Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(12): 6425-6438, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-30997498

RESUMEN

Ribonucleoprotein (RNP) complexes and RNA-processing enzymes are attractive targets for antibiotic development owing to their central roles in microbial physiology. For many of these complexes, comprehensive strategies to identify inhibitors are either lacking or suffer from substantial technical limitations. Here, we describe an activity-binding-structure platform for bacterial ribonuclease P (RNase P), an essential RNP ribozyme involved in 5' tRNA processing. A novel, real-time fluorescence-based assay was used to monitor RNase P activity and rapidly identify inhibitors using a mini-helix and a pre-tRNA-like bipartite substrate. Using the mini-helix substrate, we screened a library comprising 2560 compounds. Initial hits were then validated using pre-tRNA and the pre-tRNA-like substrate, which ultimately verified four compounds as inhibitors. Biolayer interferometry-based binding assays and molecular dynamics simulations were then used to characterize the interactions between each validated inhibitor and the P protein, P RNA and pre-tRNA. X-ray crystallographic studies subsequently elucidated the structure of the P protein bound to the most promising hit, purpurin, and revealed how this inhibitor adversely affects tRNA 5' leader binding. This integrated platform affords improved structure-function studies of RNA processing enzymes and facilitates the discovery of novel regulators or inhibitors.


Asunto(s)
Antraquinonas/farmacología , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Ribonucleasa P/antagonistas & inhibidores , Antraquinonas/química , Antraquinonas/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Colorantes Fluorescentes , Fluorometría , Hematoxilina/análogos & derivados , Hematoxilina/química , Hematoxilina/metabolismo , Hematoxilina/farmacología , Simulación de Dinámica Molecular , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Ribonucleasa P/química , Ribonucleasa P/metabolismo , Bibliotecas de Moléculas Pequeñas
2.
PLoS One ; 7(4): e33595, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509260

RESUMEN

RNA biogenesis, including biosynthesis and maturation of rRNA, tRNA and mRNA, is a fundamental process that is critical for cell growth, division and differentiation. Previous studies showed that mutations in components involved in RNA biogenesis resulted in abnormalities in gametophyte and leaf development in Arabidopsis. In eukaryotes, RNases P/MRP (RNase mitochondrial RNA processing) are important ribonucleases that are responsible for processing of tRNA, and transcription of small non-coding RNAs. Here we report that Gametophyte Defective 1 (GAF1), a gene encoding a predicted protein subunit of RNases P/MRP, AtRPP30, plays a role in female gametophyte development and male competence. Embryo sacs were arrested at stages ranging from FG1 to FG7 in gaf1 mutant, suggesting that the progression of the gametophytic division during female gametogenesis was impaired in gaf1 mutant. In contrast, pollen development was not affected in gaf1. However, the fitness of the mutant pollen tube was weaker than that of the wild-type, leading to reduced transmission through the male gametes. GAF1 is featured as a typical RPP30 domain protein and interacts physically with AtPOP5, a homologue of RNases P/MRP subunit POP5 of yeast. Together, our data suggest that components of the RNases P/MRP family, such as RPP30, play important roles in gametophyte development and function in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Gametogénesis en la Planta , Procesamiento Postranscripcional del ARN , ARN/metabolismo , Ribonucleasa P/química , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Autoantígenos/química , Endorribonucleasas/química , Regulación de la Expresión Génica de las Plantas , Humanos , Datos de Secuencia Molecular , Mutación , Polen/genética , Polen/crecimiento & desarrollo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mitocondrial , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido
3.
J Mol Biol ; 411(2): 368-83, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21683084

RESUMEN

Ribonuclease P (RNase P) is a ribonucleoprotein complex that utilizes a Mg(2+)-dependent RNA catalyst to cleave the 5' leader of precursor tRNAs (pre-tRNAs) and generate mature tRNAs. The bacterial RNase P protein (RPP) aids RNase P RNA (RPR) catalysis by promoting substrate binding, Mg(2+) coordination and product release. Archaeal RNase P comprises an RPR and at least four RPPs, which have eukaryal homologs and function as two binary complexes (POP5·RPP30 and RPP21·RPP29). Here, we employed a previously characterized substrate-enzyme conjugate [pre-tRNA(Tyr)-Methanocaldococcus jannaschii (Mja) RPR] to investigate the functional role of a universally conserved uridine in a bulge-helix structure in archaeal RPRs. Deletion of this bulged uridine resulted in an 80-fold decrease in the self-cleavage rate of pre-tRNA(Tyr)-MjaΔU RPR compared to the wild type, and this defect was partially ameliorated upon addition of either RPP pair. The catalytic defect in the archaeal mutant RPR mirrors that reported in a bacterial RPR and highlights a parallel in their active sites. Furthermore, an N-terminal deletion mutant of Pyrococcus furiosus (Pfu) RPP29 that is defective in assembling with its binary partner RPP21, as assessed by isothermal titration calorimetry and NMR spectroscopy, is functional when reconstituted with the cognate Pfu RPR. Collectively, these results indicate that archaeal RPPs are able to compensate for structural defects in their cognate RPR and vice-versa, and provide striking examples of the cooperative subunit interactions critical for driving archaeal RNase P toward its functional conformation.


Asunto(s)
Proteínas Arqueales/metabolismo , Methanococcales/enzimología , Pyrococcus furiosus/enzimología , ARN de Archaea/metabolismo , Ribonucleasa P/metabolismo , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Magnesio/metabolismo , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación , Unión Proteica , Precursores del ARN/metabolismo , Homología de Secuencia de Aminoácido
4.
Nucleic Acids Res ; 38(21): 7711-7, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20660484

RESUMEN

All tRNA(His) possess an essential extra G(-1) guanosine residue at their 5' end. In eukaryotes after standard processing by RNase P, G(-1) is added by a tRNA(His) guanylyl transferase. In prokaryotes, G(-1) is genome-encoded and retained during maturation. In plant mitochondria, although trnH genes possess a G(-1) we find here that both maturation pathways can be used. Indeed, tRNA(His) with or without a G(-1) are found in a plant mitochondrial tRNA fraction. Furthermore, a recombinant Arabidopsis mitochondrial RNase P can cleave tRNA(His) precursors at both positions G(+1) and G(-1). The G(-1) is essential for recognition by plant mitochondrial histidyl-tRNA synthetase. Whether, as shown in prokaryotes and eukaryotes, the presence of uncharged tRNA(His) without G(-1) has a function or not in plant mitochondrial gene regulation is an open question. We find that when a mutated version of a plant mitochondrial trnH gene containing no encoded extra G is introduced and expressed into isolated potato mitochondria, mature tRNA(His) with a G(-1) are recovered. This shows that a previously unreported tRNA(His) guanylyltransferase activity is present in plant mitochondria.


Asunto(s)
Mitocondrias/genética , Procesamiento Postranscripcional del ARN , ARN de Planta/metabolismo , ARN de Transferencia de Histidina/metabolismo , ARN/metabolismo , Arabidopsis/enzimología , Núcleo Celular/enzimología , Mitocondrias/enzimología , Nucleotidiltransferasas/análisis , Nucleotidiltransferasas/metabolismo , ARN/biosíntesis , ARN/clasificación , Precursores del ARN/metabolismo , ARN Mitocondrial , ARN de Planta/biosíntesis , ARN de Planta/clasificación , ARN de Transferencia de Histidina/biosíntesis , ARN de Transferencia de Histidina/clasificación , Ribonucleasa P/metabolismo , Solanum tuberosum/enzimología , Solanum tuberosum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA