Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 322: 117571, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38103847

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scoparia dulcis has been identified as a significant ethnopharmacological substance in the Li, Zhuang, and Dai ethnic groups of China. Traditional medicine use S. dulcis to treat numerous illnesses, most notably diabetes. The considerable antidiabetic properties of this herbal remedy have been established by several clinical investigations and animal experiments. The islet is the intended target of S. dulcis, although the cause of its activity and mechanism for diabetes treatment is unclear. The diterpenoids from S. dulcis have been shown in the literature to have significant hypoglycemic efficacy and to protect islet cells in vitro. Diterpenoids may be the components of this herbal remedy that preserve islets, but further research is needed. AIM OF THE STUDY: This study was projected to investigate the new diterpenoid scoparicol E from S. dulcis and examined its islet-protective effect and the potential mechanism both in vitro and in vivo. METHODS: The structure of the novel diterpenoid scoparicol E was clarified by employing a wide range of spectroscopic methods. Using CCK-8 tests, cytotoxicity and antiapoptotic activity of scoparicol E were detected. Serum biochemical analysis and pathologic examination were performed to study the protective effect of scoparicol E against islet damage. The specific mechanism of action of scoparicol E was investigated through the mitochondrial membrane potential, Annexin V-FITC flow cytometry, and western blotting. RESULTS: Scoparicol E reduced MLD-STZ-induced hyperglycemia in mice and increased insulin and islet apoptosis. Scoparicol E effectively suppressed the Bax/Bcl-2/Caspase-3 pathway, according to the in vivo western blot investigation. Scoparicol E showed significant antiapoptotic action in vitro. We also showed that scoparicol E might prevent islet cells from dying by inhibiting the Bax/Bcl-2/Caspase-3 pathway. The Annexin V-FITC flow cytometry results revealed that MIN6 cell apoptosis was considerably decreased following scoparicol E intervention, showing anti-islet cell apoptosis action. Furthermore, the Caspase-3-mediated apoptosis pathway depends on cytochrome c and the potential of the mitochondrial membrane. Scoparicol E prevented the release of cytochrome c, restored the mitochondrial membrane potential, and prevented MIN6 cell apoptosis. CONCLUSION: We demonstrated the new diterpenoid scoparicol E could protect islet cells apoptosis by modulating the Bax/Bcl-2/Caspase-3 pathway.


Asunto(s)
Diabetes Mellitus , Diterpenos , Islotes Pancreáticos , Scoparia , Ratones , Animales , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Scoparia/metabolismo , Citocromos c/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Diabetes Mellitus/metabolismo , Diterpenos/farmacología , Diterpenos/metabolismo
2.
J Biomol Struct Dyn ; 41(6): 2574-2586, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35109776

RESUMEN

Antidiabetic activity of herb Scoparia dulcis Linn (SD) used in traditional medicine is well established, yet, the molecular mechanism is not understood. In this study, in vitro α-glucosidase inhibitory effects of SD aqueous extract and its kinetics were investigated and in silico analysis was carried out. SD showed potent inhibition of α-glucosidase with low IC50value (30 µg/mL). Enzyme kinetics analysis revealed the inhibition to be a mixed type of inhibition. From literature screening, we found that six compounds of SD to exhibit potent anti-diabetic activity, namely apigenin, betulinic acid, hispidulin, luteolin, scopadulcic-acid-B and scutellarein. These compounds were subjected to molecular docking. Docking studies revealed scopadulcic acid B and betulunic acid to show optimum binding constant and low free energy. Molecular dynamics simulation was carried out to further understand the interaction and stability between glucosidase and ligands of SD. Taken together, the study reveals that the potency of SD is due to synergistic effect of active phytochemicals in it and suggest that their properties can be utilized for anti-diabetic treatment strategies.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Scoparia , alfa-Glucosidasas , alfa-Glucosidasas/química , Saccharomyces cerevisiae , Scoparia/metabolismo , Simulación del Acoplamiento Molecular , Hipoglucemiantes/farmacología
3.
J Gerontol A Biol Sci Med Sci ; 77(6): 1112-1120, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35167659

RESUMEN

Like other biological processes, aging is not random but subject to molecular control. Natural products that modify core metabolic parameters, including fat content, may provide entry points to extend animal life span and promote healthy aging. Here, we show that a botanical extract from Artemisia scoparia (SCO), which promotes fat storage and metabolic resiliency in mice, extends the life span of the nematode Caenorhabditis elegans by up to 40%. Notably, this life-span extension depends significantly on SCO's effects on fat; SCO-treated worms exhibit heightened levels of unsaturated fat, and inhibition of Δ9 desaturases, which oversee biosynthesis of monounsaturated fatty acids, prevents SCO-dependent fat accumulation and life-span extension. At an upstream signaling level, SCO prompts changes to C. elegans fat regulation by stimulating nuclear translocation of transcription factor DAF-16/FOXO, an event that requires AMP-activated protein kinase under this condition. Importantly, animals treated with SCO are not only long-lived but also show improved stress resistance in late adulthood, suggesting that this fat-promoting intervention may enhance some aspects of physiological health in older age. These findings identify SCO as a natural product that can modify fat regulation for longevity benefit and add to growing evidence indicating that elevated fat can be prolongevity in some circumstances.


Asunto(s)
Artemisia , Proteínas de Caenorhabditis elegans , Scoparia , Animales , Artemisia/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead , Longevidad/fisiología , Ratones , Extractos Vegetales/farmacología , Scoparia/metabolismo
4.
Front Endocrinol (Lausanne) ; 12: 727061, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35211087

RESUMEN

Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.


Asunto(s)
Artemisia , Scoparia , Animales , Artemisia/química , Artemisia/metabolismo , Insulina/metabolismo , Ratones , Obesidad/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Scoparia/metabolismo
5.
J Nat Med ; 72(2): 456-463, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29340903

RESUMEN

Gibberellins (GAs) are ubiquitous diterpenoids in higher plants, whereas some higher plants produce unique species-specific diterpenoids. In GA biosynthesis, ent-kaurene synthase (KS) and ent-kaurene oxidase (KO) are key players which catalyze early step(s) of the cyclization and oxidation reactions. We have studied the functional characterization of gene products of a KS (SdKS) and two KOs (SdKO1 and SdKO2) involved in GA biosynthesis in Scoparia dulcis. Using an in vivo heterologous expression system of Escherichia coli, we found that SdKS catalyzed a cyclization reaction from ent-CPP to ent-kaurene and that the SdKOs oxidized ent-kaurene to ent-kaurenoic acid after modification of the N-terminal region for adaptation to the E. coli expression system. The real-time PCR results showed that the SdKS, SdKO1 and SdKO2 genes were mainly expressed in the root and lateral root systems, which are elongating tissues. Based on these results, we suggest that these three genes may be responsible for the metabolism of GAs in S. dulcis.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Giberelinas/biosíntesis , Proteínas de Plantas/metabolismo , Scoparia/metabolismo , Giberelinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA