Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 716
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8505, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605045

RESUMEN

The 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi), a rumen protective methionine, has been extensively studied in dairy cows and beef cattle and has been shown to regulate gastrointestinal microbiota and improve production performance. However, knowledge of the application of HMBi on cashmere goats and the simultaneous study of rumen and hindgut microbiota is still limited. In this study, HMBi supplementation increased the concentration of total serum protein, the production of microbial protein in the rumen and feces, as well as butyrate production in the feces. The results of PCoA and PERMANOVA showed no significant difference between the rumen microbiota, but there was a dramatic difference between the fecal microbiota of the two groups of Cashmere goats after the HMBi supplementation. Specifically, in the rumen, HMBi significantly increased the relative abundance of some fiber-degrading bacteria (such as Fibrobacter) compared with the CON group. In the feces, as well as a similar effect as in the rumen (increasing the relative abundance of some fiber-degrading bacteria, such as Lachnospiraceae FCS020 group and ASV32), HMBi diets also increased the proliferation of butyrate-producing bacteria (including Oscillospiraceae UCG-005 and Christensenellaceae R-7 group). Overall, these results demonstrated that HMBi could regulate the rumen and fecal microbial composition of Liaoning cashmere goats and benefit the host.


Asunto(s)
Ésteres , Microbiota , Animales , Bovinos , Femenino , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Ésteres/metabolismo , Rumen/microbiología , Fermentación , Cabras , Dieta/veterinaria , Heces , Bacterias/metabolismo , Suplementos Dietéticos , Alimentación Animal/análisis , Lactancia/fisiología
2.
Sci Rep ; 13(1): 18689, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907583

RESUMEN

This study aimed to compare the effects of adding cyanide-utilizing bacteria (CUB) and sulfur on rumen fermentation, the degradation efficiency of hydrogen cyanide (HCN), feed utilization, and blood metabolites in beef cattle fed two levels of fresh cassava root (CR). A 2 × 2 factorial arrangement in a 4 × 4 Latin square design was used to distribute four male purebred Thai native beef cattle (2.5-3.0 years old) with an initial body weight (BW) of 235 ± 15.0 kg. Factor A was Enterococcus faecium KKU-BF7 oral direct fed at 108 CFU/ml and 3% dry matter (DM) basis of pure sulfur in concentrate diet. Factor B was the two levels of CR containing HCN at 300 and 600 mg/kg on DM basis. There was no interaction effect between CUB and sulfur supplementation with CR on feed utilization (p > 0.05). Similarly, CUB and sulfur supplementation did not affect (p > 0.05) DM intake and apparent nutrient digestibility. However, the high level of CR supplementation increased (p < 0.05) feed intake and neutral detergent fiber digestibility. The ruminal pH, microbial population, ammonia-nitrogen, blood urea nitrogen, and blood thiocyanate concentrations were unaffected by the addition of CUB and sulfur at two CR concentrations (p > 0.05). The addition of CUB or sulfur had no effect on the efficiency of HCN degradation in the rumen (p > 0.05). However, cattle given CR with HCN at 600 mg/kg DM had considerably higher degradation efficiency than those fed CR containing HCN at 300 mg/kg DM (p < 0.05). The group fed CUB had a considerably greater CUB population (p < 0.05) than the sulfur group. Cyanide-utilizing bacteria or sulfur supplementation with CR had no interaction effect between total VFAs and their profiles (p > 0.05). However, the study observed a significant positive correlation between the amount of CR and the concentration of propionate in the rumen (p < 0.05). The levels of nitrogen absorption and nitrogen retention did not differ significantly among the treatments (p > 0.05). Hence, it may be inferred that the administration of a high concentration of CR at a dosage of 600 mg/kg DM HCN could potentially provide advantageous outcomes when animals are subjected to oral CUB incorporation.


Asunto(s)
Manihot , Microbiota , Bovinos , Masculino , Animales , Manihot/metabolismo , Cianuros/metabolismo , Digestión , Suplementos Dietéticos/análisis , Dieta/veterinaria , Fermentación , Nitrógeno/metabolismo , Bacterias/metabolismo , Azufre/metabolismo , Rumen/microbiología , Alimentación Animal/análisis
3.
Microbiome ; 11(1): 229, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858227

RESUMEN

BACKGROUND: Ruminant livestock production is a considerable source of enteric methane (CH4) emissions. In a previous study, we found that dietary inclusions of Bacillus subtilis (BS) and Macleaya cordata extract (MCE) increased dry matter intake and milk production, while reduced enteric CH4 emission in dairy cows. The objective of this study was to further elucidate the impact of feeding BS and MCE on rumen methanogenesis in dairy cows using rumen metagenomics techniques. RESULTS: Sixty dairy cows were blocked in 20 groups of 3 cows accordingly to their live weight, milk yield, and days in milk, and within each group, the 3 cows were randomly allocated to 1 of 3 treatments: control diet (CON), control diet plus BS (BS), and control diet plus MCE (MCE). After 75 days of feeding experimental diets, 12 cows were selected from each treatment for collection of rumen samples for the metagenomic sequencing. Results showed that BS decreased ruminal acetate and butyrate, while increased propionate concentrations, resulting in decreased acetate:propionate ratio. The metagenomics analysis revealed that MCE reduced relative abundances of Methanobrevibacter wolinii, Methanobrevibacter sp. AbM4, Candidatus Methanomassiliicoccus intestinalis, Methanobrevibacter cuticularis, Methanomicrobium mobile, Methanobacterium formicicum, and Methanobacterium congolense. Both BS and MCE reduced relative abundances of Methanosphaera sp. WGK6 and Methanosphaera stadtmanae. The co-occurrence network analysis of rumen bacteria and archaea revealed that dietary treatments influenced microbial interaction patterns, with BS and MCE cows having more and stronger associations than CON cows. The random forest and heatmaps analysis demonstrated that the Halopenitus persicus was positively correlated with fat- and protein-corrected milk yield; Clostridium sp. CAG 269, Clostridium sp. 27 14, Haloarcula rubripromontorii, and Methanobrevibacter curvatus were negatively correlated with rumen acetate and butyrate concentrations, and acetate:propionate ratio, whereas Selenomonas rumiantium was positively correlated with those variables. CONCLUSIONS: The present results provided new information for mitigation of enteric methane emissions of dairy cows by feeding BS and MCE to influence rumen microbial activities. This fundamental knowledge is essential for developing enteric CH4 reduction strategies to mitigate climate change and reduce dietary energy waste. Video Abstract.


Asunto(s)
Lactancia , Microbiota , Femenino , Bovinos , Animales , Bacillus subtilis , Rumen/microbiología , Propionatos/metabolismo , Metano/metabolismo , Dieta/veterinaria , Acetatos/metabolismo , Butiratos/metabolismo , Extractos Vegetales , Fermentación
4.
Sci Rep ; 13(1): 13134, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573461

RESUMEN

Selenium (Se) is an important microelement for animal health. However, the knowledge about the effects of Se supplementation on rumen eukaryotic community remains less explored. In this study, the ruminal eukaryotic diversity in three months old Shaanbei white cashmere wether goats, with body weight (26.18 ± 2.71) kg, fed a basal diet [0.016 mg/kg Se dry matter (DM), control group (CG)] were compared to those animals given basal diet supplemented with different levels of organic Se in the form of Selenohomolanthionine (SeHLan), namely low Se group (LSE, 0.3 mg/kg DM), medium Se group (MSE, 0.6 mg/kg Se DM) and high Se group (HSE, 1.2 mg/kg DM) using 18S rRNA amplicon sequencing. Illumina sequencing generated 2,623,541 reads corresponding to 3123 operational taxonomic units (OTUs). Taxonomic analysis revealed that Eukaryota (77.95%) and Fungi (14.10%) were the dominant eukaryotic kingdom in all samples. The predominant rumen eukaryotic phylum was found to be Ciliophora (92.14%), while fungal phyla were dominated by Ascomycota (40.77%), Basidiomycota (23.77%), Mucoromycota (18.32%) and unidentified_Fungi (13.89%). The dominant eukaryotic genera were found to be Entodinium (55.44%), Ophryoscolex (10.51%) and Polyplastron (10.19%), while the fungal genera were dominanted by Mucor (15.39%), Pichia (9.88%), Aspergillu (8.24%), Malassezia (7.73%) and unidentified_Neocallimastigaceae (7.72%). The relative abundance of eukaryotic genera Ophryoscolex, Enoploplastron and fungal genus Mucor were found to differ significantly among the four treatment groups (P < 0.05). Moreover, Spearman correlation analysis revealed that the ciliate protozoa and fungi were negatively correlated with each other. The results of this study provided newer information about the effects of Se on rumen eukaryotic diversity patterns using 18s rRNA high-throughput sequencing technology.


Asunto(s)
Eucariontes , Selenio , Animales , Masculino , Eucariontes/genética , ARN Ribosómico 18S/genética , Cabras/genética , Rumen/microbiología , Suplementos Dietéticos , Selenio/farmacología
5.
Microbiol Spectr ; 11(4): e0534322, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37439665

RESUMEN

Emerging data have underscored the significance of exogenous supplementation of butyrate in the regulation of rumen development and homeostasis. However, the effects of other short-chain fatty acids (SCFAs), such as acetate or propionate, has received comparatively less attention, and the consequences of extensive exogenous SCFA infusion remain largely unknown. In our study, we conducted a comprehensive investigation by infusion of three SCFAs to examine their respective roles in regulating the rumen microbiome, metabolism, and epithelium homeostasis. Data demonstrated that the infusion of sodium acetate (SA) increased rumen index while also promoting SCFA production and absorption through the upregulation of SCFA synthetic enzymes and the mRNA expression of SLC9A1 gene. Moreover, both SA and sodium propionate infusion resulted in an enhanced total antioxidant capacity, an increased concentration of occludin, and higher abundances of specific rumen bacteria, such as "Candidatus Saccharimonas," Christensenellaceae R-7, Butyrivibrio, Rikenellaceae RC9 gut, and Alloprevotella. In addition, sodium butyrate (SB) infusion exhibited positive effects by increasing the width of rumen papilla and the thickness of the stratum basale. SB infusion further enhanced antioxidant capacity and barrier function facilitated by cross talk with Monoglobus and Incertae Sedis. Furthermore, metabolome and transcriptome data revealed distinct metabolic patterns in rumen contents and epithelium, with a particular impact on amino acid and fatty acid metabolism processes. In conclusion, our data provided novel insights into the regulator effects of extensive infusion of the three major SCFAs on rumen fermentation patterns, antioxidant capacity, rumen barrier function, and rumen papilla development, all achieved without inducing rumen epithelial inflammation. IMPORTANCE The consequences of massive exogenous supplementation of SCFAs on rumen microbial fermentation and rumen epithelium health remain an area that requires further exploration. In our study, we sought to investigate the specific impact of administering high doses of exogenous acetate, propionate, and butyrate on rumen homeostasis, with a particular focus on understanding the interaction between the rumen microbiome and epithelium. Importantly, our findings indicated that the massive infusion of these SCFAs did not induce rumen inflammation. Instead, we observed enhancements in antioxidant capacity, strengthening of rumen barrier function, and promotion of rumen papilla development, which were facilitated through interactions with specific rumen bacteria. By addressing existing knowledge gaps and offering critical insights into the regulation of rumen health through SCFA supplementation, our study holds significant implications for enhancing the well-being and productivity of ruminant animals.


Asunto(s)
Microbiota , Propionatos , Animales , Propionatos/farmacología , Cabras/metabolismo , Rumen/microbiología , Antioxidantes/metabolismo , Multiómica , Ácidos Grasos Volátiles/metabolismo , Epitelio/microbiología , Ácido Butírico , Rumiantes , Homeostasis
6.
Sci Rep ; 13(1): 8696, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248311

RESUMEN

This study aimed to investigate the effect of fermented spent mushroom substrate from Pleurotus eryngii (SMPE) supplementation on production performance, meat quality and rumen bacterial community structure of Hu sheep. 120 2-month-old Hu sheep with average body weight [(13.50 ± 3.10) kg] were selected and randomly divided into 4 groups with 3 replicates per group and 10 sheep per replicate. The control group (RL1) was fed a total mixed ration (TMR), and group RL2, RL3 and RL4 were fed the basal diets supplemented with 15%, 30% and 45% fermented SMPE, respectively. The pretest period lasted for 10 days and the test period lasted for 150 days. The results showed that: (1) Difference (p < 0.05) was observed in average daily feed intake (ADFI) and feed conversion ratio (FCR) between RL2 and RL4 groups. The eye muscle area (EMA) and grade rule (GR) values in RL2 and RL3 were significantly higher than those in RL1 and RL4 groups (p < 0.05). (2) The contents of threonine, valerine, leucine, lysine, histidine, essential amino acids, flavor amino acids, aspartic acid, serine, glutamic acid and arginine of the longissimus dorsi muscle in RL2 and RL3 groups were significantly higher than RL1 and RL4 (p < 0.05). (3) A total of 1,202,445 valid sequences were obtained from rumen of Hu sheep fed different amounts of fermented feed, and the valid sequences were clustered into 9824 Operational Taxonomic Units (OTUs). (4) α diversity analysis showed that the richness and diversity of rumen bacterial communities in Hu sheep in RL1, RL2, RL3 and RL4 groups were significantly higher than RL0 (raw materials of fermented SMPE) group (p < 0.05). ß diversity analysis showed that the bacterial community structure was the most different between RL0 and RL3. (5) At the genus level, compared with RL1, the relative abundance of Christensenellaceae R-7 in RL3 group decreased significantly by 33.59%, the relative abundance of Prevotellaceae UCG001 in RL2, RL3 and RL4 decreased significantly by 50.41%, 62.24% and 49.17%, respectively, and the relative abundance of Ruminococcaceae NK4A214 in RL2 group increased significantly by 35.01% (p < 0.05). In summary, the addition of fermented SMPE to TMR can significantly improve the production performance, meat quality and rumen bacterial community diversity and abundance of Hu sheep.


Asunto(s)
Agaricales , Rumen , Animales , Ovinos , Rumen/microbiología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Alimentación Animal/análisis
7.
Appl Microbiol Biotechnol ; 107(10): 3291-3304, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37042986

RESUMEN

The objective of this study was to systematically investigate how sodium butyrate (SB) affects the gastrointestinal bacteria in newborn calves at different stages before weaning. Forty female newborn Holstein calves (4-day-old, 40 ± 5 kg of body weight) were randomly divided into four groups; each group was supplemented with four SB doses: 0, 15, 30, and 45 g/day (ten replicates) in SB0, SB15, SB30, and SB45 groups, respectively. SB was fed with milk replacer from day 4 to day 60. Rumen fluid and feces were collected on days 2, 14, 28, 42, and 60 for 16S rRNA high-throughput sequencing. Data were analyzed in a complete randomized design and analyzed on the online platform of Majorbio Cloud Platform. The results showed that SB significantly increased the α-diversity in feces, especially Shannon and Chao indices in SB45 and SB30 at day 60 more than in SB15 (P < 0.05). Additionally, SB significantly enhanced Firmicutes growth from day 2 to 28 and also increased Bacteroides abundance from day 28 to 42 in rumen and feces (P < 0.05). SB also significantly inhibited Proteobacteria abundance in rumen and feces during the study period (P < 0.05). SB also promoted some potential beneficial bacterial abundance, including Prevotella, Lachnospiraceae, Clostridium, Ruminococcus, and Muribaculaceae (P < 0.05). Additionally, Escherichia-Shigella abundance at SB0 was significantly lower than in the other groups (P < 0.05). In conclusion, this study firstly reported a dynamic curve showing of the SB effects on bacteria in calves before weaning. This study provides valuable evidence for the development of the gastrointestinal tract of the calves in the early stage of the life. SB supplementation improved the gastrointestinal health by regulating the bacterial populations. KEY POINTS: • The gastrointestinal tract of calves has been improved after the SB supplementation. • Microbes were the vital influential factor in the development of calves. • Intervention before weaning is an effective strategy for calf health.


Asunto(s)
Suplementos Dietéticos , Leche , Animales , Bovinos , Femenino , Alimentación Animal/análisis , Bacterias/genética , Peso Corporal , Ácido Butírico/farmacología , Dieta/veterinaria , ARN Ribosómico 16S/genética , Rumen/microbiología , Destete
8.
Food Funct ; 14(1): 94-111, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484332

RESUMEN

The effects of dietary supplementation with citrus flavonoid extract (CFE) on milk performance, rumen fermentation, rumen microbiome, rumen metabolome, and serum antioxidant indexes were evaluated. Eight multiparous lactating cows were allocated to a replicated 4 × 4 Latin square with 25-d periods consisting of 20 d of adaptation and 5 d of sampling. Experimental treatments included a control diet (CON) and CON supplemented with 50 g d-1 (CFE50), 100 g d-1 (CFE100), and 150 g d-1 (CFE150). Feeding CFE to dairy cows increased milk production and milk lactose. Milk somatic cell count linearly reduced with increasing CFE amount. Supplementing CFE linearly increased the ruminal concentrations of total volatile fatty acids, acetate, propionate, butyrate, and microbial crude protein. Ruminal lipopolysaccharide linearly decreased with increasing CFE amount. Compared with CON, CFE150 cows exhibited a greater abundance of Firmicutes and a low abundance of Bacteroidetes. Cellulolytic bacteria (genera Ruminococcus, Clostridium, and Butyrivibrio) and carbohydrate metabolism were enriched in the CFE150 cows. For archaea and viruses, major methanogens (genera Methanobacterium and Methanosarcina) and phylum Uroviricota were inhibited in the CFE150 cows. Compared with CON, the ruminal concentrations of tyrosine, proline, pyruvate, glucose, and glucose-6-phosphate were higher in the CFE150 cows. The metabolites of citrus flavonoids, such as hippuric acid, hesperetin, and naringenin, were increased in the CFE150 cows. Supplementing CFE significantly improved the antioxidant capacity of the dairy cows. This study highlighted that dietary supplementation with CFE led to significant changes in the rumen microbial composition and metabolites, and consequently resulted in an improved lactational performance of dairy cows.


Asunto(s)
Lactancia , Microbiota , Femenino , Bovinos , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Rumen/metabolismo , Rumen/microbiología , Leche/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Flavonoides/farmacología , Flavonoides/metabolismo , Extractos Vegetales/farmacología , Fermentación , Alimentación Animal/análisis , Digestión
9.
Sci Rep ; 12(1): 21630, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517532

RESUMEN

The purpose of the present investigation was to detect the effect of replacement of soybean meal (SBM) with citric waste fermented yeast waste (CWYW) as an alternative protein source of portentous substances in a concentrate mixture diet of beef cattle on intake, digestibility, ruminal fermentation, plasma urea-nitrogen, energy partitioning, and nitrogen balance. Four Thai-native beef bulls (170 ± 10.0 kg of initial body weight) were randomly allocated to a 4 × 4 Latin square design. The dietary treatments were four levels of CWYW replacing SBM in a concentrated diet at ratios of 0, 33, 67, and 100%. SBM was added to the concentrate diet at a dose of 150 g/kg DM. All cattle were offered ad libitum rice straw and the concentrate diet at 5 g/kg of body weight. The study was composed of four periods, each lasting for 21 days. The findings demonstrated that there was no difference in total dry matter intake, nutritional intake, or digestibility between treatments (p > 0.05). When CWYW replaced SBM at 100% after 4 h of feeding, ruminal pH, ammonia nitrogen, plasma urea nitrogen, and bacterial population were highest (p < 0.05). Volatile fatty acids and energy partitioning were not different (p > 0.05) among dietary treatments. Urinary nitrogen excretion was greatest (p < 0.05) for cattle fed CWYW to replace SBM at 100% of the concentrate. However, nitrogen absorption and retention for Thai-native cattle were similar (p > 0.05) among treatments. In conclusion, CWYW may be utilized as a substitute for SBM as a source of protein in Thai-native beef cattle without having an adverse impact on feed utilization, rumen fermentation characteristics, or blood metabolites.


Asunto(s)
Digestión , Rumen , Animales , Bovinos , Masculino , Alimentación Animal/análisis , Peso Corporal , Dieta/veterinaria , Suplementos Dietéticos , Fermentación , Harina , Nitrógeno/metabolismo , Rumen/microbiología , Glycine max/metabolismo , Urea/metabolismo
10.
Curr Microbiol ; 79(12): 376, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329213

RESUMEN

Gut microbial diversity is a determinant of animal productivity and health. Probiotic supplementation in feed has been known to modulate the gut microbial diversity resulting in better feed utilization and resistance against diseases. The current study was designed to determine the probiotic potential of Geotrichum candidum QAUGC01 (VHDP00000000) in Sahiwal-Friesian crossbred dairy cows and its impact on gut microbial diversity, health, and productivity. To evaluate health and productivity, growth performance, determination of blood parameters, serum biochemistry, feed efficiency, milk yield & composition, and nutrients digestibility was determined and compared between control and experimental groups. Moreover, at the end of the experiment, the gut microbial diversity was evaluated through MiSeq (Illumina) sequencing of bacterial and fungal/yeast DNA in dung samples of both control and experimental cows. Inspite of a significant reduction in dry matter intake the increase in feed efficiency and milk yield was observed in experimental cows with normal hematological and serum biochemical profile. The increase in anaerobic bacterial count and decrease in the shredding of pathogenic flora was observed in experimental cows. Metagenomic analysis revealed Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes to be the four dominating phyla among bacteria and, Ascomycota followed by Basidiomycota and Neocallimastigomycota among the fungal population in both groups. The diversity of the core microbiome revealed high bacterial and Fungal Alpha diversity in the experimental group than in control via the Shannon index. This study provided insights into the safe use of G. candidum as a probiotic, to improve growth performance, health, productivity and gut microbial diversity of dairy cattle.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Femenino , Bovinos , Animales , Rumen/microbiología , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Dieta/veterinaria , Leche , Probióticos/análisis , Bacterias/genética , Lactancia
11.
Appl Microbiol Biotechnol ; 106(22): 7627-7642, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36264306

RESUMEN

The study was conducted to evaluate the rumen microbiota as well as the milk composition and milk component yields of Holstein cows supplemented with fermented soybean meal (FSBM). Eighteen Holstein cows in their 2nd parity with 54.38 ± 11.12 SD days in milking (DIM) were divided into two dietary groups (CON and TRT) of nine cows per group. The cows in the TRT group received 300 g of FSBM per cow per day in addition to the conventional diet, while each cow in the CON group was supplemented with 350 g of soybean meal (SBM) in their diet daily throughout the 28-day feeding trial. Rumen bacterial composition was detected via 16S rRNA sequencing, and the functional profiles of bacterial communities were predicted. Milk composition, milk yield, as well as rumen fermentation parameters, and serum biochemistry were also recorded. The inclusion of FSBM into the diets of Holstein cows increased the milk urea nitrogen (MUN), milk protein yield, fat corrected milk (FCM), and milk fat yield while the milk somatic cell count (SCC) was decreased. In the rumen, the relative abundances of Fibrobacterota, and Spirochaetota phyla were increased in the TRT group, while the percentage of Proteobacteria was lower. In addition, the supplementation of FSBM to Holstein cows increased the acetate percentage, rumen pH, and acetate to propionate ratio, while the proportion of propionate and propionate % was observed to decrease in the TRT group. The KEGG pathway and functional prediction revealed an upregulation in the functional genes associated with the biosynthesis of amino acids in the TRT group. This enrichment in functional genes resulted in an improved synthesis of several essential amino acids including lysine, methionine, and branch chain amino acids (BCAA) which might be responsible for the increased milk protein yield. Future studies should employ shotgun metagenomics, transcriptomics, and metabolomics technology to investigate the effects of FSBM on other rumen microbiomes and milk protein synthesis in the mammary gland in Holstein cows. KEY POINTS: • The supplementation of fermented soybean meal (FSBM) to Holstein cows modified the proportion of rumen bacteria. • Predicted metabolic pathways and functional genes of rumen bacteria revealed an enrichment in pathway and genes associated with biosynthesis of amino acids in the group fed FSBM. • The cows supplemented with FSBM record an improved rumen fermentation. • Cows supplemented with FSBM recorded an increased yield of milk protein and milk fat.


Asunto(s)
Alimentos Fermentados , Microbiota , Animales , Bovinos , Femenino , Embarazo , Acetatos/metabolismo , Alimentación Animal , Dieta/veterinaria , Suplementos Dietéticos , Fermentación , Lactancia , Metionina/metabolismo , Proteínas de la Leche/metabolismo , Proteínas de la Leche/farmacología , Propionatos/metabolismo , ARN Ribosómico 16S/metabolismo , Rumen/microbiología , Glycine max/metabolismo
12.
Sci Rep ; 12(1): 16090, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167965

RESUMEN

The purpose of this study was to see how substituting cassava pulp fermented yeast waste (CSYW) for soybean meal (SBM) in a concentrate affected feed intake, digestibility, and rumen fermentation in Thai native beef cattle. In this study, four male Thai native beef cattle with an average age of 15.0 ± 25.0 months and body weights of 140 ± 5.0 kg were used. The experimental design was a 4 × 4 Latin squared design, with dietary treatments of CSYW replacing SBM at 0, 33, 67, and 100% in the concentrate mixture. It was discovered that the presence of CSYW had no negative impact on feed intake, nutritional intake, or apparent digestibility (p > 0.05). CSYW had no significant effects on ruminal pH or temperature (p > 0.05). When the amount of CSYW in the diet increased, the rumen ammonia-nitrogen concentration increased (p < 0.05). Blood urea nitrogen was not affected by CSYW (p > 0.05). The total bacterial population increased when the diet's CSYW amount was increased (p < 0.05). Feeding CSYW to beef cattle had no influence on total volatile fatty acid, acetic acid (C2), or butyric acid (C4) proportions (p > 0.05). The concentration of propionic acid (C3) and the C2:C3 ratio increased when the amount of CSYW in the diet was increased (p < 0.05). In conclusion, CSYW can completely replace SBM in a concentrate diet for beef cattle with no adverse effects on feed utilization or rumen fermentation while the total bacterial population and C3 concentration increase.


Asunto(s)
Manihot , Amoníaco/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Ácido Butírico/metabolismo , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Fermentación , Masculino , Manihot/metabolismo , Nitrógeno/metabolismo , Rumen/microbiología , Saccharomyces cerevisiae/metabolismo , Glycine max/metabolismo , Urea/metabolismo , Verduras/metabolismo
13.
Chemosphere ; 308(Pt 2): 136000, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35973501

RESUMEN

Tibetan sheep (Ovis aries) are the most numerous livestock in Tibet Plateau pasture ecosystem and have strong ecological adaptability. In the natural grazing system, soil as a natural nutrient carrier and involuntarily or intentionally ingested by Tibetan sheep contribute as an important feed approach. However, quantifying the dosages of soil ingestion for the Tibetan sheep still needs to be clarified. This study aims to characterize nutrient digestibility and rumen bacterial communities by Tibetan sheep in response to different levels of soil ingestion. Thirty sheep were selected and divided into five treatments with soil ingestion (0%, 5%, 10%, 15%, and 20%). The conclusion demonstrated that soil ingestion improved the dry matter digestibility (59.3-62.97%), ether extract (59.79-67.87%) and crude protein (59.81-66.47%) digestibility, particularly 10% soil ingestion has highest nutrient digestibility. The rumen fermentation environment adjusted after soil ingestion by improvement of pH, ammonia nitrogen and volatile fatty acids. Appropriate soil ingestion reduced the bacterial diversity ranged from 946 to 1000 OUTs as compared control (1012), and the rumen bacterial community dominant by typical fiber digestion associated Firmicutes (47.48-53.56%), Bacteroidetes (34.93-40.02%) and Fibrobacteres (4.36-9.27%). Especially, the highest digestible feed capacity and stronger environment adaptability present in 10% soil ingestion Tibetan sheep. Overall, soil ingestion stimulates rumen metabolism by creating a favorable environment for microbial fermentation, improved bacterial community abundance associated with cellulose and saccharide degradation, contribute nutrient digestibility and growth performance of Tibetan sheep.


Asunto(s)
Digestión , Rumen , Amoníaco/metabolismo , Alimentación Animal/análisis , Animales , Bacterias/metabolismo , Celulosa/metabolismo , Dieta/veterinaria , Ingestión de Alimentos , Ecosistema , Éteres , Ácidos Grasos Volátiles/metabolismo , Fermentación , Nitrógeno/análisis , Nutrientes , Extractos Vegetales/farmacología , Rumen/microbiología , Ovinos , Suelo , Tibet
14.
Appl Environ Microbiol ; 88(15): e0099222, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35856688

RESUMEN

Phytosterols are natural steroids in plants, possessing bioactivities that could modify gut microbes. This experiment aimed to evaluate the effects of feeding phytosterols on the community structures and metabolic functions of the rumen microbiota in perinatal cows. Perinatal cows were supplied with 0 mg (control) or 200 mg (treatment) phytosterols per day. Multiomic analyses were used to analyze the community structures and metabolic functions of rumen microbiota. Results showed that dietary phytosterols increased the copy number of total ruminal bacteria, the concentration of microbial crude protein, and the molar percentage of propionate in the rumen of perinatal cows but had no effects on the alpha diversity of ruminal bacteria. However, they enriched three genera (i.e., Fibrobacter) and seven species (i.e., Fibrobacter succinogenes) within active ruminal bacteria. Metatranscriptomic and metabolomic analyses revealed that dietary phytosterols enhanced the pathway of glycolysis and the family of glycoside hydrolase 13 but depressed the citrate cycle and pyruvate metabolism and several pathways of amino acid biosynthesis. In conclusion, dietary addition of phytosterols improved the growth of ruminal bacteria and changed rumen fermentation by modifying the rumen microbiome and the energy metabolism pathways, which would be beneficial for the energy utilization of perinatal cows. IMPORTANCE Perinatal cows suffer serious physiological stress and energy deficiency. Phytosterols have bioactive functions for gut microbes. However, little knowledge is available on their effects on rumen microbiota and rumen fermentation. Results of the present experiment revealed that dietary supplementation of phytosterols could improve the growth of ruminal bacteria and changed the rumen fermentation to provide more glycogenetic precursors for the perinatal cows by modifying the ruminal bacteria community and altering the energy metabolism pathways of the rumen microbiota. These findings suggest that dietary supplementation of phytosterols would be beneficial for perinatal cows suffering from a negative energy balance.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Fitosteroles , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Femenino , Fermentación , Lactancia , Fitosteroles/metabolismo , Fitosteroles/farmacología , Rumen/microbiología
15.
Sci Rep ; 12(1): 12990, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906456

RESUMEN

The combination of live yeast and microalgae as feed supplementation could improve rumen fermentation and animal productivity. This study aimed to investigate the impact of a mixture of (YA) yeast (Saccharomyces cerevisiae) and microalgae (Spirulina platensis and Chlorella vulgaris) as feed supplementation on feed intake, rumen disappearance of barley straw, bacteria, and fermentation, blood parameters of camels and sheep. Three fistulated camels and three fistulated rams were fed a concentrates mixture and ad libitum barley straw as a basal diet alone or supplemented with YA mixture. The dietary supplementation improved the feed intake, rumen disappearance of barley straw nutrients, and the blood immunity parameters. The YA supplementation affected rumen fermentation as well as the composition and diversity of rumen bacteria; however, the response to the supplementation varied according to animal species. Principle Coordinate Analysis (PCoA) separated bacterial communities based on animal species and feeding treatment. Phylum Bacteroidetes and Firmicutes dominated the bacterial community; and the dominant genera were Prevotella, RC9_gut_group, Butyrivibrio, Ruminococcus, Saccharofermentans, Christensenellaceae_R-7_group, and Succiniclasticum. Our results suggest positive impacts of YA supplementation in rumen fermentation and animal performance.


Asunto(s)
Chlorella vulgaris , Microalgas , Alimentación Animal/análisis , Animales , Bacterias , Camelus , Dieta/veterinaria , Suplementos Dietéticos , Fermentación , Masculino , Rumen/microbiología , Saccharomyces cerevisiae , Ovinos
16.
Curr Microbiol ; 79(4): 113, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35184209

RESUMEN

Fungal additives had beneficial effects on milk performance in dairy cows. Previous studies investigating the effects of fungal additives mainly focused on the rumen, such influences on the hindgut remain limited. This study aimed to investigate the effects of Aspergillus oryzae fermentation extracts (AOE) on the milk performance and microbiome in the rumen and hindgut using 16S rRNA gene sequencing. Twenty lactating multiparous Holstein cows were randomly assigned to control and treatment (5 g AOE per cow per day). The results showed that AOE increased the milk yield, milk protein and lactose concentration, but did not affect the milk fat concentration. Feeding AOE did not affect the ruminal VFA pattern, pH, NH3-N, and microbial cell protein production, but decreased lipopolysaccharide concentration and tended to decrease lactate concentration. The addition of AOE increased the fecal pH and the proportions of propionate, isovalerate and valerate, and decreased the acetate to propionate ratio. PCoA analysis showed that AOE did not affect the overall ruminal bacterial population composition. Only three genera changed slightly in relative abundance. In the feces, PCoA analysis showed that AOE changed the bacterial population composition. Feeding AOE increased the relative abundances of Ruminococcaceae UCG-010 and unclassified Clostridiales vadinBB60 group, and decreased Christensenellaceae R-7 group, unclassified Muribaculaceae, Prevotellaceae UCG-001 and Romboutsia. Spearman correlation showed unclassified Clostridiales vadinBB60 group was positively correlated with propionate proportion. Overall, we present that AOE not only functioned in rumen, but also in hindgut. The hindgut microbiome changes might play an important role in the milk performance improvement of dairy cows.


Asunto(s)
Aspergillus oryzae , Microbiota , Alimentación Animal/análisis , Animales , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Bovinos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Digestión , Femenino , Fermentación , Lactancia , Extractos Vegetales/farmacología , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Rumen/microbiología
17.
PLoS One ; 17(1): e0260918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34982779

RESUMEN

Desmanthus (Desmanthus spp.), a tropically adapted pasture legume, is highly productive and has the potential to reduce methane emissions in beef cattle. However, liveweight gain response to desmanthus supplementation has been inconclusive in ruminants. This study aimed to evaluate weight gain, rumen fermentation and plasma metabolites of Australian tropical beef cattle in response to supplementation with incremental levels of desmanthus forage legume in isonitrogenous diets. Forty-eight Brahman, Charbray and Droughtmaster crossbred beef steers were pen-housed and fed a basal diet of Rhodes grass (Chloris gayana) hay supplemented with 0, 15, 30 or 45% freshly chopped desmanthus forage on dry matter basis, for 140 days. Varying levels of lucerne (Medicago sativa) hay were added in the 0, 15 and 30% diets to ensure that all diets were isonitrogenous with the 45% desmanthus diet. Data were analyzed using the Mixed Model procedures of SAS software. Results showed that the proportion of desmanthus in the diet had no significant effect on steer liveweight, rumen volatile fatty acids molar proportions and plasma metabolites (P ≥ 0.067). Total bilirubin ranged between 3.0 and 3.6 µmol/L for all the diet treatments (P = 0.67). All plasma metabolites measured were within the expected normal range reported for beef cattle. Rumen ammonia nitrogen content was above the 10 mg/dl threshold required to maintain effective rumen microbial activity and maximize voluntary feed intake in cattle fed low-quality tropical forages. The average daily weight gains averaged 0.5 to 0.6 kg/day (P = 0.13) and were within the range required to meet the target slaughter weight for prime beef markets within 2.5 years of age. These results indicate that desmanthus alone or mixed with other high-quality legume forages can be used to supplement grass-based diets to improve tropical beef cattle production in northern Australia with no adverse effect on cattle health.


Asunto(s)
Dieta/veterinaria , Rumen/metabolismo , Vicia/química , Amoníaco/química , Alimentación Animal/análisis , Animales , Australia , Bilirrubina/sangre , Bovinos , Creatinina/sangre , Suplementos Dietéticos , Ácidos Grasos Volátiles/sangre , Ácidos Grasos Volátiles/metabolismo , Concentración de Iones de Hidrógeno , Hidroxibutiratos/sangre , Masculino , Medicago sativa/química , Medicago sativa/metabolismo , Rumen/química , Rumen/microbiología , Vicia/metabolismo , Aumento de Peso
18.
J Appl Microbiol ; 132(4): 2583-2593, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34847280

RESUMEN

AIMS: This study aims to investigate the effect of hydroxy-selenomethionine supplementation on the in vitro rumen fermentation characteristics and microorganisms of Holstein cows. METHODS AND RESULTS: Five fermentation substrates, including control (without selenium supplementation, CON), sodium selenite supplementation (0.3 mg kg-1 DM, SS03), and hydroxy-selenomethionine supplementation (0.3, 0.6 and 0.9 mg kg-1 DM, SM03, SM06 and SM09, respectively) were incubated with rumen fluid in vitro. The results showed that in vitro dry matter disappearance and gas production at 48 h was significantly higher in SM06 than SM03, SS03 and CON; propionate and total volatile fatty acid (VFA) production was higher in SM06 than CON. Moreover, higher species richness of rumen fluid was found in SM06 than others. Higher relative abundance of Prevotella and Prevotellaceae-UCG-003 and lower relative abundance of Ruminococcus-1 were detected in SM06 than CON. Besides, higher relative abundance of Ruminococcaceae_UCG-005 was found in CON than other treatments. CONCLUSIONS: It is observed that 0.6 mg kg-1 DM hydroxy-selenomethionine supplementation could increase cumulative gas production, propionate, and total VFAs production by altering the relative abundance of Prevotella, Prevotellaceae-UCG-003, Ruminococcaceae_UCG-005 and Ruminococcus-1, so that it can be used as a rumen fermentation regulator in Holstein cows. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides an optimal addition ratio of hydroxy-selenomethionine on rumen fermentation and bacterial composition via an in vitro test.


Asunto(s)
Rumen , Selenometionina , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Fermentación , Lactancia , Leche/química , Rumen/microbiología , Selenometionina/análisis , Selenometionina/metabolismo , Selenometionina/farmacología
19.
Sci Rep ; 11(1): 24092, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916562

RESUMEN

Several seaweed extracts have been reported to have potential antimethanogenic effects in ruminants. In this study, the effect of three brown seaweed species (Undaria pinnatifida, UPIN; Sargassum fusiforme, SFUS; and Sargassum fulvellum, SFUL) on rumen fermentation characteristics, total gas, methane (CH4), carbon dioxide (CO2) production, and microbial populations were investigated using an in vitro batch culture system. Seaweed extract and its metabolites, total flavonoid and polyphenol contents were identified and compared. For the in vitro batch, 0.25 mg∙mL-1 of each seaweed extract were used in 6, 12, 24, 36 and 48 h of incubation. Seaweed extract supplementation decreased CH4 yield and its proportion to total gas production after 12, 24, and 48 h of incubation, while total gas production were not significantly different. Total volatile fatty acid and molar proportion of propionate increased with SFUS and SFUL supplementation after 24 h of incubation, whereas UPIN was not affected. Additionally, SFUS increased the absolute abundance of total bacteria, ciliate protozoa, fungi, methanogenic archaea, and Fibrobacter succinogenes. The relative proportions of Butyrivibrio fibrisolvens, Butyrivibrio proteoclasticus, and Prevotella ruminicola were lower with seaweed extract supplementation, whereas Anaerovibrio lipolytica increased. Thus, seaweed extracts can decrease CH4 production, and alter the abundance of rumen microbial populations.


Asunto(s)
Dióxido de Carbono/metabolismo , Fermentación/efectos de los fármacos , Gases/metabolismo , Metano/metabolismo , Extractos Vegetales/farmacología , Rumen/metabolismo , Rumen/microbiología , Algas Marinas/química , Animales , Ácidos Grasos Volátiles , Técnicas In Vitro , Extractos Vegetales/química , Propionatos , Factores de Tiempo
20.
Sci Rep ; 11(1): 21878, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750444

RESUMEN

Eicosapentaenoic acid (EPA) from freeze-dried biomass of Nannochloropsis oceanica microalgae resists ruminal biohydrogenation in vitro, but in vivo demonstration is needed. Therefore, the present study was designed to test the rumen protective effects of N. oceanica in lambs. Twenty-eight lambs were assigned to one of four diets: Control (C); and C diets supplemented with: 1.2% Nannochloropsis sp. oil (O); 12.3% spray-dried N. oceanica (SD); or 9.2% N. oceanica (FD), to achieve 3 g EPA /kg dry matter. Lambs were slaughtered after 3 weeks and digestive contents and ruminal wall samples were collected. EPA concentration in the rumen of lambs fed FD was about 50% higher than lambs fed SD or O diets. Nevertheless, the high levels of EPA in cecum and faeces of animals fed N. oceanica biomass, independently of the drying method, suggests that EPA was not completely released and absorbed in the small intestine. Furthermore, supplementation with EPA sources also affected the ruminal biohydrogenation of C18 fatty acids, mitigating the shift from the t10 biohydrogenation pathways to the t11 pathways compared to the Control diet. Overall, our results demonstrate that FD N. oceanica biomass is a natural rumen-protected source of EPA to ruminants.


Asunto(s)
Ácido Eicosapentaenoico/metabolismo , Rumen/metabolismo , Oveja Doméstica/metabolismo , Estramenopilos/química , Alimentación Animal/análisis , Animales , Biomasa , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Ácidos Grasos/metabolismo , Liofilización , Microbioma Gastrointestinal , Absorción Intestinal , Masculino , Microalgas/química , Microalgas/ultraestructura , Microscopía Electrónica de Rastreo , Rumen/microbiología , Oveja Doméstica/microbiología , Estramenopilos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA