Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1328741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665877

RESUMEN

Polycystic ovary syndrome (PCOS) is a common systemic disorder related to endocrine disorders, affecting the fertility of women of childbearing age. It is associated with glucose and lipid metabolism disorders, altered gut microbiota, and insulin resistance. Modern treatments like pioglitazone, metformin, and spironolactone target specific symptoms of PCOS, while in Chinese medicine, moxibustion is a common treatment. This study explores moxibustion's impact on PCOS by establishing a dehydroepiandrosterone (DHEA)-induced PCOS rat model. Thirty-six specific pathogen-free female Sprague-Dawley rats were divided into four groups: a normal control group (CTRL), a PCOS model group (PCOS), a moxibustion treatment group (MBT), and a metformin treatment group (MET). The MBT rats received moxibustion, and the MET rats underwent metformin gavage for two weeks. We evaluated ovarian tissue changes, serum testosterone, fasting blood glucose (FBG), and fasting insulin levels. Additionally, we calculated the insulin sensitivity index (ISI) and the homeostasis model assessment of insulin resistance index (HOMA-IR). We used 16S rDNA sequencing for assessing the gut microbiota, 1H NMR spectroscopy for evaluating metabolic changes, and Spearman correlation analysis for investigating the associations between metabolites and gut microbiota composition. The results indicate that moxibustion therapy significantly ameliorated ovarian dysfunction and insulin resistance in DHEA-induced PCOS rats. We observed marked differences in the composition of gut microbiota and the spectrum of fecal metabolic products between CTRL and PCOS rats. Intriguingly, following moxibustion intervention, these differences were largely diminished, demonstrating the regulatory effect of moxibustion on gut microbiota. Specifically, moxibustion altered the gut microbiota by increasing the abundance of UCG-005 and Turicibacter, as well as decreasing the abundance of Desulfovibrio. Concurrently, we also noted that moxibustion promoted an increase in levels of short-chain fatty acids (including acetate, propionate, and butyrate) associated with the gut microbiota of PCOS rats, further emphasizing its positive impact on gut microbes. Additionally, moxibustion also exhibited effects in lowering FBG, testosterone, and fasting insulin levels, which are key biochemical indicators associated with PCOS and insulin resistance. Therefore, these findings suggest that moxibustion could alleviate DHEA-induced PCOS by regulating metabolic levels, restoring balance in gut microbiota, and modulating interactions between gut microbiota and host metabolites.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Resistencia a la Insulina , Moxibustión , Síndrome del Ovario Poliquístico , Ratas Sprague-Dawley , Animales , Síndrome del Ovario Poliquístico/terapia , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Moxibustión/métodos , Ratas , Deshidroepiandrosterona/metabolismo , Glucemia/metabolismo , Insulina/sangre , Insulina/metabolismo , Metformina/farmacología , Testosterona/sangre , Ovario/metabolismo , Ovario/microbiología
2.
J Ethnopharmacol ; 328: 118027, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38537844

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zishen Qingre Lishi Huayu recipe (ZQLHR) is a herbal recipe created on the basis on the theory of traditional Chinese medicine and clinical practice, and is mainly used in the treatment of polycystic ovary syndrome (PCOS). However, the underlying mechanism for this fact has not been clearly elucidated. AIM OF THE STUDY: To verify whether ZQLHR regulates granulosa cells (GCs) proliferation and apoptosis through the Krüppel-like factor 4 (KLF4) - CCATT enhancer-binding proteinß (C/EBPß) pathway, and to provide in vitro molecular mechanism supporting for the effects of ZQLHR to enhance follicular development and treat patients with PCOS. MATERIALS AND METHODS: Based on previous experiments, we performed the following experiments. Firstly, we treated KGN cells (a steroidogenic human granulosa-like tumor cell line) for 48 h using different concentrations of ZQLHR in order to observe apoptosis in each group. Secondly, the mRNA and protein expression levels of KLF4 and C/EBPß in KGN cells after administrated with ZQLHR were examined by quantitative real-time PCR(q-PCR) and Western blot assay. Thirdly, after knocking down KLF4 and C/EBPß using siRNAs, the relationship between KLF4 and C/EBPß in KGN cells was detected. Further, cell counting kit-8 assay, colony formation assay and flow cytometry were used to verify whether ZQLHR promotes proliferation and facilitates apoptosis in KGN cells through the KLF4-C/EBPß pathway. Finally, q-PCR and Western blot were used to test whether ZQLHR mediated proliferation and apoptosis-related factors such as B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (BAX), proliferating cell nuclear antigen (PCNA) and cleaved caspase-3 to affect the proliferation and apoptosis of KGN cells through the KLF4-C/EBPß pathway. CONCLUSIONS: ZQLHR, containing 0.2% by volume, administered to KGN cells resulted in the lowest rate of apoptosis. The expression levels of KLF4 and C/EBPß were increased in KGN cells following ZQLHR treatment. Additionally, ZQLHR promoted proliferation and inhibited apoptosis of KGN cells by modulating proliferation and apoptosis-related factors via the KLF4-C/EBPß pathway. Furthermore, we confirmed that KLF4 and C/EBPß regulate each other in KGN cells. These findings indicate that ZQLHR enhances the proliferation of GCs and suppresses their apoptosis, which constitutes a therapeutic mechanism for treating patients with PCOS.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/metabolismo , Factor 4 Similar a Kruppel , Apoptosis , Células de la Granulosa , Proliferación Celular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , MicroARNs/genética
3.
Food Funct ; 15(4): 1779-1802, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38251706

RESUMEN

Background and aim: A large number of recent studies have reported on the use of antioxidants in patients with polycystic ovary syndrome (PCOS). This study aimed to evaluate the antioxidant effects on PCOS. Methods: We searched PubMed, Embase, Web of Science, and The Cochrane Library to identify randomized controlled trials investigating the use of antioxidants in treating PCOS. Statistical analysis was performed using Review Manager 5.4. Stata17.0 software was used to conduct sensitivity analyses. Results: This meta-analysis included 49 articles and 62 studies. The sample comprised 1657 patients with PCOS from the antioxidant group and 1619 with PCOS from the placebo group. The meta-analysis revealed that the fasting blood glucose levels [standardized mean difference (SMD): -0.31, 95% confidence interval (CI): -0.39 to -0.22, P < 0.00001], the homeostatic model assessment of insulin resistance (SMD: -0.68, 95% CI: -0.87 to -0.50], P < 0.00001), and insulin levels (SMD: -0.68, 95% CI: -0.79 to -0.58, P < 0.00001) were significantly lower in patients with PCOS taking antioxidants than those in the placebo group. Further, total cholesterol levels (SMD: -0.38, 95% CI: -0.56 to -0.20, P < 0.001), low-density lipoprotein cholesterol levels (SMD: -0.24, 95% CI: -0.37 to -0.10, P = 0.0008), and very low-density lipoprotein levels (SMD: -0.53, 95% CI: -0.65 to -0.41, P < 0.00001) were lower in patients with PCOS taking antioxidant supplements compared with the placebo group. Total testosterone (TT) level (SMD: -0.78, 95% CI: -1.15 to -0.42, P < 0.0001), dehydroepiandrosterone level (SMD: -0.42, 95% CI: -0.58 to -0.25, P < 0.00001), and mean standard deviation modified Ferriman-Gallway (MF-G scores) (SMD: -0.63, 95% CI: -0.98 to -0.28, P = 0.0004) were lower in patients taking antioxidant supplements. C-reactive protein (CRP) levels (SMD: -0.48, 95% CI: -0.63 to -0.34, P < 0.000001), body mass index [mean difference (MD): -0.27, 95% CI: -0.50 to -0.03, P = 0.03], weight (MD: -0.73, 95% CI: -1.35 to -0.11, P = 0.02), and diastolic blood pressure (MD: -3.78, 95% CI: -6.30 to -1.26, P = 0.003) were significantly lower. Moreover, the levels of sex hormone-binding protein (SMD: 0.23, 95% CI: 0.07-0.38, P = 0.004), high-density lipoprotein cholesterol (SMD: 0.11, 95% CI: 0.01-0.20, P = 0.03), total antioxidant capacity (SMD: 0.59, 95% CI: 0.31-0.87, P < 0.0001), and quantitative insulin sensitivity index (SMD: 0.01, 95% CI: 0.01-0.02, P < 0.00001) were higher in patients with PCOS who took antioxidant supplements compared with the placebo group. Antioxidant supplements did not affect other analyzed parameters in these patients, including follicle-stimulating hormone, free androgen index, nitric oxide, glutathione, malondialdehyde, and diastolic blood pressure. Conclusions: Antioxidants are beneficial in treating PCOS. Our study might provide a new treatment strategy for patients with clinical PCOS. We hope that more high-quality studies evaluating the effects of antioxidants on patients with PCOS will be conducted in the future. Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023448088.


Asunto(s)
Antioxidantes , Síndrome del Ovario Poliquístico , Femenino , Humanos , Antioxidantes/uso terapéutico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Suplementos Dietéticos , Lipoproteínas LDL , Colesterol
4.
J Ethnopharmacol ; 323: 117698, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38171464

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Polycystic ovary syndrome (PCOS) is a prevalent female endocrine condition that significantly affects women of all age groups and is characterized by metabolic dysfunction. The efficacy of existing pharmaceutical interventions for the treatment of PCOS remains inadequate. With a rich history and cultural significance spanning thousands of years, Traditional Chinese Medicine (TCM) is extensively employed for treating a variety of ailments and can serve as a supplementary therapy for managing PCOS. Multiple clinical observations and laboratory tests have unequivocally demonstrated the substantial effectiveness and safety of TCM formulae in treating PCOS, and further investigations are currently in progress. AIM OF THE STUDY: To summarize the TCM formulae commonly employed in the clinical management of PCOS, examine their therapeutic benefits, investigate their mechanism of action, active constituents, and establish the correlation between efficacy, mechanism of action, and active constituents. MATERIALS AND METHODS: We conducted a comprehensive search on PubMed, Web of Science, and China national knowledge infrastructure (CNKI) using the following keywords: "Polycystic Ovary Syndrome", "Traditional Chinese Medicine Decoctions", "Traditional Chinese Medicine formulae", "Traditional Chinese Medicine", "Clinical Observation", "Mechanism", "Treatment", "Pharmacology", and various combinations of these terms. From January 1, 2006 until October 7, 2023, (inclusive). RESULTS: This paper summarized the clinical effectiveness, mechanism of action, and active components of 8 TCM formulae for the treatment of PCOS. Our research indicates that TCM formulae can potentially treat PCOS by enhancing the levels of hyperandrogenism and other endocrine hormones, decreasing insulin resistance and hyperinsulinemia, and controlling chronic low-grade inflammation, among other modes of action. In addition, we found an association between epigenetics and TCM formulae for the treatment of PCOS. CONCLUSION: TCM formulae have specific advantages in the treatment of Polycystic Ovary Syndrome (PCOS). They achieve therapeutic benefits by targeting several pathways and connections, attracting considerable interest and playing a vital role in the treatment of PCOS. TCM formulae can be used as an adjunctive therapy for the treatment of PCOS.


Asunto(s)
Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Medicina Tradicional China , Inflamación , China
5.
Acupunct Med ; 42(2): 87-99, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38044823

RESUMEN

BACKGROUND: This study was designed to evaluate the effects of low-frequency electroacupuncture (EA) on glucose and lipid disturbances in a rat model of polycystic ovary syndrome (PCOS) characterized by insulin resistance (IR) and hepatic steatosis. METHODS: The PCOS rat model was induced by continuous administration of letrozole (LET) combined with a high-fat diet (HFD). Female Sprague-Dawley rats were divided into the following four groups: control, control + EA, LET + HFD and LET + HFD + EA. EA was administered five or six times a week with a maximum of 20 treatment sessions. Body weight, estrous cyclicity, hormonal status, glucose and insulin tolerance, lipid profiles, liver inflammation factors, liver morphology and changes in the phosphatidylinositol 3-kinase (PI3-K)/Akt (protein kinase B) pathway were evaluated. RESULTS: The rat model presented anovulatory cycles, increased body weight, elevated testosterone, abnormal glucose and lipid metabolism, IR, liver inflammation, hepatic steatosis and dysregulation of the insulin-mediated PI3-K/Akt signaling axis. EA reduced fasting blood glucose, fasting insulin, area under the curve for glucose, homeostasis model assessment of IR indices, triglycerides and free fatty acids, and alleviated hepatic steatosis. Furthermore, low-frequency EA downregulated mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6, upregulated mRNA expression of peroxisome proliferator-activated receptor (PPAR)-α, increased protein expression of phosphorylated (p)-Akt (Ser473), p-glycogen synthase kinase (GSK) 3ß (Ser9) and glucose transporter 4 (GLUT4), increased the ratio of p-GSK3ß to GSK3ß and downregulated protein expression of GSK3ß. CONCLUSION: An obese PCOS rat model with IR and hepatic steatosis was successfully established by the combination of LET and HFD. EA improved dysfunctional glucose and lipid metabolism in this PCOS-IR rat model, and the molecular mechanism appeared to involve regulation of the expression of key molecules of the PI3-K/Akt insulin signaling pathway in the liver.


Asunto(s)
Electroacupuntura , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Humanos , Ratas , Femenino , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Síndrome del Ovario Poliquístico/terapia , Síndrome del Ovario Poliquístico/metabolismo , Letrozol/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratas Sprague-Dawley , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hígado/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Glucosa/metabolismo , Peso Corporal , Fosfatidilinositol 3-Quinasa/metabolismo , Triglicéridos , Inflamación/metabolismo , ARN Mensajero/metabolismo
6.
Prostaglandins Other Lipid Mediat ; 170: 106801, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984794

RESUMEN

OBJECTIVE: This study was designed to investigate the therapeutic effect of Cangfu Daotan Decoction (CDD) combined with drospirenone and ethinylestradiol tablets (II) on patients with polycystic ovary syndrome (PCOS). METHODS: Patients with PCOS were gathered from September 2020 to September 2022 and divided into the experimental group (n = 36), treated with CDD combined with drospirenone and ethinylestradiol tablets (II), and the control group (n = 41), received only drospirenone and ethinylestradiol tablets (II). Levels of sex hormone, obesity, blood glucose, blood lipid were detected and compared between the two groups pre- and post-treatment. The treatment efficacy, Traditional Chinese Medicine (TCM) syndrome score, adverse drug reactions, and pregnancy rate were compared as well. RESULTS: After treatment, the experimental group had a higher treatment efficacy (94.44% vs 73.17%, P < 0.05) and a higher pregnancy rate (44.44% vs 21.95%, P < 0.05) than the control group, but the difference in the incidence of adverse drug reactions was not statistically significant (P > 0.05). Compared with control group, TCM syndrome score and levels of fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and waist circumference of the experimental group after treatment displayed remarkable reduction (P < 0.05), while the levels of estradiol (E2) and high-density lipoprotein cholesterol (HDL-C) showed a remarkable increase (P < 0.05). CONCLUSION: CDD in combination with drospirenone and ethinylestradiol tablets (II) may be effective in treating PCOS by improving obesity, glucose metabolism and lipid metabolism with no serious adverse events, making it a feasible clinical practice option.


Asunto(s)
Androstenos , Medicamentos Herbarios Chinos , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Embarazo , Femenino , Humanos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Obesidad , Comprimidos/uso terapéutico
7.
J Ethnopharmacol ; 319(Pt 3): 117346, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879506

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cryptotanshinone is the main bioactive component of Salvia miltiorrhiza, with various mechanisms of action, including antioxidant, anti-inflammatory, cardiovascular protection, neuroprotection, and hepatoprotection. Salvia miltiorrhiza is used clinically by gynecologists in China. AIM OF THE STUDY: Polycystic ovary syndrome (PCOS) has a significant impact on women's quality of life, leading to infertility and reproductive disorders. Hence, this study aims to assess the pharmacological activity of cryptotanshinone in the treatment of PCOS and investigate its therapeutic mechanism. MATERIALS AND METHODS: Human chorionic gonadotropin (HCG) combined with insulin is used to simulate a PCOS-like rat model and attempt to discover the abnormal changes that occur and the means by which the pathway acts in this model. RESULTS: The transcriptome sequencing method is used to identify 292 differential genes that undergo significant changes, of which 219 were upregulated and 73 were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the signaling pathways reveals that differential expressed genes are significantly enriched in 23 typical pathways. Estrogen signaling pathways are screened in the cryptotanshinone and model groups, and significant differential changes in Fos, ALOX12, and AQP8 are found. This suggests that these signaling pathways and molecules may be the main signaling targets for regulating the differences in endometrial tissue. CONCLUSION: These results indicate that cryptotanshinone has targets for regulating the proliferation of endometrial tissue via estrogen signaling pathways in PCOS-like rats, providing an experimental basis for the clinical application of cryptotanshinone in the treatment of PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , Femenino , Ratas , Humanos , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Calidad de Vida , Endometrio/metabolismo , Estrógenos/metabolismo
8.
J Ethnopharmacol ; 323: 117654, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38158097

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Buzhong Yiqi Decoction (JWBZYQ), from records of FuqingzhuNvke, is a classical formula for treating obese women related infertility. JWBZYQ has been shown to be effective in treating polycystic ovary syndrome (PCOS) in both clinical studies and practical practice, with the pharmacological mechanism remaining unknown. AIM OF THE STUDY: To explore the potential therapeutic effects and mechanistic insights of JWBZYQ in PCOS. MATERIALS AND METHODS: An overweight PCOS rat model was established via testosterone propionate (TP) injection and 45% high-fat diet (HFD). Then they were categorized into five distinct groups: Control group, Model group, low-dose of JWBZYQ (JWBZYQ1) group, high-dose of JWBZYQ (JWBZYQ2) group, and metformin (Met) group. Body weight, estrous cycle, and sex hormone levels were observed. Hematoxylin-Eosin staining was employed to investigate the histological characteristics of the ovaries. To identify the pathways that changed significantly, transcriptome analysis was performed. The protein and mRNA levels of key molecules in ovarian zona pellucida (ZP) organization, transzonal projections (TZPs) assembly, steroid hormone receptors, and steroidogenesis were assessed using phalloidin staining, immunohistochemistry, Western blot, and polymerase chain reaction. RESULTS: RNA-seq analysis demonstrated that regulation of hormone secretion, cilium assembly, cell projection assembly, and ZP production may all have crucial impact on the etiology of PCOS and therapeutic effect of JWBZYQ. In particular, PCOS rats exhibited elevated expressions of ZP1-3, which can be reversed by JWBZYQ2 particularly. Simultaneously, TZPs assembly was totally disrupted in PCOS rats, evidenced by the phalloidin staining, upregulated calcium-/calmodulin-dependent protein kinase II beta (CaMKIIß), and deficient p-CaMKIIß, myosin X (MYO10), proline-rich tyrosine kinase 2 (PTK2), and Fascin. Nonetheless, JWBZYQ or metformin treatment revived the disturbance, repairing the oocyte-granulosa cell communication, regulating steroidogenesis in PCOS rats. In this way, JWBZYQ and metformin exerted remarkable effects in alleviating altered ovarian morphology and function in PCOS rats, with JWBZYQ2 revealing the best effect. CONCLUSIONS: JWBZYQ restored the altered ovarian morphology and function by regulating the oocyte-granulosa cell communication, which was related with ZP organization and TZPs assembly in the ovary.


Asunto(s)
Metformina , Síndrome del Ovario Poliquístico , Humanos , Ratas , Femenino , Animales , Síndrome del Ovario Poliquístico/metabolismo , Faloidina/uso terapéutico , Oocitos/metabolismo , Metformina/uso terapéutico , Comunicación Celular , Hormonas
9.
Front Endocrinol (Lausanne) ; 14: 1228088, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790609

RESUMEN

Background: Polycystic ovary syndrome (PCOS) is a common disorder resulting in irregular menstruation and infertility due to improper follicular development and ovulation. PCOS pathogenesis is mediated by downregulated follicle-stimulating hormone receptor (FSHR) expression in granulosa cells (GCs); however, the underlying mechanism remains elusive. Unkeito (UKT) is a traditional Japanese medicine used to treat irregular menstruation in patients with PCOS. In this study, we aimed to confirm the effectiveness of UKT in PCOS by focusing on follicle-stimulating hormone (FSH) responsiveness. Methods: A rat model of PCOS was generated by prenatal treatment with 5α-dihydrotestosterone. Female offspring (3-week-old) rats were fed a UKT mixed diet or a normal diet daily. To compare the PCOS phenotype in rats, the estrous cycle, hormone profiles, and ovarian morphology were evaluated. To further examine the role of FSH, molecular, genetic, and immunohistological analyses were performed using ovarian tissues and primary cultured GCs from normal and PCOS model rats. Results: UKT increased the number of antral and preovulatory follicles and restored the irregular estrous cycle in PCOS rats. The gene expression levels of FSHR and bone morphogenetic protein (BMP)-2 and BMP-6 were significantly decreased in the ovarian GCs of PCOS rats compared to those in normal rats. UKT treatment increased FSHR staining in the small antral follicles and upregulated Fshr and Bmps expression in the ovary and GCs of PCOS rats. There was no change in serum gonadotropin levels. In primary cultured GCs stimulated by FSH, UKT enhanced estradiol production, accompanied by increased intracellular cyclic adenosine monophosphate levels, and upregulated the expression of genes encoding the enzymes involved in local estradiol synthesis, namely Cyp19a1 and Hsd17b. Furthermore, UKT elevated the expression of Star and Cyp11a1, involved in progesterone production in cultured GCs in the presence of FSH. Conclusions: UKT stimulates ovarian follicle development by potentiating FSH responsiveness by upregulating BMP-2 and BMP-6 expression, resulting in the recovery of estrous cycle abnormalities in PCOS rats. Restoring the FSHR dysfunction in the small antral follicles may alleviate the PCOS phenotype.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Embarazo , Femenino , Ratas , Animales , Síndrome del Ovario Poliquístico/metabolismo , Hormona Folículo Estimulante , Proteína Morfogenética Ósea 6 , Estradiol , Hormona Folículo Estimulante Humana , Trastornos de la Menstruación
10.
Reprod Biol ; 23(4): 100797, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37633225

RESUMEN

The present study aimed to build a DHEA-induced polycystic ovary syndrome (PCOS) rat model to evaluate the potential mechanism of DHEA-induced AMH rise in these rat ovarian tissues. A total of 36 female 3-week-old rats were allocated into two groups at random. The control group received merely the same amount of sesame oil for 20 days while the experimental group received 0.2 mL of sesame oil Plus DHEA 6 mg/100 g daily. Both groups' vaginal opening times were noted, and vaginal smears were taken. By using RT-qPCR and Western blot, the mRNA and protein expression of AMH, GATA4, SF1, and SOX9 in the ovarian tissues of the two groups was investigated.The rats in the experimental group appeared to have obvious disorders of the estrus cycle, as evidenced by the ratio of estrus being significantly higher than that in the control group (P < 0.05); HE staining revealed that the ovarian volume, follicular vacuoles, and follicular lumen of the rats in the experimental group increased significantly.The ELISA results revealed that T and AMH in the experimental group were higher than those in the control group at day 15 and 20. AMH、GATA4 and SF1 mRNA and protein expression were higher in the experimental group than in the control group on day 15 and 20 (P < 0.05). On day 20, the experimental group outperformed the control group (P < 0.05). In the DHEA-induced PCOS rat model, androgen may have enhanced AMH expression via increasing the expression of genes associated to the AMH promoter binding site (GATA4, SF1, SOX9).


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Ratas , Femenino , Animales , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/metabolismo , Aceite de Sésamo/efectos adversos , Deshidroepiandrosterona/farmacología , ARN Mensajero , Hormona Antimülleriana/genética
11.
Gynecol Endocrinol ; 39(1): 2244600, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37544927

RESUMEN

Objective: Polycystic ovarian syndrome (PCOS) is a prevalent gynecologic disorder, often associated with abnormal follicular development. Cangfu Daotan decoction (CFD) is a traditional Chinese medicine formula that is effective in alleviating PCOS clinically, but the specific mechanism remains unclear. Forkhead box K1 (FOXK1) is associated with cellular function. This study aimed to explore the effects of CFD and FOXK1 on PCOS.Methods: High-fat diet and letrozole were combined to establish PCOS rat models. Next, primary GCs were extracted from those PCOS rats. Then, GC cells were transfected with si-FOXK1 or oe-FOXK1. CFD-contain serum was prepared, and experiments were conducted to investigate the regulation of FOXK1 by CFD.Results: FOXK1 was highly expressed in GCs of PCOS rats. Further investigation revealed that FOXK1 overexpression resulted in inhibition of proliferation and DNA synthesis, along with promotion of apoptosis and autophagy in GCs. Additionally, it was found that FOXK1 promoted the expressions of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway-related proteins. Interestingly, treatment with CFD reversed all the effects of FOXK1 overexpression in GCs. Conclusion: This study demonstrated that CFD exerted a protective role in PCOS by inhibiting FOXK1, which provided a research basis for the application of CFD in PCOS, and suggested that FOXK1 is a novel therapeutic target in PCOS treatment.


Asunto(s)
Medicamentos Herbarios Chinos , Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratas , Animales , Células de la Granulosa/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Apoptosis , Mamíferos , Factores de Transcripción Forkhead/genética
12.
Front Endocrinol (Lausanne) ; 14: 956772, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260441

RESUMEN

Polycystic ovary syndrome (PCOS) is a reproductive endocrine disease characterized by menstrual disorders, infertility, and obesity, often accompanied by insulin resistance and metabolic disorders. The pathogenesis of PCOS is relatively complex and has a certain relationship with endocrine disorders. The increase of androgen and luteinizing hormone (LH) is the main cause of a series of symptoms. Traditional Chinese medicine (TCM) has obvious advantages and significant curative effects in the treatment of this disease. It can effectively reduce the insulin level of PCOS patients, regulate lipid metabolism, and increase ovulation rate and pregnancy rate and has fewer side effects. This article reviews the efficacy and safety of Chinese herbs and other TCM (such as acupuncture) in the treatment of PCOS and its complications in recent years, as well as the effect and mechanism on cellular endocrine, in order to provide a new clinical idea for the treatment of PCOS.


Asunto(s)
Terapia por Acupuntura , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Embarazo , Femenino , Humanos , Síndrome del Ovario Poliquístico/metabolismo , Medicina Tradicional China , Índice de Embarazo
13.
Phytomedicine ; 117: 154908, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37321077

RESUMEN

BACKGROUND: Abnormal endocrine metabolism caused by polycystic ovary syndrome combined with insulin resistance (PCOS-IR) poses a serious risk to reproductive health in females. Quercitrin is a flavonoid that can efficiently improve both endocrine and metabolic abnormalities. However, it remains unclear if this agent can exert therapeutic effect on PCOS-IR. METHODS: The present study used a combination of metabolomic and bioinformatic methods to screen key molecules and pathways involved in PCOS-IR. A rat model of PCOS-IR and an adipocyte IR model were generated to investigate the role of quercitrin in regulating reproductive endocrine and lipid metabolism processes in PCOS-IR. RESULTS: Peptidase M20 domain containing 1 (PM20D1) was screened using bioinformatics to evaluate its participation in PCOS-IR. PCOS-IR regulation via the PI3K/Akt signaling pathway was also investigated. Experimental analysis showed that PM20D1 levels were reduced in insulin-resistant 3T3-L1 cells and a letrozole PCOS-IR rat model. Reproductive function was inhibited, and endocrine metabolism was abnormal. The loss of adipocyte PM20D1 aggravated IR. In addition, PM20D1 and PI3K interacted with each other in the PCOS-IR model. Furthermore, the PI3K/Akt signaling pathway was shown to participate in lipid metabolism disorders and PCOS-IR regulation. Quercitrin reversed these reproductive and metabolic disorders. CONCLUSION: PM20D1 and PI3K/Akt were required for lipolysis and endocrine regulation in PCOS-IR to restore ovarian function and maintain normal endocrine metabolism. By upregulating the expression of PM20D1, quercitrin activated the PI3K/Akt signaling pathway, improved adipocyte catabolism, corrected reproductive and metabolic abnormalities, and had a therapeutic effect on PCOS-IR.


Asunto(s)
Trastornos del Metabolismo de los Lípidos , Síndrome del Ovario Poliquístico , Femenino , Animales , Ratas , Ratas Sprague-Dawley , Trastornos del Metabolismo de los Lípidos/tratamiento farmacológico , Trastornos del Metabolismo de los Lípidos/metabolismo , Resistencia a la Insulina , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Ratones , Línea Celular , Aminohidrolasas/metabolismo
14.
J Ovarian Res ; 16(1): 109, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277785

RESUMEN

BACKGROUND: This study aimed to compare the characteristics of the gut microbiota and their metabolite profiles between polycystic ovary syndrome (PCOS) and orlistat-treated PCOS rats (ORL-PCOS), which could help to better understand the underlying mechanism of the effect of orlistat on PCOS. METHODS: PCOS rat models were established using letrozole combined with a high-fat diet. Ten rats were randomly selected as a PCOS control group (PCOS). The other three groups (n = 10/group) were additionally supplemented with different doses of orlistat (low, medium, high). Then, fecal samples of the PCOS and ORL-PCOS groups were analysed by 16S rRNA gene sequencing and untargeted metabolomics. Blood samples were collected to detect serum sex hormones and lipids. RESULTS: The results showed that orlistat attenuated the body weight gain, decreased the levels of T, LH, the LH/FSH ratio, TC, TG and LDL-C; increased the level of E2; and improved estrous cycle disorder in PCOS rats. The bacterial richness and diversity of the gut microbiota in the ORL-PCOS group were higher than those in the PCOS group. The ratio of Firmicutes to Bacteroidetes was decreased with orlistat treatment. Moreover, orlistat treatment led to a significant decrease in the relative abundance of Ruminococcaceae and Lactobacillaceae, and increases in the abundances of Muribaculaceae and Bacteroidaceae. Metabolic analysis identified 216 differential fecal metabolites in total and 6 enriched KEGG pathways between the two groups, including steroid hormone biosynthesis, neuroactive ligand-receptor interaction and vitamin digestion and absorption. Steroid hormone biosynthesis was the pathway with the most significant enrichment. The correlations between the gut microbiota and differential metabolites were calculated, which may provide a basis for understanding the composition and function of microbial communities. CONCLUSIONS: Our data suggested that orlistat exerts a PCOS treatment effect, which may be mediated by modifying the structure and composition of the gut microbiota, as well as the metabolite profiles of PCOS rats.


Asunto(s)
Microbiota , Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratas , Animales , Síndrome del Ovario Poliquístico/metabolismo , Orlistat/uso terapéutico , Letrozol/uso terapéutico , Dieta Alta en Grasa/efectos adversos , ARN Ribosómico 16S/genética , Hormonas Esteroides Gonadales , Metabolómica , Esteroides/uso terapéutico
15.
J Ethnopharmacol ; 317: 116812, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37343651

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Mongolian medicine Nuangong Qiwei Pill (NGQW) is a folk prescription with a long history of use by the Mongolian people. NGQW comprises seven Mongolian medicines, which have the effects of regulating and nourishing blood, warming the uterus, dispelling cold and relieving pain. For a long time, it has been used as a good remedy for gynecological diseases, with remarkable curative effects, favored by the majority of patients and recommended by doctors. Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disorder that can lead to menstrual disorders or infertility. In the gynecological classification of Mongolian medicine, polycystic ovary syndrome has not been distinguished in detail, and the mechanism of NGQW in the treatment of polycystic ovary syndrome has not been scientifically studied and standardized. AIM OF THE STUDY: The aim of this study was to clarify the mechanism of action of NGQW and macelignan in the treatment of PCOS and to provide a reference for the clinical application of these drugs. MATERIALS AND METHODS: The effect of intragastric administration of NGQW and macelignan on PCOS model mice was observed. The mental status of mice was examined behaviorally, and serum hormone levels and oxidative stress parameters were measured by ELISA. Giemsa staining was used to detect the reproductive cycle, and HE staining was used to observe the ovarian status. Immunofluorescence staining was performed to observe the proliferation and apoptosis of ovarian granulosa cells. qRT‒PCR was conducted to measure the expression of IL-6, BAX, BCL-2, and estrogen synthesis-related genes in ovarian tissue and particle cells. RESULTS: In the dehydroepiandrosterone (DHEA)-induced PCOS model mice, both NGQW and macelignan improved the estrous cycle; increased the estradiol (E2) content; lowered testosterone (T), progesterone (P) and luteinizing hormone (LH) levels; reduced the number of polycystic follicles; promoted granulosa cell proliferation; reduced granulosa cell apoptosis; and alleviated depression and anxiety. In addition, Nuangong Qiwei Pill and macelignan reduced the mRNA levels of the ovarian inflammatory factor IL-6; improved the disordered levels of the antioxidant indicators GSH, MDA, and SOD; and activated the TGF-ß3 signaling pathway to increase the transcription of Cyp19a1, which increases estrogen secretion. CONCLUSION: NGQW and macelignan can treat PCOS through the TGF-ß3/Smad/Cyp19a1 signaling pathway to regulate the secretion ability of ovarian granulosa cells. Our research justifies the traditional use of NGQW to treat PCOS and enriches the scope of action of macelignan.


Asunto(s)
Síndrome del Ovario Poliquístico , Femenino , Humanos , Ratones , Animales , Síndrome del Ovario Poliquístico/metabolismo , Medicina Tradicional Mongoliana , Interleucina-6 , Factor de Crecimiento Transformador beta3/efectos adversos , Estrógenos/uso terapéutico
16.
Gynecol Endocrinol ; 39(1): 2210232, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37187204

RESUMEN

OBJECTIVE: To investigate the potential molecular mechanism of traditional Chinese medicine Guizhi Fuling Wan (GZFLW) inhibiting granulosa cells (GCs) autophagy in polycystic ovary syndrome (PCOS). METHODS: Control GCs and model GCs were cultured and treated with blank serum or GZFLW-containing serum. The levels of H19 and miR-29b-3p in GCs were detected using qRT-PCR, target genes of miR-29b-3p were identified using luciferase assay. The protein expressions of Phosphatase and tensin homolog (PTEN), Matrix Metalloproteinase (MMP)-2, and Bax were measured using western blot. The level of autophagy was detected via MDC staining, the degree of autophagosomes and autophagic polymers was observed using dual fluorescence-tagged mRFP-eGFP-LC3. RESULTS: GZFLW intervention reduced the expression of autophagy-related proteins PTEN, MMP-2 and Bax, by upregulating the expression of miR-29b-3p and downregulated the expression of H19 (p < .05 or p < .01). The number of autophagosomes and autophagy polymers was significantly decreased by GZFLW treatment. However, the inhibition of miR-29b-3p and overexpression of H19 induced a significant increase in the number of autophagosomes and autophagic polymers, which attenuated the inhibitory effect of GZFLW on autophagy (p < .05 or p < .01). In addition, inhibition of miR-29b-3p or overexpression of H19 can attenuate the effect of GZFLW on the expression of PTEN, MMP-2 and Bax proteins (p < .05 or p < .01). CONCLUSION: Our study found that GZFLW inhibits autophagy in PCOS GCs via H19/miR-29b-3p pathway.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , Animales , Femenino , Ratones , Apoptosis , Autofagia/genética , Proteína X Asociada a bcl-2 , Proliferación Celular/genética , Células de la Granulosa/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo
17.
Life Sci ; 326: 121795, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230376

RESUMEN

AIMS: Phytoestrogens can act as natural estrogens owing to their structural similarity to human estrogens. Biochanin-A (BCA) is a well-studied phytoestrogen with a wide variety of pharmacological activities, whereas not reported in the most frequently encountered endocrinopathy called polycystic ovary syndrome (PCOS) in women. PURPOSE: This study aimed to investigate the therapeutic effect of BCA on dehydroepiandrosterone (DHEA) induced PCOS in mice. MAIN METHODS: Thirty-six female C57BL6/J mice were divided into six groups: sesame oil, DHEA-induced PCOS, DHEA + BCA (10 mg/kg/day), DHEA + BCA (20 mg/kg/day), DHEA + BCA (40 mg/kg/day), and metformin (50 mg/kg/day). KEY FINDINGS: The results showed a decrease in obesity, elevated lipid parameters, restoration of hormonal imbalances (testosterone, progesterone, estradiol, adiponectin, insulin, luteinizing hormone, and follicle-stimulating hormone), estrus irregular cyclicity, and pathological changes in the ovary, fat pad, and liver. SIGNIFICANCE: In conclusion, BCA supplementation inhibited the over secretion of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) and upregulated TGFß superfamily markers such as GDF9, BMP15, TGFßR1, and BMPR2 in the ovarian milieu of PCOS mice. Furthermore, BCA reversed insulin resistance by increasing circulating adiponectin levels through a negative correlation with insulin levels. Our results indicate that BCA attenuated DHEA-induced PCOS ovarian derangements, which could be mediated by the TGFß superfamily signaling pathway via GDF9 and BMP15 and associated receptors as first evidenced in this study.


Asunto(s)
Síndrome del Ovario Poliquístico , Animales , Femenino , Ratones , Adiponectina/metabolismo , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Deshidroepiandrosterona/uso terapéutico , Estrógenos/uso terapéutico , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Insulina/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
18.
Clin Epigenetics ; 15(1): 86, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179374

RESUMEN

Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder characterized by chronic low-grade inflammation. Previous studies have demonstrated that the gut microbiome can affect the host tissue cells' mRNA N6-methyladenosine (m6A) modifications. This study aimed to understand the role of intestinal flora in ovarian cells inflammation by regulating mRNA m6A modification particularly the inflammatory state in PCOS. The gut microbiome composition of PCOS and Control groups was analyzed by 16S rRNA sequencing, and the short chain fatty acids were detected in patients' serum by mass spectrometry methods. The level of butyric acid was found to be decreased in the serum of the obese PCOS group (FAT) compared to other groups, and this was correlated with increased Streptococcaceae and decreased Rikenellaceae based on the Spearman's rank test. Additionally, we identified FOSL2 as a potential METTL3 target using RNA-seq and MeRIP-seq methodologies. Cellular experiments demonstrated that the addition of butyric acid led to a decrease in FOSL2 m6A methylation levels and mRNA expression by suppressing the expression of METTL3, an m6A methyltransferase. Additionally, NLRP3 protein expression and the expression of inflammatory cytokines (IL-6 and TNF-α) were downregulated in KGN cells. Butyric acid supplementation in obese PCOS mice improved ovarian function and decreased the expression of local inflammatory factors in the ovary. Taken together, the correlation between the gut microbiome and PCOS may unveil crucial mechanisms for the role of specific gut microbiota in the pathogenesis of PCOS. Furthermore, butyric acid may present new prospects for future PCOS treatments.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Ratones , Animales , Femenino , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Ácido Butírico/metabolismo , ARN Ribosómico 16S/metabolismo , Metilación de ADN , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ácidos Grasos Volátiles/metabolismo , Células de la Granulosa , ARN Mensajero/genética , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/metabolismo , Antígeno 2 Relacionado con Fos/genética , Antígeno 2 Relacionado con Fos/metabolismo
19.
Tissue Cell ; 82: 102090, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37075681

RESUMEN

Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder affecting women at reproductive age. The therapeutic effect of electroacupuncture (EA) on PCOS has been revealed, while the anti-PCOS mechanisms of EA have not been fully explored. In this study, PCOS were induced in rats by daily injection with dehydroepiandrosterone (DHEA) for 20 days and EA treatment was performed for 5 weeks. The mRNA expression profiles in ovarian tissues from control, PCOS, and EA-treated rats were examined by high-throughput mRNA sequencing. 5'-aminolevulinate synthase 2 (Alas2), a vital rate-limiting enzyme of the heme synthesis pathway, was selected to be further studied. PCOS led to the upregulation of Alas2 mRNA, whereas EA treatment restored this change. In vitro, primary ovarian granulosa cells (GCs) were challenged with H2O2 to mimic the oxidative stress (OS) state in PCOS. H2O2 induced apoptosis, OS, mitochondrial dysfunction, as well as Alas2 overexpression in GCs, while lentivirus-mediated Alas2 knockdown evidently restrained the above impairments. In summary, this study highlights the crucial role of Alas2 in cell apoptosis, OS, and mitochondrial dysfunction of PCOS GCs and provides potential therapeutic candidates for further investigation on PCOS treatment.


Asunto(s)
Electroacupuntura , Síndrome del Ovario Poliquístico , Animales , Femenino , Ratas , Apoptosis/genética , Células de la Granulosa/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/terapia , Síndrome del Ovario Poliquístico/metabolismo
20.
Zhonghua Yi Xue Za Zhi ; 103(14): 1035-1041, 2023 Apr 11.
Artículo en Chino | MEDLINE | ID: mdl-37032153

RESUMEN

Objective: To investigate the effects of calorie-restricted diet (CRD), high protein diet (HPD), high protein, and high dietary fiber diet (HPD+HDF) on metabolic parameters and androgen level in overweight/obese patients with polycystic ovary syndrome(PCOS). Methods: Ninety overweight/obese patients with PCOS from Peking University First Hospital from October 2018 to February 2020 were given medical nutrition weight loss therapy for 8 weeks and were randomly divided into CRD group, HPD group, and HPD+HDF group, with 30 patients in each group. Body composition, insulin resistance, and androgen level were detected before and after weight loss, and the efficacy of three weight loss therapies was compared through variance analysis and Kruskal-Wallis H test. Results: Eight patients in CRD group quit because they could not strictly complete the follow-up, therefore at the end of weight loss, 22, 30, and 30 patients in CRD group, HPD group and HPD+HDF group, respectively, were included in the final analysis. The baseline ages of the three groups were (31±2) years, (32±5) years and (31±5) years, respectively (P=0.952). After weight loss, the relevant indicators in HPD group and HPD+HDF group decreased more than those in CRD group. The body weight of CRD group, HPD group and HPD+HDF group decreased by 4.20 (11.92, 1.80), 5.00 (5.10, 3.32) and 6.10 (8.10, 3.07) kg, respectively (P=0.038); BMI of the three groups decreased by 0.80 (1.70, 0.40), 0.90 (1.23, 0.50) and 2.20 (3.30, 1.12) kg/m2, respectively (P=0.002); homeostatic model assessment-insulin resistance(HOMA-IR) index decreased by 0.48(1.93, 0.05), 1.21(2.91, 0.18) and 1.22(1.75, 0.89), respectively (P=0.196); and free androgen index(FAI) decreased by 0.23(0.67, -0.04), 0.41(0.64, 0.30) and 0.44(0.63, 0.24), respectively (P=0.357). Conclusions: The three medical nutrition therapies can effectively reduce the weight of overweight/obese patients with PCOS, and improve insulin resistance and hyperandrogenism. Compared with CRD group, HPD group, and HPD+HDF group have better fat-reducing effect, and can better preserve muscle and basal metabolic rate while losing weight.


Asunto(s)
Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Femenino , Humanos , Adulto , Sobrepeso/terapia , Síndrome del Ovario Poliquístico/terapia , Síndrome del Ovario Poliquístico/metabolismo , Andrógenos , Insulina/metabolismo , Índice de Masa Corporal , Obesidad/terapia , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA