Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nitric Oxide ; 129: 53-62, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36209988

RESUMEN

Nitric oxide (NO) is a key vasodilatory signalling molecule and NO releasing molecules (NO donors) are being examined as potential treatments for many pathologies. The photoresponsive NO donor tert-dodecane S-nitrosothiol (tDodSNO) has been designed to be highly resistant to metabolism; in principle photoactivation of tDodSNO should therefore enable the controlled release of NO in situ via light modulation. To investigate the therapeutic utility of tDodSNO, we tested drug efficacy in Sprague Dawley rats to assess systemic and localised hemodynamic responses under photoactivation, and to confirm drug safety. For comparison, drug action was evaluated alongside the existing NO donors sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO). Across a dosing range (0.1-3.0 mg/kg) tDodSNO exerted markedly reduced systemic hypotensive action compared to these standard NO donors, inducing a slight decrease in mean arterial pressure (maximum 14.2 ± 3.0%) without affecting heart rate. Target limb photoactivation of tDodSNO resulted in a substantial localized vasodilatory response, with increases to mean (26.0 ± 7.3%) and maximum (53.2 ± 10.4%) blood flow and decreases to vascular resistance (27.1 ± 3.9%) that were restricted to light exposed tissue. In comparison GSNO and SNP showed variable peripheral effects and were not responsive to photoactivation. tDodSNO did not induce met-Hb formation in blood, or display any signs of toxicity, and was rapidly cleared from the systemic circulation, with no hemodynamic effects detectable 5 min post administration. These data are the first demonstration that drugs based upon a metabolically stable S-nitrosothiol group can be photoactivated in vivo to release NO, and that such agents cause less systemic side effects than existing NO donors. Our data support the use of S-nitrosothiols to enable the spatiotemporal control of NO for therapeutic applications.


Asunto(s)
Donantes de Óxido Nítrico , S-Nitrosotioles , Animales , Ratas , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/metabolismo , Vasodilatación , Ratas Sprague-Dawley , S-Nitrosotioles/farmacología , S-Nitrosotioles/metabolismo , Nitroprusiato/farmacología , Óxido Nítrico/metabolismo
2.
Int J Mol Med ; 46(4): 1359-1366, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32945437

RESUMEN

Balneotherapy and spa therapy have been used in the treatment of ailments since time immemorial. Moreover, there is evidence to suggest that the beneficial effects of thermal water continue for months following the completion of treatment. The mechanisms through which thermal water exerts its healing effects remain unknown. Both balneological and hydroponic therapy at 'the oldest spa in the world', namely, the Nitrodi spring on the Island of Ischia (Southern Italy) are effective in a number of diseases and conditions. The aim of the present study was to investigate the molecular basis underlying the therapeutic effects of Nitrodi spring water in low­grade inflammation and stress­related conditions. For this purpose, an in vitro model was devised in which RKO colorectal adenocarcinoma cells were treated with phosphate­buffered saline or phosphate­buffered saline prepared with Nitrodi water for 4 h daily, 5 days a week for 6 weeks. The RKO cells were then subjected to the following assays: 3­(4,5­Dimethylthiazol­2­yl)­2,5­diphenyl­2H­tetrazolium bromide assay, Transwell migration assay, western blot analysis, the fluorimetric detection of protein S­nitrosothiols and S­nitrosylation western blot analysis. The results revealed that Nitrodi spring water promoted cell migration and cell viability, and downregulated protein S­nitrosylation, probably also the nitrosylated active form of the cyclooxygenase (COX)­2 protein. These results concur with all the previously reported therapeutic properties of Nitrodi spring water, and thus reinforce the concept that this natural resource is an important complementary therapy to traditional medicine.


Asunto(s)
Adenocarcinoma/terapia , Neoplasias Colorrectales/terapia , Regulación hacia Abajo/fisiología , Proteínas/metabolismo , S-Nitrosotioles/metabolismo , Agua/fisiología , Balneología/métodos , Línea Celular Tumoral , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Calor , Humanos
3.
JCI Insight ; 5(18)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32790645

RESUMEN

S-nitroso-l-cysteine (L-CSNO) behaves as a ligand. Its soluble guanylate cyclase-independent (sGC-independent) effects are stereoselective - that is, not recapitulated by S-nitroso-d-cysteine (D-CSNO) - and are inhibited by chemical congeners. However, candidate L-CSNO receptors have not been identified. Here, we have used 2 complementary affinity chromatography assays - followed by unbiased proteomic analysis - to identify voltage-gated K+ channel (Kv) proteins as binding partners for L-CSNO. Stereoselective L-CSNO-Kv interaction was confirmed structurally and functionally using surface plasmon resonance spectroscopy; hydrogen deuterium exchange; and, in Kv1.1/Kv1.2/Kvß2-overexpressing cells, patch clamp assays. Remarkably, these sGC-independent L-CSNO effects did not involve S-nitrosylation of Kv proteins. In isolated rat and mouse respiratory control (petrosyl) ganglia, L-CSNO stereoselectively inhibited Kv channel function. Genetic ablation of Kv1.1 prevented this effect. In intact animals, L-CSNO injection at the level of the carotid body dramatically and stereoselectively increased minute ventilation while having no effect on blood pressure; this effect was inhibited by the L-CSNO congener S-methyl-l-cysteine. Kv proteins are physiologically relevant targets of endogenous L-CSNO. This may be a signaling pathway of broad relevance.


Asunto(s)
Cisteína/análogos & derivados , Ganglios/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Proteoma/metabolismo , S-Nitrosotioles/metabolismo , Animales , Cisteína/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Estereoisomerismo
4.
Methods Mol Biol ; 2057: 45-59, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31595469

RESUMEN

S-nitrosation as a redox-based posttranslational modification of protein cysteine has emerged as an integral part of signaling pathways of nitric oxide across all types of organisms. Protein S-nitrosation status is controlled by two key mechanisms: by direct denitrosation performed by the thioredoxin/thioredoxin reductase system, and in an indirect way mediated by S-nitrosoglutathione reductase (GSNOR). GSNOR, which has been identified as a key component of S-nitrosothiols catabolism, catalyzes an irreversible decomposition of abundant intracellular S-nitrosothiol, S-nitrosoglutathione (GSNO) to oxidized glutathione using reduced NADH cofactor. In plants, GSNOR has been shown to play important roles in plant growth and development and plant responses to abiotic and biotic stress stimuli. In this chapter, optimized protocols of spectrophotometric measurement of GSNOR enzymatic activity and activity staining in native polyacrylamide gels in plant GSNOR are presented.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Pruebas de Enzimas/métodos , Plantas/enzimología , S-Nitrosotioles/metabolismo , Fluorescencia , NAD/química , Electroforesis en Gel de Poliacrilamida Nativa , Óxido Nítrico/metabolismo , Nitrosación , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , S-Nitrosoglutatión/síntesis química , S-Nitrosoglutatión/química , Coloración y Etiquetado/métodos , Flujo de Trabajo
5.
Biomolecules ; 9(9)2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438648

RESUMEN

S-nitrosoglutathione reductase (GSNOR) exerts crucial roles in the homeostasis of nitric oxide (NO) and reactive nitrogen species (RNS) in plant cells through indirect control of S-nitrosation, an important protein post-translational modification in signaling pathways of NO. Using cultivated and wild tomato species, we studied GSNOR function in interactions of key enzymes of reactive oxygen species (ROS) metabolism with RNS mediated by protein S-nitrosation during tomato root growth and responses to salinity and cadmium. Application of a GSNOR inhibitor N6022 increased both NO and S-nitrosothiol levels and stimulated root growth in both genotypes. Moreover, N6022 treatment, as well as S-nitrosoglutathione (GSNO) application, caused intensive S-nitrosation of important enzymes of ROS metabolism, NADPH oxidase (NADPHox) and ascorbate peroxidase (APX). Under abiotic stress, activities of APX and NADPHox were modulated by S-nitrosation. Increased production of H2O2 and subsequent oxidative stress were observed in wild Solanumhabrochaites, together with increased GSNOR activity and reduced S-nitrosothiols. An opposite effect occurred in cultivated S. lycopersicum, where reduced GSNOR activity and intensive S-nitrosation resulted in reduced ROS levels by abiotic stress. These data suggest stress-triggered disruption of ROS homeostasis, mediated by modulation of RNS and S-nitrosation of NADPHox and APX, underlies tomato root growth inhibition by salinity and cadmium stress.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Cadmio/toxicidad , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio/farmacología , Solanum lycopersicum/efectos de los fármacos , Ascorbato Peroxidasas/metabolismo , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , NADPH Oxidasas/metabolismo , Óxido Nítrico/metabolismo , Nitrosación , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Pirroles/química , Pirroles/metabolismo , Pirroles/farmacología , Especies de Nitrógeno Reactivo/química , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/química , S-Nitrosoglutatión/farmacología , S-Nitrosotioles/metabolismo , Solanum/crecimiento & desarrollo , Solanum/metabolismo , Estrés Fisiológico
6.
Redox Biol ; 15: 277-283, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29304478

RESUMEN

Nitrite represents an endocrine reserve of bioavailable nitric oxide (NO) that mediates a number of physiological responses including conferral of cytoprotection after ischemia/reperfusion (I/R). It has long been known that nitrite can react with non-heme iron to form dinitrosyliron complexes (DNIC). However, it remains unclear how quickly nitrite-dependent DNIC form in vivo, whether formation kinetics differ from that of NO-dependent DNIC, and whether DNIC play a role in the cytoprotective effects of nitrite. Here we demonstrate that chronic but not acute nitrite supplementation increases DNIC concentration in the liver and kidney of mice. Although DNIC have been purported to have antioxidant properties, we show that the accumulation of DNIC in vivo is not associated with nitrite-dependent cytoprotection after hepatic I/R. Further, our data in an isolated mitochondrial model of anoxia/reoxygenation show that while NO and nitrite demonstrate similar S-nitrosothiol formation kinetics, DNIC formation is significantly greater with NO and associated with mitochondrial dysfunction as well as inhibition of aconitase activity. These data are the first to directly compare mitochondrial DNIC formation by NO and nitrite. This study suggests that nitrite-dependent DNIC formation is a physiological consequence of dietary nitrite. The data presented herein implicate mitochondrial DNIC formation as a potential mechanism underlying the differential cytoprotective effects of nitrite and NO after I/R, and suggest that DNIC formation is potentially responsible for the cytotoxic effects observed at high NO concentrations.


Asunto(s)
Antioxidantes/metabolismo , Hierro/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico/biosíntesis , Óxidos de Nitrógeno/metabolismo , Aconitato Hidratasa/metabolismo , Animales , Antioxidantes/química , Citoprotección/efectos de los fármacos , Hipoxia/metabolismo , Hipoxia/patología , Hierro/química , Riñón/metabolismo , Riñón/patología , Hígado/patología , Ratones , Mitocondrias/patología , Óxido Nítrico/metabolismo , Nitritos/química , Nitritos/metabolismo , Óxidos de Nitrógeno/química , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , S-Nitrosotioles/metabolismo
7.
Am J Physiol Cell Physiol ; 313(1): C11-C26, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28381519

RESUMEN

Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form S-nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of S-nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without S-nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor - GSNORi - or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Mioblastos/metabolismo , Óxido Nítrico/metabolismo , Aldehído Oxidorreductasas/antagonistas & inhibidores , Aldehído Oxidorreductasas/genética , Animales , Diferenciación Celular , Fusión Celular , Embrión de Pollo , AMP Cíclico/metabolismo , AMP Cíclico/farmacología , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Cisteína/análogos & derivados , Cisteína/metabolismo , Cisteína/farmacología , Inhibidores Enzimáticos/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , S-Nitrosoglutatión/metabolismo , S-Nitrosotioles/metabolismo , S-Nitrosotioles/farmacología , Transducción de Señal , Guanilil Ciclasa Soluble/genética , Guanilil Ciclasa Soluble/metabolismo , Guanilil Ciclasa Soluble/farmacología , Tionucleótidos/farmacología , Triazenos/farmacología
8.
J Proteome Res ; 15(1): 1-14, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26544640

RESUMEN

S-Nitrosylation is a redox-based post-translational modification of a protein in response to nitric oxide (NO) signaling, and it participates in a variety of processes in diverse biological systems. The significance of this type of protein modification in health and diseases is increasingly recognized. In the central nervous system, aberrant S-nitrosylation, due to excessive NO production, is known to cause protein misfolding, mitochondrial dysfunction, transcriptional dysregulation, and neuronal death. This leads to an altered physiological state and consequently contributes to pathogenesis of neurodegenerative disorders. To date, much effort has been made to understand the mechanisms underlying protein S-nitrosylation, and several approaches have been developed to unveil S-nitrosylated proteins from different organisms. Interest in determining the dynamic changes of protein S-nitrosylation under different physiological and pathophysiological conditions has underscored the need for the development of quantitative proteomic approaches. Currently, both gel-based and gel-free mass spectrometry-based quantitative methods are widely used, and they each have advantages and disadvantages but may also be used together to produce complementary data. This review evaluates current available quantitative proteomic techniques for the analysis of protein S-nitrosylation and highlights recent advances, with emphasis on applications in neurodegenerative diseases. An important goal is to provide a comprehensive guide of feasible quantitative proteomic methodologies for examining protein S-nitrosylation in research to yield insights into disease mechanisms, diagnostic biomarkers, and drug discovery.


Asunto(s)
Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Consenso , Cisteína/análogos & derivados , Cisteína/metabolismo , Humanos , Datos de Secuencia Molecular , Enfermedades Neurodegenerativas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Proteómica/métodos , S-Nitrosotioles/metabolismo , Transducción de Señal
9.
Physiol Plant ; 148(3): 371-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22924747

RESUMEN

Nitric oxide (NO) has various functions in physiological responses in plants, such as development, hormone signaling and defense. The mechanism of how NO regulates physiological responses has not been well understood. Protein S-nitrosylation, a redox-related modification of cysteine thiol by NO, is known to be one of the important post-translational modifications to regulate activity and interactions of proteins. To elucidate NO function in plants, proteomic analysis of S-nitrosylated proteins in potato (Solanum tuberosum) was performed. Detection and functional analysis of internal S-nitrosylated proteins is technically demanding because of the instability and reversibility of the protein S-nitrosylation. By using a modified biotin switch assay optimized for potato tissues, and nano liquid chromatography combined with mass spectrometry, approximately 80 S-nitrosylated candidate proteins were identified in S-nitrosoglutathione-treated potato leaves and tuber extracts. Identified proteins included redox-related enzymes, defense-related proteins and metabolic enzymes. Some of identified proteins were synthesized in Escherichia coli, and S-nitrosylation of recombinant proteins was confirmed in vitro. Dehydroascorbate reductase 1 (DHAR1, EC 1.8.5.1), one of the identified S-nitrosylated target proteins, showed glutathione-dependent dehydroascorbate-reducing activity. Either point mutation in a target cysteine of S-nitrosylation or treatment with an NO donor, S-nitroso-L-cysteine, significantly reduced the activity of DHAR1, indicating that DHAR1 is negatively regulated by S-nitrosylation of the cysteine residue essential for the enzymatic activity. These results show that the modified method developed in this study can be used to identify proteins regulated by S-nitrosylation in potato tissues.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteómica/métodos , Solanum tuberosum/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Glutatión Transferasa/metabolismo , Inmunoprecipitación , Donantes de Óxido Nítrico/farmacología , Nitrosación/efectos de los fármacos , Extractos Vegetales/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Tubérculos de la Planta/efectos de los fármacos , Tubérculos de la Planta/metabolismo , S-Nitrosoglutatión/farmacología , S-Nitrosotioles/metabolismo , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/enzimología
10.
Am J Respir Cell Mol Biol ; 47(1): 37-43, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22323364

RESUMEN

Inhaled nitric oxide (iNO) is used to treat pulmonary hypertension and is being investigated for prevention of bronchopulmonary dysplasia in neonates. Extrapulmonary effects of iNO are widely recognized, but the underlying chemistry and pharmacology are poorly understood. Growing evidence suggests that, in addition to acting via diffusion, NO can be converted into nitrosants capable of reacting with endogenous L-cysteine (L-Cys) in the alveolar lining fluid, forming S-nitrosothiol (SNO)-L-cysteine (CSNO). CSNO can then enter cells via the type L amino acid transporter (LAT). To determine the influence of LAT and supplemental L-Cys on the functional activity of iNO and transpulmonary movement of SNOs or other related species, we exposed C57Bl6 mice to nebulized L-Cys or D-cysteine (D-Cys) and/or LAT competitors. Isolated lungs were then perfused with physiologic buffer while effluent was collected to assay perfusate SNOs. Nebulized L-Cys, but not D-Cys, augmented the iNO-induced increase in circulating SNOs in the effluent without altering iNO-induced pulmonary vasodilation. Addition to the perfusate of either L-leucine (L-Leu) or 2-amino-2-norborane carboxylic acid, two distinct LAT competitors, inhibited appearance in the perfusate of SNOs in L-Cys-exposed lungs; a higher concentration of L-Leu significantly inhibited the iNO-induced pulmonary vasodilation as well as SNO accumulation. We conclude that iNO-induced pulmonary vasodilation and the transpulmonary movement of iNO-derived SNOs are mediated in part by formation of extracellular CSNO, uptake by alveolar epithelial LAT, and/or export by LAT from the pulmonary endothelium into the circulation. Therapies that exploit and optimize LAT-dependent SNO transport might improve the efficacy of and clinical outcomes with NO-based therapy by improving systemic SNO delivery.


Asunto(s)
Pulmón/irrigación sanguínea , Pulmón/metabolismo , Óxido Nítrico/farmacología , S-Nitrosotioles/metabolismo , Vasodilatación , Administración por Inhalación , Aminoácidos Cíclicos/farmacología , Animales , Transporte Biológico Activo , Cisteína/administración & dosificación , Cisteína/farmacología , Femenino , Hipertensión Pulmonar/tratamiento farmacológico , Leucina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/administración & dosificación , Óxido Nítrico/uso terapéutico , Vasodilatación/efectos de los fármacos
11.
J Clin Invest ; 117(9): 2592-601, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17786245

RESUMEN

NO transfer reactions between protein and peptide cysteines have been proposed to represent regulated signaling processes. We used the pharmaceutical antioxidant N-acetylcysteine (NAC) as a bait reactant to measure NO transfer reactions in blood and to study the vascular effects of these reactions in vivo. NAC was converted to S-nitroso-N-acetylcysteine (SNOAC), decreasing erythrocytic S-nitrosothiol content, both during whole-blood deoxygenation ex vivo and during a 3-week protocol in which mice received high-dose NAC in vivo. Strikingly, the NAC-treated mice developed pulmonary arterial hypertension (PAH) that mimicked the effects of chronic hypoxia. Moreover, systemic SNOAC administration recapitulated effects of both NAC and hypoxia. eNOS-deficient mice were protected from the effects of NAC but not SNOAC, suggesting that conversion of NAC to SNOAC was necessary for the development of PAH. These data reveal an unanticipated adverse effect of chronic NAC administration and introduce a new animal model of PAH. Moreover, evidence that conversion of NAC to SNOAC during blood deoxygenation is necessary for the development of PAH in this model challenges conventional views of oxygen sensing and of NO signaling.


Asunto(s)
Hipoxia/metabolismo , Hipoxia/patología , Arteria Pulmonar/patología , S-Nitrosotioles/metabolismo , Transducción de Señal , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Animales , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Glutatión/análogos & derivados , Glutatión/farmacología , Hipertensión/fisiopatología , Hipoxia/inducido químicamente , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitrocompuestos/farmacología , Compuestos Nitrosos/química , Compuestos Nitrosos/farmacología , Oxígeno/metabolismo , Arteria Pulmonar/fisiopatología
12.
Osteoarthritis Cartilage ; 12(11): 863-9, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15501401

RESUMEN

Insulin-like growth factor-1 (IGF) helps maintain healthy articular cartilage; however, arthritic cartilage becomes less responsive to the anabolic actions of IGF. We previously showed that high concentrations of nitric oxide (NO) decrease IGF receptor tyrosine phosphorylation and response to IGF in intact chondrocytes. The current studies evaluate direct effects of NO on IGF receptor kinase (IGF-RK) in vitro. NO from S-nitroso-N-acetyl-d,l-penicillamine (SNAP) or 1-hydroxy-2-oxo-3-(N-3-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7) inhibits IGF-RK auto- and substrate phosphorylation in a dose and time dependent manner. There is a linear correlation between inhibition of auto- and substrate phosphorylation (r(2)=0.98). Increasing either dithiothreitol or reduced glutathione (GSH) content of the phosphorylation buffer to protect thiol groups blocks NO inhibition of IGF-RK substrate phosphorylation. Increased S-nitrosylation of cysteines in IGF-RK after exposure to SNAP suggests that NO may react with sulfhydryl groups, form S-nitrosothiols, which may result in functional modifications. NO blockade of IGF-1 stimulated proteoglycan synthesis in intact cells is enhanced when chondrocyte glutathione is depleted. The in vitro system shows that there can be direct effects of NO on IGF-RK that modify receptor function; the intact cell studies suggest that the mechanisms identified in vitro may be important in intact chondrocyte insensitivity to IGF-1 in cells exposed to NO.


Asunto(s)
Depuradores de Radicales Libres/farmacología , Glutatión/metabolismo , Óxido Nítrico/farmacología , Receptor IGF Tipo 1/efectos de los fármacos , Animales , Artritis/metabolismo , Células Cultivadas , Condrocitos , Ditiotreitol/farmacología , Humanos , Hidrazinas/farmacología , Donantes de Óxido Nítrico , Fosforilación , Conejos , Receptor IGF Tipo 1/metabolismo , S-Nitroso-N-Acetilpenicilamina , S-Nitrosoglutatión/farmacología , S-Nitrosotioles/metabolismo
13.
Nitric Oxide ; 8(3): 155-63, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12826064

RESUMEN

We studied the capability of dimeric forms of dinitrosyl-iron complexes and S-nitrosothiols to activate soluble guanylate cyclase (sGC) from human platelet cytosol. The dinitrosyl-iron complexes had the ligands glutathione (DNIC-GS) or N-acetylcysteine (DNIC-NAC). The S-nitrosothiols were S-nitrosoglutathione (GS-NO) or S-nitrosoacetylcysteine (SNAC). For both glutathione and N-acetylcysteine, the DNIC and S-nitrosothiol forms are equally effective activators of sGC. The activation mechanism is strongly affected by the presence of intrinsic metal ions. Pretreatment with the potent iron chelator, disodium salt of bathophenanthroline disulfonic acid (BPDS), suppressed sGC activation by GS-NO: the concentration of GS-NO producing maximal sGC activation was increased by two orders of magnitude. In contrast, activation by DNIC-GS is strongly enhanced by BPDS. When BPDS was added 10 min after supplementation of DNIC-GS or GS-NO at 4 degrees C, it exerted a similar effect on sGC activation by either NO donor: BPDS only enhanced the sGC stimulation at low concentrations of the NO donors. Our experiments demonstrated that both Fe(2+) and Cu(2+) ions contribute to the decomposition of GS-NO in the presence of ascorbate. The decomposition of GS-NO induced by Fe(2+) ions was accompanied by formation of DNIC. BPDS protected GS-NO against the destructive action of Fe(2+) but not Cu(2+) ions. Additionally, BPDS is a sufficiently strong chelator to remove the iron from DNIC-GS complexes. Based on our data, we propose that S-nitrosothiols activate sGC via a two-step iron-mediated process: In the first step, intrinsic Fe(2+) ions catalyze the formation of DNICs from S-nitrosothiols. In the secondary step, these newly formed DNICs act as the real NO donors responsible for sGC activation.


Asunto(s)
Guanilato Ciclasa/metabolismo , Donantes de Óxido Nítrico/metabolismo , Acetilcisteína/metabolismo , Plaquetas/enzimología , Plaquetas/metabolismo , Cobre , Activación Enzimática , Glutatión/metabolismo , Humanos , Hierro/metabolismo , Ligandos , Óxidos de Nitrógeno/metabolismo , S-Nitrosotioles/metabolismo , Solubilidad , Compuestos de Sulfhidrilo
14.
Biophys Chem ; 98(1-2): 165-81, 2002 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-12128197

RESUMEN

Factors which govern transnitrosation reactions between hemoglobin (Hb) and low molecular weight thiols may define the extent to which S-nitrosated Hb (SNO-Hb) plays a role in NO in the control of blood pressure and other NO-dependent reactions. We show that exposure to S-nitrosylated cysteine (CysNO) produces equivalent levels of SNO-Hb for Hb A(0) and sickle cell Hb (Hb S), although these proteins differ significantly in the electron affinity of their heme groups as measured by their anaerobic redox potentials. Dolphin Hb, a cooperative Hb with a redox potential like that of Hb S, produces less SNO-Hb, indicating that steric considerations outweigh effects of altered electron affinity at the active-site heme groups in control of SNO-Hb formation. Examination of oxygen binding at 5-20 mM heme concentrations revealed increases due to S-nitrosation in the apparent oxygen affinity of both Hb A(0) and Hb S, similar to increases seen at lower heme concentrations. As observed at lower heme levels, deoxygenation is not sufficient to trigger release of NO from SNO-Hb. A sharp increase in apparent oxygen affinity occurs for unmodified Hb S at concentrations above 12.5 mM, its minimum gelling concentration. This affinity increase still occurs in 30 and 60% S-nitrosated samples, but at higher heme concentration. This oxygen binding behavior is accompanied by decreased gel formation of the deoxygenated protein. S-nitrosation is thus shown to have an effect similar to that reported for other SH-group modifications of Hb S, in which R-state stabilization opposes Hb S aggregation.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Cisteína/análogos & derivados , Cisteína/farmacología , Hemoglobina Falciforme/metabolismo , Hemoglobinas/metabolismo , Óxido Nítrico/farmacología , S-Nitrosotioles/farmacología , Anemia de Células Falciformes/sangre , Animales , Quelantes , Cisteína/metabolismo , Delfines , Hemo/química , Hemo/metabolismo , Hemoglobina Falciforme/química , Hemoglobinas/química , Humanos , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Unión Proteica , S-Nitrosotioles/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA