 0.01), but downregulation of Bcl-2 mRNA levels (P < 0.01) in broilers (P < 0.05). Importantly, chronic HS-induced downregulation of the mRNA or protein levels of nuclear factor (erythroid-derived 2)-like 2 (NRF-2), NADPH quinone acceptor oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), SOD2, or glutathione-S-transferases (GST) (P < 0.01) was markedly improved by 150 and 200 mg/kg DI (P < 0.05). The above results indicated that DI can ameliorate oxidative stress, inflammation, and apoptosis in broilers under chronic HS.


Global warming has become increasingly severe in recent years, threatening all life forms on Earth. Poultry are particularly susceptible to heat stress (HS) due to their unique physiological features, such as the absence of sweat glands and a high metabolic rate, and HS thus leads to liver injury and high mortality in broilers. Numerous studies have shown that dimethyl itaconate (DI) exerts beneficial effects in the regulation of inflammation, oxidative stress, and nutrient metabolism. However, it remains unclear whether DI can be used as a dietary supplement to prevent oxidative stress, inflammation, and apoptosis in broilers exposed to chronic HS. Here, we found that DI markedly relieved chronic HS-induced liver injury and enhancement of active molecule contents in the livers of broilers. Simultaneously, DI significantly ameliorated chronic HS by enhancing the antioxidative capacity and reducing the expression of pro-inflammatory cytokines and pro-apoptotic factors in broiler liver, which may be achieved through activation of the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. These results may provide sufficient data to support DI as a dietary supplement for controlling diseases associated with chronic HS in broilers.


Asunto(s)
Antioxidantes , Pollos , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Pollos/fisiología , Estrés Oxidativo , Dieta/veterinaria , Respuesta al Choque Térmico/fisiología , Apoptosis , Suplementos Dietéticos , Inflamación/veterinaria , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo , Alimentación Animal/análisis
4.
Microbiol Spectr ; 11(1): e0311322, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36507658

RESUMEN

Pleurotus ostreatus is usually cultivated in horticultural facilities that lack environmental control systems and often suffer heat stress (HS). Salicylic acid (SA) is recognized as a plant defense-related hormone. Here, SA treatment (200 µM) induced fungal resistance to HS of P. ostreatus, with decreased malondialdehyde (MDA) content and HSP expression. Further analysis showed that SA treatment in P. ostreatus increased the cytosolic trehalose content and reduced the intracellular reactive oxygen species (ROS) level. Moreover, H2O2 could restore the MDA content and HSP expression of P. ostreatus treated with SA under HS. In addition, trehalose (25 mM) or CaCl2 (5 mM) treatment induced fungal resistance to HS, and CaCl2 treatment increased the cytosolic trehalose content of P. ostreatus under HS. However, inhibiting Ca2+ levels using Ca2+ inhibitors or mutants reversed the trehalose content induced by SA in P. ostreatus under HS. In addition, inhibiting trehalose biosynthesis using Tps-silenced strains reversed the MDA content and HSP expression of P. ostreatus treated with SA under HS. Taken together, these results indicate that SA treatment alleviates the HS response of P. ostreatus by reducing the intracellular ROS level and increasing the cytosolic trehalose content. IMPORTANCE Heat stress (HS) is a crucial environmental challenge for edible fungi. Salicylic acid (SA), a plant defense-related hormone, plays key roles in plant responses to biotic and abiotic stresses. In this study, we found that SA treatment increased the cytosolic trehalose content and induced fungal resistance to HS in P. ostreatus. Further analysis showed that SA can alleviate the HS of P. ostreatus by reducing the intracellular ROS level and increasing the cytosolic trehalose content. Our results help to understand the mechanism underlying the responses of P. ostreatus to HS. In addition, this research provides new insights for the cultivation of P. ostreatus.


Asunto(s)
Pleurotus , Especies Reactivas de Oxígeno/metabolismo , Pleurotus/metabolismo , Trehalosa , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Peróxido de Hidrógeno/metabolismo , Cloruro de Calcio/metabolismo , Respuesta al Choque Térmico/fisiología , Hormonas/metabolismo
5.
J Anim Sci ; 100(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35908791

RESUMEN

Substantial economic losses in animal agriculture result from animals experiencing heat stress (HS). Pigs are especially susceptible to HS, resulting in reductions in growth, altered body composition, and compromised substrate metabolism. In this study, an artificial high-intensity sweetener and capsaicin (CAPS-SUC; Pancosma, Switzerland) were supplemented in combination to mitigate the adverse effects of HS on pig performance. Forty cross-bred barrows (16.2 ± 6 kg) were assigned to one of five treatments: thermal neutral controls (TN) (22 ± 1.2 °C; 38%-73% relative humidity) with ad libitum feed, HS conditions with ad libitum feed with (HS+) or without (HS-) supplementation, and pair-fed to HS with (PF+) or without supplementation (PF-). Pigs in heat-stressed treatments were exposed to a cyclical environmental temperature of 12 h at 35 ± 1.2 °C with 27%-45% relative humidity and 12 h at 30 ± 1.1 °C with 24%-35% relative humidity for 21 d. Supplementation (0.1 g/kg feed) began 7 d before and persisted through the duration of environmental or dietary treatments (HS/PF), which lasted for 21 d. Rectal temperatures and respiration rates (RR; breaths/minute) were recorded thrice daily, and feed intake (FI) was recorded daily. Before the start and at the termination of environmental treatments (HS/PF), a muscle biopsy of the longissimus dorsi was taken for metabolic analyses. Blood samples were collected weekly, and animals were weighed every 3 d during treatment. Core temperature (TN 39.2 ± 0.02 °C, HS- 39.6 ± 0.02 °C, and HS+ 39.6 ± 0.02 °C, P < 0.001) and RR (P < 0.001) were increased in both HS- and HS+ groups, but no difference was detected between HS- and HS+. PF- pigs exhibited reduced core temperature (39.1 ± 0.02 °C, P < 0.001), which was restored in PF+ pigs (39.3 ± 0.02 °C) to match TN. Weight gain and feed efficiency were reduced in PF- pigs (P < 0.05) but not in the PF+ or the HS- or HS+ groups. Metabolic flexibility was decreased in the HS- group (-48.4%, P < 0.05) but maintained in the HS+ group. CAPS-SUC did not influence core temperature or weight gain in HS pigs but did restore core temperature, weight gain, and feed efficiency in supplemented PF pigs. In addition, supplementation restored metabolic flexibility during HS and improved weight gain and feed efficiency during PF, highlighting CAPS-SUC's therapeutic metabolic effects.


Heat stress reduces pig performance due to metabolic responses to heat. During heat stress, pigs lose the ability to metabolize fatty acids for energy and rely on carbohydrates to fuel growth. Evidence has shown that capsaicin, the active ingredient in chili peppers, interacts with heat-sensing receptors to protect against heat stress by preventing changes to metabolism. Artificial sweeteners can also preserve fat metabolism by inducing the secretion of metabolic regulatory hormones from the gut. This study examined a combination of capsaicin and artificial sweetener to restore growth and maintain metabolism during 3 wk of heat stress. As pigs often reduce their feed intake during heat stress, a group of pigs was feed restricted to match the reduced feeding observed in the heat-stressed pigs. Pigs given the feed supplement during heat stress maintained their metabolic flexibility, a measure of metabolic health. In agreement with previous short-term studies, the capsaicin and artificial sweetener supplement improved feed efficiency and weight gain in feed-restricted pigs. This study demonstrated that supplementation with capsaicin and artificial sweetener may prevent metabolic dysfunction during heat stress. This study also confirmed that supplementation with capsaicin and artificial sweetener does improve feed-restricted pigs' growth and feed efficiency.


Asunto(s)
Trastornos de Estrés por Calor , Enfermedades de los Porcinos , Alimentación Animal/análisis , Animales , Temperatura Corporal/fisiología , Capsaicina/análisis , Capsaicina/farmacología , Suplementos Dietéticos/análisis , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico/fisiología , Calor , Edulcorantes , Porcinos , Aumento de Peso
6.
J Anim Sci ; 100(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772767

RESUMEN

Heat stress (HS) deleteriously affects multiple components of porcine reproduction and is causal to seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. Postpubertal gilts (n = 42) were artificially inseminated during behavioral estrus (n = 28) or were kept cyclic (n = 14), and randomly assigned to thermal neutral (TN; 21 ± 1 °C) or diurnal HS (35 ± 1 °C for 12 h/31.6 ± 1 °C for 12 h) conditions from day 3 to 12 postestrus (dpe). Seven of the inseminated gilts from each thermal treatment group received ALT (15 mg/d) during this period. Using quantitative PCR, transcript abundance of HSP family A (Hsp70) member 1A (HSPA1A, P = 0.001) and member 6 (HSPA6, P < 0.001), and HSP family B (small) member 8 (HSB8, P = 0.001) were increased while HSP family D (Hsp60) member 1 (HSPD1, P = 0.01) was decreased in the endometrium of pregnant gilts compared to the cyclic gilts. Protein abundance of HSPA1A decreased (P = 0.03) in pregnant gilt endometrium due to HS, while HSP family B (small) member 1 (HSPB1) increased (P = 0.01) due to HS. Oral ALT supplementation during HS reduced the transcript abundance of HSP90α family class B member 1 (HSP90AB1, P = 0.04); but HS increased HSP90AB1 (P = 0.001), HSPA1A (P = 0.02), and HSPA6 (P = 0.04) transcript abundance irrespective of ALT. ALT supplementation decreased HSP90α family class A member 1 (HSP90AA1, P = 0.001) protein abundance, irrespective of thermal environment, whereas ALT only decreased HSPA6 (P = 0.02) protein abundance in TN gilts. These results indicate a notable shift of HSP in the porcine endometrium during the peri-implantation period in response to pregnancy status and heat stress.


Heat stress (HS) deleteriously affects multiple components of porcine reproduction and causes seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. We evaluated the abundance of HSP90, HSP70, HSP60 and HSPB in the porcine endometrium during the peri-implantation period. We demonstrate how a physiological event such as pregnancy and an environmental stressor such as HS, individually and in combination, alter the endometrial abundance of these HSP. Moreover, supplementation of pregnant gilts subjected to HS with ALT also altered the abundance of these HSP in the porcine endometrium.


Asunto(s)
Proteínas de Choque Térmico , Respuesta al Choque Térmico , Animales , Suplementos Dietéticos , Endometrio/metabolismo , Femenino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Embarazo , Sus scrofa/metabolismo , Porcinos , Acetato de Trembolona/análogos & derivados
7.
ScientificWorldJournal ; 2021: 8711286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707467

RESUMEN

The administration of plant extracts to broilers may be a way to mitigate the effects of heat stress. The importance of AQP2 and HSP70 compounds in maintaining the homeostasis of the chicken body when it is subjected to heat stress is well established. This study aims to determine the effect of giving the ethanolic extract of the leaves of Salix tetrasperma Roxb. on the immunohistochemical expression of AQP2 and HSP70 in exposed and unexposed broiler kidney tissue. This study used 36 samples of 28-day-old chicken kidneys. Chickens were kept in individual cages, provided with feed and drinking water ad libitum. The design used was a completely randomized design with 6 treatments and 6 replications: (a) chickens were reared in conditions exposed to heat (HS + 0); (b) chickens were reared in conditions exposed to heat and given Salix extract at a dose of 50 mg/L drinking water (HS + 50); (c) chickens were reared under heat-exposed conditions and given Salix extract at a dose of 100 mg/L drinking water (HS + 100); (d) chickens were reared in conditions without exposure to heat (n-HS + 0); (e) chickens were reared in conditions without exposure to heat and given Salix extract at a dose of 50 mg/L drinking water (nHS + 50); and (f) chickens were reared in conditions exposed without exposure to heat and given 100 mg/L drinking water (nHS + 100) of Salix extract. Salix extract was given for 24 hours and was renewed every 6 hours. The results showed that giving Salix extract 100 mg/L in drinking water to chickens exposed to heat (HS + 100) reduced the value of the H/L ratio. Giving Salix extract 50-100 mg/L in drinking water caused an upregulated AQP2 expression; on the other hand, it downregulated HSP-70 expression, in chicken kidney tubules both exposed to heat stress and nonexposed to heat stress. In conclusion, exposure to heat stress in broiler chickens and giving Salix extract can increase the formation of aquaporin 2 compounds and suppress the formation of HSP70.


Asunto(s)
Acuaporina 2/biosíntesis , Proteínas HSP70 de Choque Térmico/biosíntesis , Trastornos de Estrés por Calor/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Salix , Animales , Acuaporina 2/genética , Pollos , Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Trastornos de Estrés por Calor/tratamiento farmacológico , Respuesta al Choque Térmico/fisiología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/metabolismo
8.
Arq. bras. med. vet. zootec. (Online) ; 73(4): 995-999, Jul.-Aug. 2021. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1285279

RESUMEN

Objetivou-se avaliar o efeito da suplementação de cromo-metionina em dietas para frangos de corte criados em estresse por calor, no período de 22 a 43 dias de idade, nos parâmetros de qualidade da carne. Foram utilizados 336 frangos de corte, machos, da linhagem Cobb 500, com 21 dias de idade, distribuídos em delineamento em blocos inteiramente ao acaso, com quatro blocos (cada câmara climática), seis tratamentos (0; 0,10; 0,20; 0,40; 0,80 e 1,20mgkg-1 de Cr na forma de Cr-metionina), oito repetições e sete aves por unidade experimental. Aos 43 dias de idade, duas aves por unidade experimental foram selecionadas e abatidas para avaliação da qualidade da carne de peito, por meio dos parâmetros de pH15min, pH24h, luminosidade (L*), teor de vermelho (a*), teor de amarelo (b*), croma (C*), ângulo hue (Hº), capacidade de retenção de água, perda de peso por cozimento e força de cisalhamento. Houve efeito quadrático (P=0,0070) na capacidade de retenção de água da carne de peito. A suplementação de CrMet não afetou (P>0,05) os demais parâmetros de qualidade da carne. Assim, recomenda-se a suplementação de 0,59mgkg-1 de CrMet para frangos de corte para melhoria da capacidade de retenção de água do peito.(AU)


Asunto(s)
Animales , Pollos/fisiología , Cromo/administración & dosificación , Carne/análisis , Metionina/administración & dosificación , Respuesta al Choque Térmico/fisiología , Trastornos de Estrés por Calor/veterinaria
9.
Sci Rep ; 11(1): 14726, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282188

RESUMEN

Despite progress in the use of hyperthermia in clinical practice, the thermosensitivity of cancer cells is poorly understood. In a previous study, we found that sensitivity to hyperthermia varied between ovarian and uterine cancer cell lines. Upon hyperthermia, glycolytic enzymes decreased in hyperthermia-resistant SKOV3 cells. However, the mechanisms of glycolysis inhibition and their relationship with thermoresistance remain to be explored. In this study, metabolomic analysis indicated the downregulation of glycolytic metabolites in SKOV3 cells after hyperthermia. Proteomic and pathway analyses predicted that the ubiquitin pathway was explicitly activated in resistant SKOV3 cells, compared with hyperthermia-sensitive A2780 cells, and STUB1, a ubiquitin ligase, potentially targeted PKM, a glycolytic rate-limiting enzyme. PKM is degraded via ubiquitination upon hyperthermia. Although glycolysis is inactivated by hyperthermia, ATP production is maintained. We observed that oxygen consumption and mitochondrial membrane potential were activated in SKOV3 cells but suppressed in A2780 cells. The activation of mitochondria could compensate for the loss of ATP production due to the suppression of glycolysis by hyperthermia. Although the physiological significance has not yet been elucidated, our results demonstrated that metabolomic adaptation from the Warburg effect to mitochondrial oxidative phosphorylation could contribute to thermoresistance in ovarian and uterine cancer cells.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Hipertermia Inducida , Neoplasias Ováricas/metabolismo , Neoplasias Uterinas/metabolismo , Línea Celular Tumoral , Metabolismo Energético/fisiología , Femenino , Glucólisis/fisiología , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Neoplasias Ováricas/terapia , Proteómica , Insuficiencia del Tratamiento , Neoplasias Uterinas/terapia
10.
Cancer Lett ; 518: 23-34, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34126196

RESUMEN

The malignant transformation of residual hepatocellular carcinoma (HCC) cells after thermal ablation is considered as the main factor promoting postoperative HCC progression, which greatly limits the improvement of long-term survival, and at present there is no effective targeted therapeutic strategies. The Warburg effect is a metabolic feature correlated highly with malignant transformation (e.g. epithelial-to-mesenchymal transition [EMT]). Here, we showed that sublethal heat stress triggered a stronger Warburg effect of HCC cells, which contributed to the thermotolerance and invasion of HCC cells. Sublethal heat stress-induced O-GlcNAcylation was involved in this process. Such enhanced Warburg effect in HCC cells may be eliminated through O-GlcNAcylation inhibition, resulting in impaired thermotolerance and EMT, and thereby preventing tumor recurrence and metastasis of HCC-bearing mice after insufficient thermal ablation. Finally, we present evidence that sublethal heat stress-induced O-GlcNAcylation regulates the Warburg effect in HCC cells by promoting hypoxia-inducible factor 1α (HIF-1α) stability. In conclusion, the present study suggests that O-GlcNAcylation coordinates the Warburg effect to promote HCC progression after thermal ablation, which may serve as a novel potential target for controlling postoperative HCC recurrence and metastasis.


Asunto(s)
Acilación/fisiología , Carcinoma Hepatocelular/patología , Respuesta al Choque Térmico/fisiología , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/patología , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Transición Epitelial-Mesenquimal/fisiología , Humanos , Hipertermia Inducida/métodos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Recurrencia Local de Neoplasia/metabolismo , Efecto Warburg en Oncología
11.
Cell Stress Chaperones ; 26(4): 721-734, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34115338

RESUMEN

The Gulf of the Maine (GoM) is one of the fastest warming bodies of water in the world, posing serious physiological challenges to its marine inhabitants. Marine organisms can cope with the cellular and molecular stresses created by climate change through changes in gene expression. We used transcriptomics to examine how exposure to current summer temperatures (16 °C) or temperature regimes reflective of projected moderate and severe warming conditions (18 °C and 22 °C, respectively) during larval development alters expression of transcripts affiliated with the cellular stress response (CSR) in postlarval American lobsters (Homarus americanus). We identified 26 significantly differentially expressed (DE) transcripts annotated to CSR proteins. Specifically, transcripts for proteins affiliated with heat shock, the ubiquitin family, DNA repair, and apoptosis were significantly over-expressed in lobsters reared at higher temperatures relative to current conditions. Substantial variation in the CSR expression between postlarvae reared at 18 °C and those reared at 22 °C suggests that postlarvae reared under severe warming may have a hindered ability to cope with the physiological and molecular challenges of ocean warming. These results highlight that postlarval American lobsters may experience significant heat stress as rapid warming in the GoM continues, potentially compromising their ability to prevent cellular damage and inhibiting the reallocation of cellular energy towards other physiological functions beyond activation of the CSR. Moreover, this study establishes additional American lobster stress markers and addresses various knowledge gaps in crustacean biology, where sufficient 'omics research is lacking.


Asunto(s)
Adaptación Psicológica/fisiología , Calor , Estrés Fisiológico/fisiología , Transcriptoma/fisiología , Animales , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Nephropidae/metabolismo , Estaciones del Año , Temperatura
12.
Plant Cell Environ ; 44(7): 2200-2210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866576

RESUMEN

Heat stress coinciding with reproductive stage leads to a significant loss in reproductive organs viability, resulting in lower seed-set and crop productivity. Successful fertilization and seed formation are determined by the viability of male and female reproductive organs. The impact of heat stress on the male reproductive organ (pollen) is studied more often compared to the female reproductive organ (pistil). This is attributed to easier accessibility of the pollen coupled with the notion that the pistil's role in fertilization and seed-set under heat stress is negligible. However, depending on species and developmental stages, recent studies reveal varying degrees of sensitivity of the pistil to heat stress. Remarkably, in some cases, the vulnerability of the pistil is even greater than the pollen. This article summarizes the current knowledge of the impact of heat stress on three critical stages of pistil for successful seed-set, that is, female reproductive organ development (gametogenesis), pollen-pistil interactions including pollen capture on stigma and pollen tube growth in style, as well as fertilization and early embryogenesis. Further, future research directions are suggested to unravel molecular basis of heat stress tolerance in pistil, which is critical for sustaining crop yields under predicted warming scenarios.


Asunto(s)
Flores/fisiología , Respuesta al Choque Térmico/fisiología , Polen/fisiología , Flores/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Polinización , Semillas/fisiología , Termotolerancia
13.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562109

RESUMEN

ALBA DNA/RNA-binding proteins form an ancient family, which in eukaryotes diversified into two Rpp25-like and Rpp20-like subfamilies. In most studied model organisms, their function remains unclear, but they are usually associated with RNA metabolism, mRNA translatability and stress response. In plants, the enriched number of ALBA family members remains poorly understood. Here, we studied ALBA dynamics during reproductive development in Arabidopsis at the levels of gene expression and protein localization, both under standard conditions and following heat stress. In generative tissues, ALBA proteins showed the strongest signal in mature pollen where they localized predominantly in cytoplasmic foci, particularly in regions surrounding the vegetative nucleus and sperm cells. Finally, we demonstrated the involvement of two Rpp25-like subfamily members ALBA4 and ALBA6 in RNA metabolism in mature pollen supported by their co-localization with poly(A)-binding protein 3 (PABP3). Collectively, we demonstrated the engagement of ALBA proteins in male reproductive development and the heat stress response, highlighting the involvement of ALBA4 and ALBA6 in RNA metabolism, storage and/or translational control in pollen upon heat stress. Such dynamic re-localization of ALBA proteins in a controlled, developmentally and environmentally regulated manner, likely reflects not only their redundancy but also their possible functional diversification in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Polen/embriología , Proteínas de Unión al ARN/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Respuesta al Choque Térmico/fisiología , Microscopía Confocal , Proteínas de Unión a Poli(A)/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ARN/genética , Estrés Fisiológico/genética
14.
Poult Sci ; 100(2): 957-963, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33518149

RESUMEN

Broiler chickens reared under heat stress (HS) conditions have decreased growth performance and show metabolic and immunologic alterations. This study aimed to evaluate the effect of supplementation with a standardized blend of plant-derived isoquinoline alkaloids (IQ) on the growth performance, protein catabolism, intestinal barrier function, and inflammatory status of HS-treated chickens. Three hundred sixty 0-day-old Ross 308 male broiler chickens were randomly distributed into 2 treatment groups: control diet (no additives) or diet supplemented with 100 ppm IQ. At day 14, the chicks in each diet group were further divided into 2 groups, each of which was reared under thermoneutral (TN) (22.4°C) or constant HS (33.0°C) conditions until day 42. Each group consisted of 6 replicates with 15 birds per replicate, and chickens were provided ad libitum access to water and feed. During days 15-21, the body weight gain (BWG) and feed intake (FI) were significantly lower in the HS treatment group than in the TN group, and feed conversion ratio was higher (P < 0.05); these factors were not alleviated by IQ supplementation. During days 22-42, the final BW, BWG, and FI of the HS birds were better among those administered IQ than those that were not (P < 0.05). HS treatment increased plasma lipid peroxide, corticosterone, and uric acid concentrations as well as serum fluorescein isothiocyanate-dextran, a marker of intestinal barrier function, and decreased plasma total protein content (P < 0.05). These changes were not observed in the IQ group, suggesting that IQ supplementation improved oxidative damage, protein catabolism, and intestinal barrier function of chickens under HS. Isoquinoline alkaloid supplementation inhibited the expression of intestinal inflammatory factors, IL-6, tumor necrosis factor-like factor 1A, and inducible nitric oxide synthase under HS treatment (P < 0.05). These results suggest that IQ supplementation can improve the growth performance of broiler chickens under HS conditions, which may be associated with amelioration of oxidative damage, protein catabolism, intestinal barrier function, and inflammation.


Asunto(s)
Alcaloides/farmacología , Pollos/fisiología , Respuesta al Choque Térmico/fisiología , Intestinos/efectos de los fármacos , Isoquinolinas/administración & dosificación , Alcaloides/administración & dosificación , Alimentación Animal/análisis , Animales , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Suplementos Dietéticos , Calor , Intestinos/fisiología , Isoquinolinas/química , Masculino
15.
Ecotoxicol Environ Saf ; 212: 111962, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33550082

RESUMEN

The production of cucumber under combined salinity and heat stress is a crucial challenge facing many countries particularly in arid environments. This challenge could be controlled through exogenous foliar application of some bio-stimulants or anti-stressors. This study was carried out to investigate the management and improving cucumber production under combined salinity and heat stress. Nano-selenium (nano-Se, 25 mg L-1), silicon (Si, 200 mg L-1) and hydrogen peroxide (H2O2, 20 mmol L-1) were foliar applied on cucumber plants as anti-stress compounds. The results revealed that studied anti-stressors improved growth and productivity of cucumber grown in saline soil regardless the kind of anti-stressor under heat stress. The foliar application of nano-Se (25 mg L-1) clearly improved cucumber growth parameters (plant height and leaf area) compared to other anti-stressor and control. Foliar Si application showed the greatest impact on enzymatic antioxidant capacities among the other anti-stressor treatments. This applied rate of Si also showed the greatest increase in marketable fruit yield and yield quality (fruit firmness and total soluble solids) compared to untreated plants. These increases could be due to increasing nutrient uptake particularly N, P, K, and Mg, as well as Se (by 40.2% and 43%) in leaves and Si (by 11.2% and 22.1% in fruits) in both seasons, respectively. The potential role of Si in mitigating soil salinity under heat stress could be referred to high Si content found in leaf which regulates water losses via transpiration as well as high nutrient uptake of other nutrients (N, P, K, Mg and Se). The distinguished high K+ content found in cucumber leaves might help stressed plants to tolerate studied stresses by regulating the osmotic balance and controlling stomatal opening, which support cultivated plants to adapt to soil salinity under heat stress. Further studies are needed to be carried out concerning the different response of cultivated plants to combined stresses.


Asunto(s)
Selenio , Silicio , Antioxidantes , Cucumis sativus/crecimiento & desarrollo , Frutas , Respuesta al Choque Térmico/fisiología , Peróxido de Hidrógeno , Hojas de la Planta , Salinidad , Suelo
16.
Cell Immunol ; 361: 104285, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33484943

RESUMEN

Myeloid derived suppressor cells (MDSCs) are a diverse collection of immune cells that suppress anti-tumor immune responses. Decreasing MDSCs accumulation in the tumor microenvironment could improve the anti-tumor immune response and improve immunotherapy. Here, we examine the impact of physiologically relevant thermal treatments on the accumulation of MDSCs in tumors in mice. We found that different temperature-based protocols, including 1) weekly whole-body hyperthermia, 2) housing mice at their thermoneutral temperature (TT, ~30 °C), and 3) housing mice at a subthermoneutral temperature (ST,~22 °C) while providing a localized heat source, each resulted in a reduction in MDSC accumulation and improved tumor growth control compared to control mice housed at ST, which is the standard, mandated housing temperature for laboratory mice. Additionally, we found that low dose ß-adrenergic receptor blocker (propranolol) therapy reduced MDSC accumulation and improved tumor growth control to a similar degree as the models that relieved cold stress. These results show that thermal treatments can decrease MDSC accumulation and tumor growth comparable to propranolol therapy.


Asunto(s)
Calor/uso terapéutico , Células Supresoras de Origen Mieloide/inmunología , Neoplasias/inmunología , Antagonistas Adrenérgicos beta/farmacología , Animales , Línea Celular Tumoral , Femenino , Respuesta al Choque Térmico/fisiología , Calefacción/métodos , Hipertermia Inducida/métodos , Inmunoterapia/métodos , Masculino , Ratones , Ratones Endogámicos BALB C , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/fisiología , Microambiente Tumoral/inmunología
17.
Plant Cell Environ ; 44(7): 2150-2166, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33047317

RESUMEN

The development of gametes in plants is acutely susceptible to heatwaves as brief as a few days, adversely affecting pollen maturation and reproductive success. Pollen in cotton (Gossypium hirsutum) was differentially affected when tetrad and binucleate stages were exposed to heat, revealing new insights into the interaction between heat and pollen development. Squares were tagged and exposed to 36/25°C (day/night, moderate heat) or 40/30°C (day/night, extreme heat) for 5 days. Mature pollen grains and leaves were collected for physiological and proteomic responses. While photosynthetic competence was not compromised even at 40°C, leaf tissues became leakier. In contrast, pollen grains were markedly smaller after the tetrad stage was exposed to 40°C and boll production was reduced by 65%. Sugar levels in pollen grains were elevated after exposure to heat, eliminating carbohydrate deficits as a likely cause of poor reproductive capacity. Proteomic analysis of pure pollen samples revealed a particularly high abundance of 70-kDa heat shock (Hsp70s) and cytoskeletal proteins. While short-term bursts of heat had a minor impact on leaves, male gametophyte development was profoundly damaged. Cotton acclimates to maxima of 36°C at both the vegetative and reproductive stages but 5-days exposure to 40°C significantly impairs reproductive development.


Asunto(s)
Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Respuesta al Choque Térmico/fisiología , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Electrólitos/metabolismo , Proteínas de Choque Térmico/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Polen/metabolismo , Semillas/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo , Termotolerancia/fisiología
18.
J Sleep Res ; 30(2): e13055, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32363754

RESUMEN

Total sleep deprivation (TSD) is associated with endothelial dysfunction and a consequent decrease in vascular reactivity and increase in peripheral vascular resistance. These effectors compromise the body's ability to thermoregulate in hot and cold stress conditions. We investigated heat-unacclimated young adult men (26 ± 2 years) to determine whether 36 hr of TSD compared to an 8 or 4-hr sleep condition, would suppress the responses of the autonomic system (body rectal temperature [Tre ], heart rate [HR], root mean square of successive interbeat intervals, physiological strain, blood pressure [BP], circulating blood catecholamines, sweating rate and subjective sensations) to whole-body uncompensable passive heat stress in traditional Finnish sauna heat (Tair  = 80-90°C, rh = 30%). Sauna bathing that induced whole-body hyperthermia had a residual effect on reducing BP in the 8-hr and 4-hr sleep per night conditions according to BP measurements. By contrast, 36 hr of total wakefulness led to an increase in BP. These observed sleep deprivation-dependent differences in BP modifications were not accompanied by changes in the blood plasma epinephrine and norepinephrine concentrations. However, during sauna bathing, an increase in BP following 36 hr of TSD was accompanied by significant decreases in body Tre , HR and physiological strain, together with a diminished sweating rate, enhanced vagus-mediated autonomic control of HR variability, and improved thermal perception by the subjects. Our results suggest the impaired ability of the body to accumulate external heat in the body's core under uncompensable passive heat conditions following 36 hr of TSD, because of the TSD-attenuated autonomic system response to acute heat stress.


Asunto(s)
Adaptación Fisiológica/fisiología , Adaptación Psicológica/fisiología , Regulación de la Temperatura Corporal/fisiología , Frecuencia Cardíaca/fisiología , Respuesta al Choque Térmico/fisiología , Privación de Sueño/fisiopatología , Adulto , Humanos , Masculino
19.
Plant Mol Biol ; 105(1-2): 1-10, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32930929

RESUMEN

KEY MESSAGE: The developmental stage of anther development is generally more sensitive to abiotic stress than other stages of growth. Specific ROS levels, plant hormones and carbohydrate metabolism are disturbed in anthers subjected to abiotic stresses. As sessile organisms, plants are often challenged to multiple extreme abiotic stresses, such as drought, heat, cold, salinity and metal stresses in the field, which reduce plant growth, productivity and yield. The development of reproductive stage is more susceptible to abiotic stresses than the vegetative stage. Anther, the male reproductive organ that generate pollen grains, is more sensitive to abiotic stresses than female organs. Abiotic stresses affect all the processes of anther development, including tapetum development and degradation, microsporogenesis and pollen development, anther dehiscence, and filament elongation. In addition, abiotic stresses significantly interrupt phytohormone, lipid and carbohydrate metabolism, alter reactive oxygen species (ROS) homeostasis in anthers, which are strongly responsible for the loss of pollen fertility. At present, the precise molecular mechanisms of anther development under adverse abiotic stresses are still not fully understood. Therefore, more emphasis should be given to understand molecular control of anther development during abiotic stresses to engineer crops with better crop yield.


Asunto(s)
Flores/crecimiento & desarrollo , Desarrollo de la Planta/fisiología , Estrés Fisiológico/fisiología , Respuesta al Choque por Frío/fisiología , Productos Agrícolas , Sequías , Fertilidad , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/fisiología , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Polen/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Reproducción , Estrés Salino/fisiología
20.
Exp Physiol ; 106(1): 269-281, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32495481

RESUMEN

NEW FINDINGS: What is the central question of this study? Does passive heat acclimation alter glomerular filtration rate and urine-concentrating ability in response to passive heat stress? What is the main finding and its importance? Glomerular filtration rate remained unchanged after passive heat stress, and heat acclimation did not alter this response. However, heat acclimation mitigated the reduction in urine-concentrating ability and reduced the incidence of albuminuria in young healthy adults after passive heat stress. Collectively, these results suggest that passive heat acclimation might improve structural integrity and reduce glomerular permeability during passive heat stress. ABSTRACT: Little is known about the effect of heat acclimation on kidney function during heat stress. The purpose of this study was to determine the impact of passive heat stress and subsequent passive heat acclimation on markers of kidney function. Twelve healthy adults (seven men and five women; 26 ± 5 years of age; 72.7 ± 8.6 kg; 172.4 ± 7.5 cm) underwent passive heat stress before and after a 7 day controlled hyperthermia heat acclimation protocol. The impact of passive heat exposure on urine and serum markers of kidney function was evaluated before and after heat acclimation. Glomerular filtration rate, determined from creatinine clearance, was unchanged with passive heat stress before (pre, 133 ± 41 ml min-1 ; post, 127 ± 51 ml min-1 ; P = 0.99) and after (pre, 129 ± 46 ml min-1 ; post, 130 ± 36 ml min-1 ; P = 0.99) heat acclimation. The urine-to-serum osmolality ratio was reduced after passive heating (P < 0.01), but heat acclimation did not alter this response. In comparison to baseline, free water clearance was greater after passive heating before (pre, -0.86 ± 0.67 ml min-1 ; post, 0.40 ± 1.01 ml min-1 ; P < 0.01) but not after (pre, -0.16 ± 0.57 ml min-1 ; post, 0.76 ± 1.2 ml min-1 ; P = 0.11) heat acclimation. Furthermore, passive heating increased the fractional excretion rate of potassium (P < 0.03) but not sodium (P = 0.13) or chloride (P = 0.20). Lastly, heat acclimation reduced the fractional incidence of albuminuria after passive heating (before, 58 ± 51%; after, 8 ± 29%; P = 0.03). Collectively, these results demonstrate that passive heat stress does not alter the glomerular filtration rate. However, heat acclimation might improve urine-concentrating ability and filtration within the glomerulus.


Asunto(s)
Ejercicio Físico/fisiología , Trastornos de Estrés por Calor/fisiopatología , Riñón/fisiopatología , Sodio/orina , Aclimatación/fisiología , Adulto , Femenino , Respuesta al Choque Térmico/fisiología , Humanos , Hipertermia Inducida/métodos , Glomérulos Renales/fisiología , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA