Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 95(12)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33827953

RESUMEN

Sweet potato virus disease (SPVD), caused by synergistic infection of Sweet potato chlorotic stunt virus (SPCSV) and Sweet potato feathery mottle virus (SPFMV), is responsible for substantial yield losses all over the world. However, there are currently no approved treatments for this severe disease. The crucial role played by RNase III of SPCSV (CSR3) as an RNA silencing suppressor during the viruses' synergistic interaction in sweetpotato makes it an ideal drug target for developing antiviral treatment. In this study, high-throughput screening (HTS) of small molecular libraries targeting CSR3 was initiated by a virtual screen using Glide docking, allowing the selection of 6,400 compounds out of 136,353. We subsequently developed and carried out kinetic-based HTS using fluorescence resonance energy transfer technology, which isolated 112 compounds. These compounds were validated with dose-response assays including kinetic-based HTS and binding affinity assays using surface plasmon resonance and microscale thermophoresis. Finally, the interference of the selected compounds with viral accumulation was verified in planta In summary, we identified five compounds belonging to two structural classes that inhibited CSR3 activity and reduced viral accumulation in plants. These results provide the foundation for developing antiviral agents targeting CSR3 to provide new strategies for controlling sweetpotato virus diseases.IMPORTANCE We report here a high-throughput inhibitor identification method that targets a severe sweetpotato virus disease caused by coinfection with two viruses (SPCSV and SPFMV). The disease is responsible for up to 90% yield losses. Specifically, we targeted the RNase III enzyme encoded by SPCSV, which plays an important role in suppressing the RNA silencing defense system of sweetpotato plants. Based on virtual screening, laboratory assays, and confirmation in planta, we identified five compounds that could be used to develop antiviral drugs to combat the most severe sweetpotato virus disease.


Asunto(s)
Antivirales/farmacología , Crinivirus/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ipomoea batatas/virología , Enfermedades de las Plantas/virología , Ribonucleasa III/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Antivirales/química , Antivirales/metabolismo , Crinivirus/enzimología , Crinivirus/fisiología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Simulación del Acoplamiento Molecular , Fotosíntesis/efectos de los fármacos , Interferencia de ARN , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Proteínas Virales/antagonistas & inhibidores
2.
Sci Rep ; 6: 23989, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27045313

RESUMEN

The ribonuclease Dicer is a multidomain enzyme that plays a fundamental role in the biogenesis of small regulatory RNAs (srRNAs), which control gene expression by targeting complementary transcripts and inducing their cleavage or repressing their translation. Recent studies of Dicer's domains have permitted to propose their roles in srRNA biogenesis. For all of Dicer's domains except one, called DUF283 (domain of unknown function), their involvement in RNA substrate recognition, binding or cleavage has been postulated. For DUF283, the interaction with Dicer's protein partners has been the only function suggested thus far. In this report, we demonstrate that the isolated DUF283 domain from human Dicer is capable of binding single-stranded nucleic acids in vitro. We also show that DUF283 can act as a nucleic acid annealer that accelerates base-pairing between complementary RNA/DNA molecules in vitro. We further demonstrate an annealing activity of full length human Dicer. The overall results suggest that Dicer, presumably through its DUF283 domain, might facilitate hybridization between short RNAs and their targets. The presented findings reveal the complex nature of Dicer, whose functions may extend beyond the biogenesis of srRNAs.


Asunto(s)
ARN Helicasas DEAD-box/química , Ribonucleasa III/química , Línea Celular Tumoral , ADN Complementario/química , ADN de Cadena Simple/química , Humanos , Immunoblotting , Magnesio/química , Modelos Moleculares , Hibridación de Ácido Nucleico , Oligonucleótidos/química , Oligonucleótidos/genética , Unión Proteica , Dominios Proteicos , ARN Mensajero/química , ARN Interferente Pequeño/química , Zinc/química
3.
Mol Microbiol ; 67(1): 143-54, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18047582

RESUMEN

RNA interference is mediated by small interfering RNAs produced by members of the ribonuclease III (RNase III) family represented by bacterial RNase III and eukaryotic Rnt1p, Drosha and Dicer. For mechanistic studies, bacterial RNase III has been a valuable model system for the family. Previously, we have shown that RNase III uses two catalytic sites to create the 2-nucleotide (nt) 3' overhangs in its products. Here, we present three crystal structures of RNase III in complex with double-stranded RNA, demonstrating how Mg(2+) is essential for the formation of a catalytically competent protein-RNA complex, how the use of two Mg(2+) ions can drive the hydrolysis of each phosphodiester bond, and how conformational changes in both the substrate and the protein are critical elements for assembling the catalytic complex. Moreover, we have modelled a protein-substrate complex and a protein-reaction intermediate (transition state) complex on the basis of the crystal structures. Together, the crystal structures and the models suggest a stepwise mechanism for RNase III to execute the phosphoryl transfer reaction.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Ribonucleasa III/química , Ribonucleasa III/metabolismo , Secuencia de Bases , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Magnesio/metabolismo , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Fósforo/metabolismo , Estructura Terciaria de Proteína , ARN Catalítico/química , ARN Catalítico/metabolismo , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA