Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Tradit Chin Med ; 44(2): 381-387, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504544

RESUMEN

OBJECTIVE: To evaluate the efficacy of Qidong Huoxue decoction (,QDHX) in treating acute lung injury and acute respiratory distress syndrome (ALI/ARDS) when used as an adjunctive treatment. METHODS: ALI/ARDS patients admitted to our medical intensive care unit were randomly allocated to the control group or the QDHX group and received standard therapy. The QDHX group received QDHX (50 mL per day for 14 d) orally or via a gastric tube. The primary outcome was measured according to Traditional Chinese Medicine (TCM) syndrome scores, with partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) levels as the secondary outcome. RESULTS: A total of 73 patients completed the study (36 in the TCM and 37 in the conventional group), and their records were analyzed. After 14-d treatment, the TCM group showed a significant decrease in TCM syndrome scores (P < 0.05) and increased PaO2/FiO2 levels (P < 0.05). The therapeutic effect of integrated Chinese and western medicine was more significant than that of Western Medicine alone. No serious side effects were observed. CONCLUSIONS: Our study results show that QDHX in combination with conventional drug therapy can significantly reduce some clinical symptoms in patients with ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Humanos , Lesión Pulmonar Aguda/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Unidades de Cuidados Intensivos , Oxígeno
2.
J Ethnopharmacol ; 319(Pt 3): 117361, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38380574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bletilla striata polysaccharides (BSP) extracted from the B. striata tuber, have been demonstrated to possess anti-inflammatory properties. However, their potential protective effect against ARDS and their role in regulating cell pyroptosis remained unexplored. AIM OF THE STUDY: The aim of this study was to investigate the therapeutic effect of BSP in the alleviation of lipopolysaccharide (LPS)-induced ARDS, and to explore its mechanism of action. METHODS: The effect of BSP was assessed by LPS injection into the intraperitoneal cavity in vivo; pathological changes of ARDS mice were gauged by immunohistochemical, hematoxylin and eosin staining, and immunofluorescence assays. MH-S cells were used to model the pyroptosis in vitro. Finally, the pyroptosis of alveolar macrophage was detected by western blots, qPCR, and flow cytometry for NLRP3/caspase1/GSDMD and HMGB1/TLR4 pathway-associated proteins and mRNA. RESULTS: BSP could significantly increase the weight and survival rate of mice with ARDS, alleviate the cytokine storm in the lungs, and reduce lung damage in vivo. BSP inhibited the inflammation caused by LPS/Nigericin significantly in vitro. Compared with the control group, there was a remarkable surge in the incidence of pyroptosis observed in ARDS lung tissue and alveolar macrophages, whereas BSP significantly diminished the pyroptosis ratio. Besides, BSP reduced NLRP3/caspase1/GSDMD and HMGB1/TLR4 levels in ARDS lung tissue and MH-S cells. CONCLUSIONS: These findings proved that BSP could improve LPS-induced ARDS via inhibiting pyroptosis, and this effect was mediated by NLRP3/caspase1/GSDMD and HMGB1/TLR4, suggesting a therapeutic potential of BSP as an anti-inflammatory agent for ARDS treatment.


Asunto(s)
Proteína HMGB1 , Síndrome de Dificultad Respiratoria , Animales , Ratones , Macrófagos Alveolares , Lipopolisacáridos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Receptor Toll-Like 4 , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Pulmón
3.
J Med Food ; 27(1): 72-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37976106

RESUMEN

Hippophae rhamnoides exhibit a wide variety of medicinal and pharmacological effects. The present study aims to determine the role of ethanol extract of H. rhamnoides on oleic acid (OA)-induced acute respiratory distress syndrome (ARDS) in rats. Male rats were randomly divided into the following groups: (I) Control, (II) OA, and (III) OA+H. rhamnoides. H. rhamnoides extract (500 mg/kg) was given orally for 2 weeks before OA in Group III. Levels of total antioxidant capacity, total oxidant status (TOS), myeloperoxidase (MPO), mitogen-activated protein kinase (MAPK), acetylcholinesterase (AChE), and angiotensin-converting enzyme (ACE) were quantified by enzyme-linked immunosorbent assay (ELISA). Real time quantitative polymerase chain reaction was utilized to evaluate the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and matrix metalloproteinase 2 (MMP2). Also, Caspase-3 immunostaining and expression were performed to evaluate apoptosis. Compared with the OA group, there was a significantly decrease in the levels of MPO, TOS, MAPK, and ACE and in the expression of NF-κB, TNF-α, IL-6, MMP2, and Caspase-3 in the H. rhamnoides administration group. Moreover, the activity of AChE and level of TAS were substantially higher in the H. rhamnoides administration compared with the OA group. The findings in the study suggest that the protective effect of H. rhamnoides pretreatment may act through inhibition of the ACE activity, releasing AChE, regulation of inflammatory cytokine levels, and suppression of apoptotic process in ARDS.


Asunto(s)
Hippophae , Síndrome de Dificultad Respiratoria , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Metaloproteinasa 2 de la Matriz , Acetilcolinesterasa , Ácido Oléico , Hippophae/metabolismo , Caspasa 3 , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Interleucina-6/genética , Angiotensinas
4.
BMC Geriatr ; 23(1): 840, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087197

RESUMEN

BACKGROUND: This study aimed to identify and select age-related diseases (ARDs) in Korea, which is about to have a super-aged society, and to elucidate patterns in their incidence rates. METHODS: The National Health Insurance Service-National Sample Cohort, comprising 1 million health insurance and medical benefit beneficiaries in Korea from 2002 to 2019, was utilized. We selected 14 diseases with high disease burden and prevalence among Koreans from the 92 diseases defined in the Global Burden of Diseases, Injuries, and Risk Factors Study as ARDs. The annual incidence rate represented the number of patients newly diagnosed with an ARD each year from 2006 to 2019, excluding those with a history of ARD diagnosis from 2002 to 2005. The incidence rate by age was categorized into 10-year units based on age as of 2019. The number of patients with ARDs in each age group was used as the numerator, and the incidence rate for each age group was calculated with the age group as the denominator. RESULTS: Regarding the annual incidence rates of ARDs from 2006 to 2019, chronic obstructive pulmonary disease, congestive heart failure, and ischemic heart disease decreased annually, whereas dyslipidemia, chronic kidney disease, cataracts, hearing loss, and Parkinson's disease showed a significant increase. Hypertension, diabetes, cerebrovascular disease, osteoporosis, osteoarthritis, and age-related macular degeneration initially displayed a gradual decrease in incidence but exhibited a tendency to increase after 2015. Concerning age-specific incidence rates of ARDs, two types of curves emerged. The first type, characterized by an exponential increase with age, was exemplified by congestive heart failure. The second type, marked by an exponential increase peaking between ages 60 and 80, followed by stability or decrease, was observed in 13 ARDs, excluding congestive heart failure. However, hypertension, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and hearing loss in men belonged to the first type. CONCLUSIONS: From an epidemiological perspective, there are similar characteristics in age-specific ARDs that increase with age, reaching a peak followed by a plateau or decrease in Koreans.


Asunto(s)
Trastornos Cerebrovasculares , Pérdida Auditiva , Insuficiencia Cardíaca , Hipertensión , Isquemia Miocárdica , Enfermedad Pulmonar Obstructiva Crónica , Síndrome de Dificultad Respiratoria , Masculino , Humanos , Anciano , Incidencia , Envejecimiento , Trastornos Cerebrovasculares/diagnóstico , Trastornos Cerebrovasculares/epidemiología , Programas Nacionales de Salud , República de Corea/epidemiología
5.
BMC Complement Med Ther ; 23(1): 463, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104066

RESUMEN

BACKGROUND: Our aim was to evaluate the efficacy of transcutaneous electrical acupoint stimulation (TEAS) on oxidative stress induced by one-lung ventilation, lung function, and postoperative quality of recovery in patients with lung cancer. METHODS: The participants (n = 80) were assigned to the sham group and TEAS group. TEAS on bilateral Feishu (BL13), Zusanli (ST36), and Hegu (L14) was performed 30 minutes before induction of anesthesia and continued until the end of the surgery. In the sham group, the same acupoints were selected without electrical stimulation. PaO2/FiO2, intrapulmonary shunt ratio (Qs/Qt), alveolar-arterial oxygen tension (A-aDO2), and respiratory index (RI) were calculated to evaluate lung function before one-lung ventilation (T0), 30 min after one-lung ventilation (T1), 1 h after one-lung ventilation (T2), and 10 min after resuming two-lung ventilation (T3). The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were detected to estimate oxidative stress at T0, T1, T2, and T3. Secondary outcomes included removal time of thoracic drainage tube, duration of intensive care unit (ICU) stay, length of postoperative hospitalization, the incidence of postoperative pulmonary complications, and the Quality of Recovery-15 (QoR-15) score on postoperative day 1 and 2. RESULTS: TEAS significantly increased PaO2/FiO2 at T1 and T2, while Qs/Qt, A-aDO2, and RI decreased remarkably from T1 to T3 (P < 0.05). Meanwhile, TEAS obviously decreased MDA and increased SOD activity at T2 and T3 (P < 0.05). Furthermore, TEAS also markedly shortened the length of ICU stay and hospital stay after surgery, whereas the QoR-15 score on postoperative day 1 and 2 was significantly higher (P < 0.05). CONCLUSIONS: TEAS could reduce oxidative lung injury during one-lung ventilation, thereby protecting pulmonary function and effectively accelerating the early recovery of patients with lung cancer. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR2000038243).


Asunto(s)
Neoplasias Pulmonares , Ventilación Unipulmonar , Síndrome de Dificultad Respiratoria , Estimulación Eléctrica Transcutánea del Nervio , Humanos , Neoplasias Pulmonares/cirugía , Puntos de Acupuntura , Pulmón , Complicaciones Posoperatorias , Toracoscopía , Estrés Oxidativo , Superóxido Dismutasa
6.
Eur Rev Med Pharmacol Sci ; 27(21): 10157-10170, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37975341

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common life-threatening, high-mortality lung diseases associated with acute and severe inflammation of the lungs. However, research on diagnostic markers and signaling pathways associated with ALI/ARDS is lacking, and no specific drug therapy is available for ALI/ARDS. Therefore, in this study, biomarkers and signaling pathways associated with ALI/ARDS were summarized to provide a reference for future clinical and research work. A review of Traditional Chinese Medicine for the treatment or prevention of ALI/ARDS is also presented to provide a reference for further development of Traditional Chinese Medicine. In summary, this review will help raise awareness of ALI/ARDS and provide insight into the future exploitation of Traditional Chinese Medicine.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Humanos , Medicina Tradicional China , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/diagnóstico , Síndrome de Dificultad Respiratoria/diagnóstico , Biomarcadores , Apoptosis , Transducción de Señal
7.
Respir Care ; 68(12): 1736-1747, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37875317

RESUMEN

Diaphragm inactivity during invasive mechanical ventilation leads to diaphragm atrophy and weakness, hemodynamic instability, and ventilatory heterogeneity. Absent respiratory drive and effort can, therefore, worsen injury to both lung and diaphragm and is a major cause of failure to wean. Phrenic nerve stimulation (PNS) can maintain controlled levels of diaphragm activity independent of intrinsic drive and as such may offer a promising approach to achieving lung and diaphragm protective ventilatory targets. Whereas PNS has an established role in the management of chronic respiratory failure, there is emerging interest in how its multisystem putative benefits may be temporarily harnessed in the management of invasively ventilated patients with acute respiratory failure.


Asunto(s)
Terapia por Estimulación Eléctrica , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Nervio Frénico , Respiración Artificial , Diafragma/lesiones , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/terapia
8.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686333

RESUMEN

Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.


Asunto(s)
Ácidos Grasos Omega-3 , Síndrome de Dificultad Respiratoria , Animales , Ratones , Encéfalo , Cromatografía Liquida , Inflamación , Lipopolisacáridos/toxicidad , Pulmón , Ratones Noqueados , Receptores de Leucotrieno B4 , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/genética , Espectrometría de Masas en Tándem
9.
Phytother Res ; 37(12): 5464-5472, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37675925

RESUMEN

Hypertension is a serious concern as it is one of the causes of kideny failure and pulmonary fibrosis. An important therapeutic strategy for treating chronic hypertension is to inhibit the angiotensin converting enzyme (ACE). ACE inhibition reduces kidney damage, pulmonary artery pressure, and high blood pressure. Due to their high efficacy and low risk of side effects, natural renin-angiotensin system inhibitors have drawn increasing attention over the past decades. Alkaloids, amino acids, anthocyanidins, flavonoids, glucosinolates, isoflavonoids, phenolic acids, polyphenolics, and triterpenoids are among the bioactive metabolites pocessing an impressive ACE inhibitory activity. Many herbs including Rosmarinus officinalis, Hibiscus sabdariffa, Curcuma longa, Rauwolfia serpentina, Emblica officinalis, Cynara scolymus, Punica granatum, Mucuna pruriens, Capsicum annuum, and Moringa olifera were found having ACE inhibitory activities comparable to captopril and enalpril. These enticing natural ACE inhibitors deserve to be a safeguard medicine against hypertension, respiratory distress syndrome, and chronic kidney diseases. More clinical trials are required before new natural compounds and herbs can be used to treat chronic hypertension and its ramifications, such as respiratory distress syndrome and kidney failure.


Asunto(s)
Hipertensión , Insuficiencia Renal Crónica , Síndrome de Dificultad Respiratoria , Humanos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Sistema Renina-Angiotensina , Hipertensión/tratamiento farmacológico , Insuficiencia Renal Crónica/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
10.
Chin J Nat Med ; 21(8): 576-588, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37611976

RESUMEN

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterized by diffuse alveolar injury primarily caused by an excessive inflammatory response. Regrettably, the lack of effective pharmacotherapy currently available contributes to the high mortality rate in patients with this condition. Xuebijing (XBJ), a traditional Chinese medicine recognized for its potent anti-inflammatory properties, exhibits promise as a potential therapeutic agent for ALI/ARDS. This study aimed to explore the preventive effects of XBJ on ALI and its underlying mechanism. To this end, we established an LPS-induced ALI model and treated ALI mice with XBJ. Our results demonstrated that pre-treatment with XBJ significantly alleviated lung inflammation and increased the survival rate of ALI mice by 37.5%. Moreover, XBJ substantially suppressed the production of TNF-α, IL-6, and IL-1ß in the lung tissue. Subsequently, we performed a network pharmacology analysis and identified identified 109 potential target genes of XBJ that were mainly involved in multiple signaling pathways related to programmed cell death and anti-inflammatory responses. Furthermore, we found that XBJ exerted its inhibitory effect on gasdermin-E-mediated pyroptosis of lung cells by suppressing TNF-α production. Therefore, this study not only establishes the preventive efficacy of XBJ in ALI but also reveals its role in protecting alveolar epithelial cells against gasdermin-E-mediated pyroptosis by reducing TNF-α release.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Animales , Ratones , Células Epiteliales Alveolares , Piroptosis , Gasderminas , Lipopolisacáridos/efectos adversos , Factor de Necrosis Tumoral alfa , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico
11.
Biomater Sci ; 11(18): 6223-6235, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37529873

RESUMEN

Patients with ALI (acute lung injury)/ARDS (acute respiratory distress syndrome) are often septic and with poor prognosis, which leads to a high mortality rate of 25-40%. Despite the advances in medicine, there are no effective pharmacological therapies for ALI/ARDS due to the short systemic circulation and poor specificity in the lungs. To address this problem, we prepared TP-loaded nanoparticles (TP-NPs) through the emulsification-and-evaporation method, and then the platelet membrane vesicles were extracted and coated onto the surface of the NPs to constitute the biomimetic PM@TP-NPs. In a LPS-induced ALI mouse model, PM@TP-NPs showed good biocompatibility and biosafety, which was evidenced by no significant toxic effect on cell viability and no hemolysis of red blood cells. In ALI mice, the PM@TP-NPs showed favorable anti-inflammation and enhanced therapeutic activity of TPs compared to the free drug. Administration of PM@TP-NPs effectively inhibited lung vascular injury, evidenced by the decreased lung vascular permeability, reduced pro-inflammatory cytokine burden, evidenced by decreased inflammatory cell (macrophages, neutrophils, etc.) infiltration in the bronchoalveolar lavage fluid (BALF) and lung tissues, and inhibited the secretion of pro-inflammatory cytokines and NLRP3 inflammasome activation. ALI/ARDS is defined by damage to the alveolar epithelium and endothelium; thus, effective intervention targeting pulmonary vascular endothelial cells (VECs) is crucial for the treatment of respiratory diseases. For further determination of the targeting of PM cloaked NPs, healthy mice were also administered with the same NPs. Interestingly, the PM cloaked NPs only showed highly efficient targeting to the inflamed lungs and VECs, but no accumulation in healthy lungs and VECs. The data demonstrated that this biomimetic nanoplatform could be used as a potential strategy for personalized therapies in the treatment of inflammatory diseases, such as ALI/ARDS, and even COVID-19-associated pneumonia.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Nanopartículas , Síndrome de Dificultad Respiratoria , Ratones , Animales , Lipopolisacáridos/farmacología , Células Endoteliales , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Citocinas , Té/efectos adversos , Ratones Endogámicos C57BL
12.
Int Immunopharmacol ; 121: 110516, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37369159

RESUMEN

In this research, we sought to examine the effectiveness of S-allylmercapto-N-acetylcysteine (ASSNAC) on LPS-provoked acute respiratory distress syndrome (ARDS) and its potential mechanism based on network pharmacology. To incorporate the effective targets of ASSNAC against ARDS, we firstly searched DisGeNET, TTD, GeneCards and OMIM databases. Then we used String database and Cytoscape program to create the protein-protein interaction network. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis both identified the potential pathways connected to genes. Cytoscape software was used to build the network of drug-targets-pathways and the SwissDock platform was applied to dock the molecule of ASSNAC with the key disease targets. Correspondingly, an ARDS model was established by instillation of LPS in mice to confirm the underlying action mechanism of ASSNAC on ARDS as indicated by the network pharmacology analysis. Results exhibited that 27 overlapping targets, including TLR4, ICAM1, HIF1A, MAPK1, NFKB1, and others, were filtered out. The in vivo experiments showed that ASSNAC alleviated LPS-induced lung injury by downregulating levels of pro-inflammatory mediators and lung dry-wet ratio. Also, ASSNAC attenuated oxidative stress evoked by LPS via diminishing MDA production and SOD consumption as well as upregulating HO-1 level through Nrf2 activation. Results from western blot, quantitative real-time PCR and immunohistochemistry suggested that ASSNAC developed its therapeutic effects by regulating TLR4/MyD88/NF-κB signaling pathway. In conclusion, our research presented the efficacy of ASSNAC against ARDS. Furthermore, the mechanism of ASSNAC on ARDS was clarified by combining network pharmacology prediction with experimental confirmation.


Asunto(s)
Medicamentos Herbarios Chinos , Síndrome de Dificultad Respiratoria , Animales , Ratones , Lipopolisacáridos , Farmacología en Red , Receptor Toll-Like 4 , Simulación del Acoplamiento Molecular
13.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3345-3359, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37382018

RESUMEN

The aim of this study was to investigate the effect and molecular mechanism of Xuebijing Injection in the treatment of sepsis-associated acute respiratory distress syndrome(ARDS) based on network pharmacology and in vitro experiment. The active components of Xuebijing Injection were screened and the targets were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of sepsis-associated ARDS were searched against GeneCards, DisGeNet, OMIM, and TTD. Weishengxin platform was used to map the targets of the main active components in Xuebijing Injection and the targets of sepsis-associated ARDS, and Venn diagram was established to identify the common targets. Cytoscape 3.9.1 was used to build the "drug-active components-common targets-disease" network. The common targets were imported into STRING for the building of the protein-protein interaction(PPI) network, which was then imported into Cytoscape 3.9.1 for visualization. DAVID 6.8 was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment of the common targets, and then Weishe-ngxin platform was used for visualization of the enrichment results. The top 20 KEGG signaling pathways were selected and imported into Cytoscape 3.9.1 to establish the KEGG network. Finally, molecular docking and in vitro cell experiment were performed to verify the prediction results. A total of 115 active components and 217 targets of Xuebijing Injection and 360 targets of sepsis-associated ARDS were obtained, among which 63 common targets were shared by Xuebijing Injection and the disease. The core targets included interleukin-1 beta(IL-1ß), IL-6, albumin(ALB), serine/threonine-protein kinase(AKT1), and vascular endothelial growth factor A(VEGFA). A total of 453 GO terms were annotated, including 361 terms of biological processes(BP), 33 terms of cellular components(CC), and 59 terms of molecular functions(MF). The terms mainly involved cellular response to lipopolysaccharide, negative regulation of apoptotic process, lipopolysaccharide-mediated signaling pathway, positive regulation of transcription from RNA polyme-rase Ⅱ promoter, response to hypoxia, and inflammatory response. The KEGG enrichment revealed 85 pathways. After diseases and generalized pathways were eliminated, hypoxia-inducible factor-1(HIF-1), tumor necrosis factor(TNF), nuclear factor-kappa B(NF-κB), Toll-like receptor, and NOD-like receptor signaling pathways were screened out. Molecular docking showed that the main active components of Xuebijing Injection had good binding activity with the core targets. The in vitro experiment confirmed that Xuebijing Injection suppressed the HIF-1, TNF, NF-κB, Toll-like receptor, and NOD-like receptor signaling pathways, inhibited cell apoptosis and reactive oxygen species generation, and down-regulated the expression of TNF-α, IL-1ß, and IL-6 in cells. In conclusion, Xuebijing Injection can regulate apoptosis and response to inflammation and oxidative stress by acting on HIF-1, TNF, NF-κB, Toll-like receptor, and NOD-like receptor signaling pathways to treat sepsis-associated ARDS.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Farmacología en Red , Factor A de Crecimiento Endotelial Vascular , FN-kappa B , Interleucina-6 , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/genética , Proteínas NLR
14.
J Ethnopharmacol ; 312: 116452, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37019161

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Yupingfengsan (YPFS) is a traditional Chinese medicine decoction. YPFS comprises Astragalus mongholicus Bunge (Huangqi), Atractylodes rubra Dekker (Baizhu), and Saposhnikovia divaricata (Turcz.ex Ledeb.) Schischk (Fangfeng). YPFS is commonly used to treat chronic obstructive pulmonary disease, asthma, respiratory infections, and pneumonia, but the mechanism of action remains unclear. AIM OF THE STUDY: Acute lung injury (ALI) and its severe form of acute respiratory distress syndrome (ARDS) cause morbidity and mortality in critical patients. YPFS is a commonly used herbal soup to treat respiratory and immune system diseases. Nevertheless, the effect of YPFS on ALI remains unclear. This study aimed to investigate the effect of YPFS on lipopolysaccharide (LPS)-induced ALI in mice and elucidate its potential molecular mechanisms. MATERIALS AND METHODS: The major components of YPFS were detected by High-performance liquid chromatography (HPLC). C57BL/6J mice were given YPFS for seven days and then treated with LPS. IL-1ß, IL-6, TNF-α, IL-8, iNOS, NLRP3, PPARγ, HO-1, ZO-1, Occludin, Claudin-1, AQP3, AQP4, AQP5, ENaCα, ENaCß, EnaCγ mRNA in lung and ZO-1, Occludin, Claudin-1, AQP3, AQP4, AQP5, ENaCα, ENaCß, and EnaCγ mRNA in colon tissues were measured by Real-Time Quantitative PCR (RT-qPCR). The expressions of TLR4, MyD88, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), ASC, MAPK signaling pathway, Nrf2, and HO-1 in the lung were detected by Western blot. Plasma inflammatory factors Interleukin (IL)-1ß, IL-6, and Tumor Necrosis Factor-α (TNF-α) were determined by Enzyme-linked Immunosorbent Assay (ELISA). Lung tissues were processed for H & E staining, and colon tissues for HE, WGA-FITC, and Alcian Blue staining. RESULTS: The results showed that YPFS administration alleviated lung injury and suppressed the production of inflammatory factors, including IL-1ß, IL-6, and TNF-α. Additionally, YPFS reduced pulmonary edema by promoting the expressions of aquaporin and sodium channel-related genes (AQP3, AQP4, AQP5, ENaCα, ENaCß, and EnaCγ). Further, YPFS intervention exhibited a therapeutic effect on ALI by inhibiting the activation of the NLRP3 inflammasome and MAPK signaling pathways. Finally, YPFS improved gut barrier integrity and suppressed intestinal inflammation in LPS-challenged mice. CONCLUSIONS: YPFS protected mice against LPS-induced ALI by attenuating lung and intestinal tissue damage. This study sheds light on the potential application of YPFS to treat ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Ratones , Animales , Lipopolisacáridos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor de Necrosis Tumoral alfa , Claudina-1 , Interleucina-6 , Ocludina , Ratones Endogámicos C57BL , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , ARN Mensajero
15.
Crit Care Med ; 51(6): 797-807, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36988337

RESUMEN

OBJECTIVES: We implemented a computerized protocol for low tidal volume ventilation (LTVV) to improve management and outcomes of mechanically ventilated patients with, and without, the acute respiratory distress syndrome (ARDS). DESIGN: Pragmatic, nonrandomized stepped wedge type II hybrid implementation/effectiveness trial. SETTING: Twelve hospitals in an integrated healthcare system over a 2-year period. PATIENTS: Patients greater than or equal to 18 years old who had initiation of mechanical ventilation in the emergency department or ICU. We excluded patients who died or transitioned to comfort care on the day of admission to the ICU. We defined a subgroup of patients with ARDS for analysis. INTERVENTIONS: Implementation of ventilator protocols for LTVV in the ICU. MEASUREMENTS AND MAIN RESULTS: Our primary clinical outcome was ventilator-free days (VFDs) to day 28. Our primary process outcome was median initial set tidal volume. We included 8,692 mechanically ventilated patients, 3,282 (38%) of whom had ARDS. After implementation, set tidal volume reported as mL/kg predicted body weight decreased from median 6.1 mL/kg (interquartile range [IQR], 6.0-6.8 mL/kg) to 6.0 mL/kg (IQR, 6.0-6.6 mL/kg) ( p = 0.009). The percent of patients receiving LTVV (tidal volume ≤ 6.5 mL/kg) increased from 69.8% ( n = 1,721) to 72.5% ( n = 1,846) ( p = 0.036) after implementation. The percent of patients receiving greater than 8 mL/kg initial set tidal volume was reduced from 9.0% ( n = 222) to 6.7% ( n = 174) ( p = 0.005) after implementation. Among patients with ARDS, day 1 positive end-expiratory pressure increased from 6.7 to 8.0 cm H 2 O ( p < 0.001). We observed no difference in VFD (adjusted odds ratio, 1.06; 95% CI, 0.91-1.24; p = 0.44), or in secondary outcomes of length of stay or mortality, either within the main cohort or the subgroup of patients with ARDS. CONCLUSIONS: We observed improved adherence to optimal ventilator management with implementation of a computerized protocol and reduction in the number of patients receiving tidal volumes greater than 8 mL/kg. We did not observe improvement in clinical outcomes.


Asunto(s)
Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Pulmón , Respiración con Presión Positiva/métodos , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia , Insuficiencia Respiratoria/terapia , Volumen de Ventilación Pulmonar
16.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166688, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36925054

RESUMEN

Cell-free heme (CFH) is a product of hemoglobin, myoglobin and hemoprotein degradation, which is a hallmark of pathologies associated with extensive hemolysis and tissue damage. CHF and iron collectively induce cytokine storm, lung injury, respiratory distress and infection susceptibility in the lungs suggesting their key role in the progression of lung disease pathology. We have previously demonstrated that heme-mediated reactive oxygen species (ROS) induces platelet activation and ferroptosis. However, interaction of ferroptotic platelets and neutrophils, the mechanism of action and associated complications remain unclear. In this study, we demonstrate that heme-induced P-selectin expression and Phosphatidylserine (PS) externalization in platelets via ASK-1-inflammasome axis increases platelet-neutrophil aggregates in circulation, resulting in Neutrophil extracellular traps (NET) formation in vitro and in vivo. Further, heme-induced platelet activation in mice increased platelet-neutrophil aggregates and accumulation of NETs in the lungs causing pulmonary damage. Thus, connecting CFH-mediated platelet activation to NETosis and pulmonary thrombosis. As lung infections induce acute respiratory stress, thrombosis and NETosis, we propose that heme -mediated platelet activation and ferroptosis might be crucial in such clinical manifestations. Further, considering the ability of redox modulators and ferroptosis inhibitors like FS-1, Lpx-1 and DFO to inhibit heme-induced ferroptotic platelets-mediated NETosis and pulmonary thrombosis. They could be potential adjuvant therapy to regulate respiratory distress-associated clinical complications.


Asunto(s)
Ferroptosis , Enfermedades Pulmonares , Síndrome de Dificultad Respiratoria , Trombosis , Ratones , Animales , Hemo , Activación Plaquetaria , Pulmón/patología , Trombosis/patología
17.
Lasers Surg Med ; 55(4): 390-404, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36883985

RESUMEN

BACKGROUND: Extracorporeal membrane oxygenators (ECMO) are currently utilized to mechanically ventilate blood when lung or lung and heart function are impaired, like in cases of acute respiratory distress syndrome (ARDS). ARDS can be caused by severe cases of carbon monoxide (CO) inhalation, which is the leading cause of poison-related deaths in the United States. ECMOs can be further optimized for severe CO inhalation using visible light to photo-dissociate CO from hemoglobin (Hb). In previous studies, we combined phototherapy with an ECMO to design a photo-ECMO device, which significantly increased CO elimination and improved survival in CO-poisoned animal models using light at 460, 523, and 620 nm wavelengths. Light at 620 nm was the most effective in removing CO. OBJECTIVE: The aim of this study is to analyze the light propagation at 460, 523, and 620 nm wavelengths and the 3D blood flow and heating distribution within the photo-ECMO device that increased CO elimination in CO-poisoned animal models. METHODS: Light propagation, blood flow dynamics, and heat diffusion were modeled using the Monte Carlo method and the laminar Navier-Stokes and heat diffusion equations, respectively. RESULTS: Light at 620 nm propagated through the device blood compartment (4 mm), while light at 460 and 523 nm only penetrated 48% to 50% (~2 mm). The blood flow velocity in the blood compartment varied with regions of high (5 mm/s) and low (1 mm/s) velocity, including stagnant flow. The blood temperatures at the device outlet for 460, 523, and 620 nm wavelengths were approximately 26.7°C, 27.4°C, and 20°C, respectively. However, the maximum temperatures within the blood treatment compartment rose to approximately 71°C, 77°C, and 21°C, respectively. CONCLUSIONS: As the extent of light propagation correlates with efficiency in photodissociation, the light at 620 nm is the optimal wavelength for removing CO from Hb while maintaining blood temperatures below thermal damage. Measuring the inlet and outlet blood temperatures is not enough to avoid unintentional thermal damage by light irradiation. Computational models can help eliminate risks of excessive heating and improve device development by analyzing design modifications that improve blood flow, like suppressing stagnant flow, further increasing the rate of CO elimination.


Asunto(s)
Intoxicación por Monóxido de Carbono , Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Animales , Intoxicación por Monóxido de Carbono/terapia , Oxigenadores de Membrana , Oxigenación por Membrana Extracorpórea/métodos , Fototerapia/métodos , Síndrome de Dificultad Respiratoria/terapia
18.
Sci China Life Sci ; 66(7): 1589-1599, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808291

RESUMEN

The global COVID-19 pandemic emerged at the end of December 2019. Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are common lethal outcomes of bacterial lipopolysaccharide (LPS), avian influenza virus, and SARS-CoV-2. Toll-like receptor 4 (TLR4) is a key target in the pathological pathway of ARDS and ALI. Previous studies have reported that herbal small RNAs (sRNAs) are a functional medical component. BZL-sRNA-20 (Accession number: B59471456; Family ID: F2201.Q001979.B11) is a potent inhibitor of Toll-like receptor 4 (TLR4) and pro-inflammatory cytokines. Furthermore, BZL-sRNA-20 reduces intracellular levels of cytokines induced by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (poly (I:C)). We found that BZL-sRNA-20 rescued the viability of cells infected with avian influenza H5N1, SARS-CoV-2, and several of its variants of concern (VOCs). Acute lung injury induced by LPS and SARS-CoV-2 in mice was significantly ameliorated by the oral medical decoctosome mimic (bencaosome; sphinganine (d22:0)+BZL-sRNA-20). Our findings suggest that BZL-sRNA-20 could be a pan-anti-ARDS ALI drug.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Síndrome de Dificultad Respiratoria , Ratones , Humanos , Animales , Lipopolisacáridos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Pandemias , COVID-19/patología , SARS-CoV-2/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/genética , Citocinas/metabolismo , Pulmón/metabolismo
19.
Inflammopharmacology ; 31(2): 823-844, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36662401

RESUMEN

Acute respiratory distress syndrome (ARDS) is one of the major causes of mortality in COVID-19 patients, due to limited therapeutic options. This prompted us to explore natural sources to mitigate this condition. Gymnema Sylvestre (GS) is an ancient medicinal plant known to have various therapeutic effects. This investigation examined the therapeutic effect of hydroalcoholic extract of Gymnema Sylvestre (HAEGS) against lipopolysaccharide (LPS)-induced lung injury and ARDS in in vitro and in vivo models. UHPLC-HRMS/GC-MS was employed for characterizing the HAEGS and identified several active derivatives including gymnemic acid, gymnemasaponins, gymnemoside, gymnemasin, quercetin, and long fatty acids. Gene expression by RT-qPCR and DCFDA analysis by flow cytometry revealed that several inflammatory cytokine/chemokine, cell injury markers, and reactive oxygen species (ROS) levels were highly upregulated in LPS control and were significantly reduced upon HAEGS treatment. Consistent with the in vitro studies, we found that in LPS-induced ARDS model, pre-treatment with HAEGS significantly suppressed the LPS-induced elevation of inflammatory cell infiltrations, cytokine/chemokine marker expression, ROS levels, and lung injury in a dose-dependent manner. Further mechanistic studies demonstrated that HAEGS suppressed oxidative stress by modulating the NRF2 pathway and ameliorated the ARDS through the NF-κB/MAPK signalling pathway. Additional fractionation results revealed that fraction 6 which has the exclusive composition of gymnemic acid derivatives showed better anti-inflammatory effects (inhibition of IL-6 and IL-1ß) at lower concentrations compared to HAEGS. Overall, HAEGS significantly mitigated LPS-induced lung injury and ARDS by targeting the NF-κB/MAPK signalling pathway. Thus, our work unravels the protective role of HAEGS for the first time in managing ARDS.


Asunto(s)
COVID-19 , Gymnema sylvestre , Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Ratas , Animales , FN-kappa B/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Gymnema sylvestre/metabolismo , Especies Reactivas de Oxígeno , Lesión Pulmonar/tratamiento farmacológico , Lipopolisacáridos/farmacología , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas
20.
Crit Care Med ; 51(1): e13-e18, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519995

RESUMEN

OBJECTIVES: We sought to determine whether hyperinflammatory acute respiratory distress syndrome (ARDS) and hypoinflammatory ARDS, which have been associated with differences in plasma biomarkers and mortality risk, also display differences in bronchoalveolar lavage (BALF) biomarker profiles. We then described the relationship between hyperinflammatory ARDS and hypoinflammatory ARDS to novel subphenotypes derived using BALF biomarkers. DESIGN: Secondary analysis of a randomized control trial testing omega-3 fatty acids for the treatment of ARDS. SETTING: Five North American intensive care units. PATIENTS: Adults (n = 88) on invasive mechanical ventilation within 48 hours of ARDS onset. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We classified 57 patients as hypoinflammatory and 31 patients as hyperinflammatory using a previously validated logistic regression model. Of 14 BALF biomarkers analyzed, interleukin-6 and granulocyte colony stimulating factor were higher among patients with hyperinflammatory ARDS compared with hypoinflammatory ARDS, though the differences were not robust to multiple hypothesis testing. We then performed a de novo latent class analysis of the 14 BALF biomarkers to identify two classes well separated by alveolar profiles. Class 2 (n = 63) displayed significantly higher interleukin-6, von Willebrand factor, soluble programmed cell death receptor-1, % neutrophils, and other biomarkers of inflammation compared with class 1 (n = 25). These BALF-derived classes had minimal overlap with the plasma-derived hyperinflammatory and hypoinflammatory classes, and the majority of both plasma-derived classes were in BALF-derived class 2 and characterized by high BALF biomarkers. Additionally, the BALF-derived classes were associated with clinical severity of pulmonary disease, with class 2 exhibiting lower Pao2 to Fio2 and distinct ventilatory parameters, unlike the plasma-derived classes, which were only related to nonpulmonary organ dysfunction. CONCLUSIONS: Hyperinflammatory and hypoinflammatory ARDS subphenotypes did not display significant differences in alveolar biologic profiles. Identifying ARDS subgroups using BALF measurements is a unique approach that complements information obtained from plasma, with potential to inform enrichment strategies in trials of lung-targeted therapies.


Asunto(s)
Interleucina-6 , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Síndrome de Dificultad Respiratoria/terapia , Biomarcadores , Líquido del Lavado Bronquioalveolar , Neutrófilos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA