Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Medicinas Tradicionales
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Microbiol Spectr ; 9(3): e0145521, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34762519

RESUMEN

The bacterial pathogen Acinetobacter baumannii has emerged as an urgent threat to health care systems. The prevalence of multidrug resistance in this critical human pathogen is closely associated with difficulties in its eradication from the hospital environment and its recalcitrance to treatment during infection. The development of resistance in A. baumannii is in part due to substantial plasticity of its genome, facilitating spontaneous genomic evolution. Many studies have investigated selective pressures imposed by antibiotics on genomic evolution, but the influence of high-abundance bioactive molecules at the host-pathogen interface on mutation and rates of evolution is poorly understood. Here, we studied the roles of host fatty acids in the gain in resistance to common antibiotics. We defined the impact of the polyunsaturated fatty acids arachidonic acid and docosahexaenoic acid on the development of resistance to erythromycin in A. baumannii strain AB5075_UW using a microevolutionary approach. We employed whole-genome sequencing and various phenotypic analyses to characterize microbe-lipid-antibiotic interactions. Cells exposed to erythromycin in the presence of the fatty acids displayed significantly lower rates of development of resistance to erythromycin and, importantly, tetracycline. Subsequent analyses defined diverse means by which host fatty acids influence the mutation rates. This work has highlighted the critical need to consider the roles of host fatty acids in A. baumannii physiology and antimicrobial resistance. Collectively, we have identified a novel means to curb the development of resistance in this critical human pathogen. IMPORTANCE The global distribution of multidrug resistance in A. baumannii has necessitated seeking not only alternative therapeutic approaches but also the means to limit the development of resistance in clinical settings. Highly abundant host bioactive compounds, such as polyunsaturated fatty acids, are readily acquired by A. baumannii during infection and have been illustrated to impact the bacterium's membrane composition and antibiotic resistance. In this work, we show that in vitro supplementation with host polyunsaturated fatty acids reduces the rate at which A. baumannii gains resistance to erythromycin and tetracycline. Furthermore, we discover that the impact on resistance development is closely associated with the primary antimicrobial efflux systems of A. baumannii, which represent one of the major drivers of clinical resistance. Overall, this study emphasizes the potential of host macromolecules in novel approaches to circumvent the difficulties of multidrug resistance during A. baumannii treatment, with fatty acid supplements such as fish oil providing safe and cost-effective ways to enhance host tolerance to bacterial infections.


Asunto(s)
Acinetobacter baumannii/genética , Antibacterianos/farmacología , Ácido Araquidónico/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Eritromicina/farmacología , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/crecimiento & desarrollo , Membrana Celular/química , Genoma Bacteriano/genética , Humanos , Pruebas de Sensibilidad Microbiana , Tasa de Mutación , Selección Genética/genética , Tetraciclinas/farmacología , Secuenciación Completa del Genoma
2.
Nat Commun ; 12(1): 2460, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911082

RESUMEN

It is well established that antibiotic treatment selects for resistance, but the dynamics of this process during infections are poorly understood. Here we map the responses of Pseudomonas aeruginosa to treatment in high definition during a lung infection of a single ICU patient. Host immunity and antibiotic therapy with meropenem suppressed P. aeruginosa, but a second wave of infection emerged due to the growth of oprD and wbpM meropenem resistant mutants that evolved in situ. Selection then led to a loss of resistance by decreasing the prevalence of low fitness oprD mutants, increasing the frequency of high fitness mutants lacking the MexAB-OprM efflux pump, and decreasing the copy number of a multidrug resistance plasmid. Ultimately, host immunity suppressed wbpM mutants with high meropenem resistance and fitness. Our study highlights how natural selection and host immunity interact to drive both the rapid rise, and fall, of resistance during infection.


Asunto(s)
Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Meropenem/uso terapéutico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Selección Genética/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Humanos , Hidroliasas/genética , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Plásmidos/genética , Porinas/genética , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/inmunología , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología , Análisis de Secuencia de ADN , Choque Hemorrágico/microbiología
3.
Plant J ; 104(6): 1551-1567, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33048374

RESUMEN

Domestication and population differentiation in crops involve considerable phenotypic changes. The logs of these evolutionary paths, including natural/artificial selection, can be found in the genomes of the current populations. However, these profiles have been little studied in tree crops, which have specific characters, such as long generation time and clonal propagation, maintaining high levels of heterozygosity. We conducted exon-targeted resequencing of 129 genomes in the genus Prunus, mainly Japanese apricot (Prunus mume), and apricot (Prunus armeniaca), plum (Prunus salicina), and peach (Prunus persica). Based on their genome-wide single-nucleotide polymorphisms merged with published resequencing data of 79 Chinese P. mume cultivars, we inferred complete and ongoing population differentiation in P. mume. Sliding window characterization of the indexes for genetic differentiation identified interspecific fragment introgressions between P. mume and related species (plum and apricot). These regions often exhibited strong selective sweeps formed in the paths of establishment or formation of substructures of P. mume, suggesting that P. mume has frequently imported advantageous genes from other species in the subgenus Prunus as adaptive evolution. These findings shed light on the complicated nature of adaptive evolution in a tree crop that has undergone interspecific exchange of genome fragments with natural/artificial selections.


Asunto(s)
Evolución Molecular , Introgresión Genética/genética , Prunus/genética , Selección Genética/genética , Domesticación , Genoma de Planta/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Prunus armeniaca/genética , Prunus domestica/genética , Prunus persica/genética , Análisis de Secuencia de ADN
4.
Sci Rep ; 10(1): 16052, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994541

RESUMEN

Although intensively studied, few works had looked into S. pennellii's ability to cope with water-deficit conditions from a breeding point of view. In this study, we assessed potential traits of S. pennellii, that had previously been linked to high yields in other plant species, under long-term water-limited conditions and made a parallel with plant yield. For this purpose, the drought-resistant tomato genotypes IL 3-5 and IL 10-1, and the drought-sensitive IL 2-5 and IL 7-1 at seed level, together with both parents the S. pennellii accession LA 716 and the cultivar M82 were kept at 50 and 100% ASW throughout the growing season. Our findings confirm the superiority of LA 716 under water-limited conditions compared to the other S. lycopersicum genotypes in terms of plant water status maintenance. Percentual reduction on plant yield was higher in IL 3-5 and IL 10-1 than in M82 plants, indicating no correlation between drought resistance on germination and plant productive stages. A strong positive correlation was found between fruit yield and A, gs, and Ψleaf at 50% ASW, suggesting these traits as important selection criteria. LT and gmin, LA 716's most promising traits, did not show a linear correlation with fruit yield under low water regimes. This study unravels traits behind tomato performance under water-limited conditions and should work as guidance for breeders aiming at developing drought-resistant tomato cultivars.


Asunto(s)
Fitomejoramiento/métodos , Solanum/anatomía & histología , Solanum/genética , Sequías , Frutas/genética , Genotipo , Solanum lycopersicum/genética , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Selección Genética/genética , Solanum/crecimiento & desarrollo , Agua
5.
J Mol Evol ; 88(1): 104-119, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31522275

RESUMEN

Copy number variants (CNVs), deletions and duplications of segments of DNA, account for at least five times more variable base pairs in humans than single-nucleotide variants. Several common CNVs were shown to change coding and regulatory sequences and thus dramatically affect adaptive phenotypes involving immunity, perception, metabolism, skin structure, among others. Some of these CNVs were also associated with susceptibility to cancer, infection, and metabolic disorders. These observations raise the possibility that CNVs are a primary contributor to human phenotypic variation and consequently evolve under selective pressures. Indeed, locus-specific haplotype-level analyses revealed signatures of natural selection on several CNVs. However, more traditional tests of selection which are often applied to single-nucleotide variation often have diminished statistical power when applied to CNVs because they often do not show strong linkage disequilibrium with nearby variants. Recombination-based formation mechanisms of CNVs lead to frequent recurrence and gene conversion events, breaking the linkage disequilibrium involving CNVs. Similar methodological challenges also prevent routine genome-wide association studies to adequately investigate the impact of CNVs on heritable human disease. Thus, we argue that the full relevance of CNVs to human health and evolution is yet to be elucidated. We further argue that a holistic investigation of formation mechanisms within an evolutionary framework would provide a powerful framework to understand the functional and biomedical impact of CNVs. In this paper, we review several cases where studies reveal diverse evolutionary histories and unexpected functional consequences of CNVs. We hope that this review will encourage further work on CNVs by both evolutionary and medical geneticists.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Enfermedad/genética , Variación Genética/genética , Evolución Biológica , Evolución Molecular , Dosificación de Gen/genética , Genoma/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica , Genotipo , Haplotipos/genética , Salud/tendencias , Humanos , Fenotipo , Retroelementos/genética , Selección Genética/genética
6.
Nat Commun ; 10(1): 3418, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366935

RESUMEN

Oil produced by castor (Ricinus communis) has broad industrial applications. However, knowledge on the genetic diversity, especially genetic alterations that occurred during domestication and subsequent traits selection, of this oil crop is limited. Here, our population genomics analyses show that the Chinese castors have developed a geographic pattern, classified into the southern-, the middle-, and the northern-China groups. We detect a number of candidate genomic loci that are associated with the selection signals during the geographical differentiation and domestication. Using genome-wide association analysis, we identify candidate genes associated with nine agronomically important traits. One of the candidate genes encoding a glycosyltransferase related to cellulose and lignin biosynthesis is associated with both capsule dehiscence and endocarp thickness. We hypothesize that the abundance of cellulose or lignin in endocarp is an important factor for capsule dehiscence. Our results provide foundation for castor breeding and genetic study.


Asunto(s)
Frutas/genética , Frutas/fisiología , Genoma de Planta/genética , Aceites de Plantas/química , Ricinus/genética , Celulosa/análisis , China , Estudio de Asociación del Genoma Completo , Geografía , Glicosiltransferasas/genética , Lignina/análisis , Ricinus/química , Selección Genética/genética
7.
Genome Biol Evol ; 11(7): 1939-1951, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31209485

RESUMEN

In many studies, sex-related genes have been found to evolve rapidly. We therefore expect plant pollen genes to evolve faster than sporophytic genes. In addition, pollen genes are expressed as haploids which can itself facilitate rapid evolution because recessive advantageous and deleterious alleles are not masked by dominant alleles. However, this mechanism is less straightforward to apply in the model plant species Arabidopsis thaliana. For 1 Myr, A. thaliana has been self-compatible, a life history switch that has caused: a reduction in pollen competition, increased homozygosity, and a dilution of masking in diploid expressed, sporophytic genes. In this study, we have investigated the relative strength of selection on pollen genes compared with sporophytic genes in A. thaliana. We present two major findings: 1) before becoming self-compatible, positive selection was stronger on pollen genes than sporophytic genes for A. thaliana and 2) current polymorphism data indicate that selection is weaker on pollen genes compared with sporophytic genes. This weaker selection on pollen genes can in part be explained by their higher tissue specificity, which in outbreeding plants can be outweighed by the effects of haploid expression and pollen competition. These results indicate that since A. thaliana has become self-compatible, selection on pollen genes has become more relaxed. This has led to higher polymorphism levels and a higher build-up of deleterious mutations in pollen genes compared with sporophytic genes.


Asunto(s)
Arabidopsis/genética , Acumulación de Mutaciones , Polen/metabolismo , Arabidopsis/fisiología , Diploidia , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/genética , Genes de Plantas/fisiología , Haploidia , Ploidias , Polen/genética , Selección Genética/genética
8.
Proc Natl Acad Sci U S A ; 116(23): 11351-11360, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31113885

RESUMEN

Historically, the evolution of bats has been analyzed using a small number of genetic loci for many species or many genetic loci for a few species. Here we present a phylogeny of 18 bat species, each of which is represented in 1,107 orthologous gene alignments used to build the tree. We generated a transcriptome sequence of Hypsignathus monstrosus, the African hammer-headed bat, and additional transcriptome sequence for Rousettus aegyptiacus, the Egyptian fruit bat. We then combined these data with existing genomic and transcriptomic data from 16 other bat species. In the analysis of such datasets, there is no clear consensus on the most reliable computational methods for the curation of quality multiple sequence alignments since these public datasets represent multiple investigators and methods, including different source materials (chromosomal DNA or expressed RNA). Here we lay out a systematic analysis of parameters and produce an advanced pipeline for curating orthologous gene alignments from combined transcriptomic and genomic data, including a software package: the Mismatching Isoform eXon Remover (MIXR). Using this method, we created alignments of 11,677 bat genes, 1,107 of which contain orthologs from all 18 species. Using the orthologous gene alignments created, we assessed bat phylogeny and also performed a holistic analysis of positive selection acting in bat genomes. We found that 181 genes have been subject to positive natural selection. This list is dominated by genes involved in immune responses and genes involved in the production of collagens.


Asunto(s)
Quirópteros/genética , Genoma/genética , Selección Genética/genética , Transcriptoma/genética , Secuencia de Aminoácidos , Animales , Estudio de Asociación del Genoma Completo/métodos , Filogenia , Alineación de Secuencia
10.
BMC Biotechnol ; 17(1): 49, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587679

RESUMEN

BACKGROUND: Somatic cell selection in plants allows the recovery of spontaneous mutants from cell cultures. When coupled with the regeneration of plants it allows an effective approach for the recovery of novel traits in plants. This study undertook somatic cell selection in the potato (Solanum tuberosum L.) cultivar 'Iwa' using the sulfonylurea herbicide, chlorsulfuron, as a positive selection agent. RESULTS: Following 5 days' exposure of potato cell suspension cultures to 20 µg/l chlorsulfuron, rescue selection recovered rare potato cell colonies at a frequency of approximately one event in 2.7 × 105 of plated cells. Plants that were regenerated from these cell colonies retained resistance to chlorsulfuron and two variants were confirmed to have different independent point mutations in the acetohydroxyacid synthase (AHAS) gene. One point mutation involved a transition of cytosine for thymine, which substituted the equivalent of Pro-197 to Ser-197 in the AHAS enzyme. The second point mutation involved a transversion of thymine to adenine, changing the equivalent of Trp-574 to Arg-574. The two independent point mutations recovered were assembled into a chimeric gene and binary vector for Agrobacterium-mediated transformation of wild-type 'Iwa' potato. This confirmed that the mutations in the AHAS gene conferred chlorsulfuron resistance in the resulting transgenic plants. CONCLUSIONS: Somatic cell selection in potato using the sulfonylurea herbicide, chlorsulfuron, recovered resistant variants attributed to mutational events in the AHAS gene. The mutant AHAS genes recovered are therefore good candidates as selectable marker genes for intragenic transformation of potato.


Asunto(s)
Acetolactato Sintasa/genética , Marcadores Genéticos/genética , Plantas Modificadas Genéticamente/fisiología , Mutación Puntual/genética , Selección Genética/genética , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/fisiología , Sulfonamidas/administración & dosificación , Triazinas/administración & dosificación , Acetolactato Sintasa/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/administración & dosificación , Células Vegetales/enzimología , Células Vegetales/metabolismo
11.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28039138

RESUMEN

Construction of Listeria monocytogenes mutants by allelic exchange has been laborious and time-consuming due to lack of proficient selection markers for the final recombination event, that is, a marker conveying substance sensitivity to the bacteria bearing it, enabling the exclusion of merodiploids and selection for plasmid loss. In order to address this issue, we engineered a counterselection marker based on a mutated phenylalanyl-tRNA synthetase gene (pheS*). This mutation renders the phenylalanine-binding site of the enzyme more promiscuous and allows the binding of the toxic p-chloro-phenylalanine analog (p-Cl-phe) as a substrate. When pheS* is introduced into L. monocytogenes and highly expressed under control of a constitutively active promoter, the bacteria become sensitive to p-Cl-phe supplemented in the medium. This enabled us to utilize pheS* as a negative selection marker and generate a novel, efficient suicide vector for allelic exchange in L. monocytogenes We used this vector to investigate the monocin genomic region in L. monocytogenes strain 10403S by constructing deletion mutants of the region. We have found this region to be active and to cause bacterial lysis upon mitomycin C treatment. The future applications of such an effective counterselection system, which does not require any background genomic alterations, are vast, as it can be modularly used in various selection systems (e.g., genetic screens). We expect this counterselection marker to be a valuable genetic tool in research on L. monocytogenesIMPORTANCEL. monocytogenes is an opportunistic intracellular pathogen and a widely studied model organism. An efficient counterselection marker is a long-standing need in Listeria research for improving the ability to design and perform various genetic manipulations and screening systems for different purposes. We report the construction and utilization of an efficient suicide vector for allelic exchange which can be conjugated, leaves no marker in the bacterial chromosome, and does not require the use of sometimes leaky inducible promoters. This highly efficient genome editing tool for L. monocytogenes will allow for rapid sequential mutagenesis, introduction of point mutations, and design of screening systems. We anticipate that it will be extensively used by the research community and yield novel insights into the diverse fields studied using this model organism.


Asunto(s)
Bacteriocinas/genética , Listeria monocytogenes/genética , Mitomicina/farmacología , Fenilalanina-ARNt Ligasa/genética , Fenilalanina/análogos & derivados , Sitios de Unión/genética , Sitios de Unión/fisiología , Marcadores Genéticos/genética , Listeria monocytogenes/crecimiento & desarrollo , Fenilalanina/metabolismo , Regiones Promotoras Genéticas/genética , Selección Genética/genética , Eliminación de Secuencia/genética
12.
Nature ; 528(7583): 499-503, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26595274

RESUMEN

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Asunto(s)
Genoma Humano/genética , Selección Genética/genética , Agricultura/historia , Asia/etnología , Estatura/genética , Huesos , ADN/genética , ADN/aislamiento & purificación , Dieta/historia , Europa (Continente)/etnología , Genética de Población , Haplotipos/genética , Historia Antigua , Humanos , Inmunidad/genética , Masculino , Herencia Multifactorial/genética , Pigmentación/genética , Análisis de Secuencia de ADN
13.
J Clin Microbiol ; 53(11): 3677-82, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26292295
14.
Mol Biol Evol ; 32(11): 2932-43, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26232423

RESUMEN

After colonization population sizes may vary across the species range depending on environmental conditions and following colonizations. An interesting question is whether local adaptation occurs more frequently in large ancestral populations or in small derived populations. A higher number of new mutations and a lower effect of genetic drift should favor selection in large populations, whereas small derived populations may require an initial local adaptation event to facilitate the colonization of new habitats. Wild tomatoes are native to a broad range of different habitats characterized by variable abiotic conditions in South America, and represent an ideal system to study this interplay between demography and natural selection. Population genetic analyses and statistical inference of past demography were conducted on pooled-sequencing data from 30 genes (8,080 single nucleotide polymorphisms) from an extensive sampling of 23 Solanum chilense populations over Chile and Peru. We reveal first a north-south colonization associated with relaxed purifying selection in the south as shown by a decrease of genetic variation and an increasing proportion of nonsynonymous polymorphism from north to south, and population substructure with at least four genetic groups. Second, we uncover a dual picture of adaptation consisting of 1) a decreasing proportion of adaptive amino acid substitutions from north to south suggesting that adaptation is favored in large populations, whereas 2) signatures of local adaptation predominantly occur in the smaller populations from the marginal ranges in the south.


Asunto(s)
Aclimatación/genética , Solanum/crecimiento & desarrollo , Solanum/genética , Adaptación Fisiológica/genética , Ecosistema , Evolución Molecular , Variación Genética , Genética de Población , Genoma de Planta , Polimorfismo Genético , Densidad de Población , Selección Genética/genética , Análisis de Secuencia de ADN , América del Sur
15.
Sci Rep ; 4: 5507, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24981102

RESUMEN

Some introduced clonal plants spread mainly by vegetative (clonal) propagules due to the absence of sexual reproduction in the introduced range. Propagule pressure (i.e. total number of propagules) may affect the establishment and thus invasion success of introduced clonal plants, and such effects may also depend on habitat conditions. A greenhouse experiment with an introduced plant, Hydrocotyle vulgaris was conducted to investigate the role of propagule pressure on its invasion process. High (five ramets) or low (one ramet) propagule pressure was established either in bare soil or in an experimental plant community consisting of four grassland species. H. vulgaris produced more total biomass under high than under low propagule pressure in both habitat conditions. Interestingly, the size of the H. vulgaris individuals was smaller under high than under low propagule pressure in bare soil, whereas it did not differ between the two propagule pressure treatments in the grassland community. The results indicated that high propagule pressure can ensure the successful invasion in either the grass community or bare soil, and the shift in the intraspecific interaction of H. vulgaris from competition in the bare soil to facilitation in the grassland community may be a potential mechanism.


Asunto(s)
Centella/fisiología , Componentes Aéreos de las Plantas/fisiología , Dispersión de las Plantas/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Selección Genética/genética , Evolución Clonal/genética , Clonación de Organismos , Reproducción/fisiología
16.
J Genet ; 93(3): 755-65, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25572234

RESUMEN

In pathogen resistant plants, solvent-exposed residues in the leucine-rich repeat (LRR) proteins are thought to mediate resistance by recognizing plant pathogen elicitors. In potato, the gene Gro1-4 confers resistance to Globodera rostochiensis. The investigation of variability in different copies of this gene represents a good model for the verification of positive selection mechanisms. Two datasets of Gro1 LRR sequences were constructed, one derived from the Gro1-4 gene, belonging to different cultivated and wild Solanum species, and the other belonging to paralogues of a resistant genotype. Analysis of nonsynonymous to synonymous substitution rates (K(a)/K(s)) highlighted 14 and six amino acids with K(a)/K(s) >1 in orthologue and paralogue datasets, respectively. Selection analysis revealed that the leucine-rich regions accumulate variability in a very specific way, and we found that some combinations of amino acids in these sites might be involved in pathogen recognition. The results confirm previous studies on positive selection in the LRR domain of R protein in Arabidopsis and other model plants and extend these to wild Solanum species. Moreover, positively selected sites in the Gro1 LRR domain show that coevolution mainly occurred in two regions on the internal surface of the three-dimensional horseshoe structure of the domain, albeit with different evolutionary forces between paralogues and orthologues.


Asunto(s)
Quimiocina CXCL1/genética , Proteínas/genética , Selección Genética/genética , Solanum/genética , Sustitución de Aminoácidos/genética , Resistencia a la Enfermedad/genética , Evolución Molecular , Proteínas Repetidas Ricas en Leucina , Tasa de Mutación , Enfermedades de las Plantas/genética
17.
Ann Bot ; 113(3): 523-32, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24287813

RESUMEN

BACKGROUND AND AIMS: Many aquatic species with stylar polymorphisms have the capacity for clonal and sexual reproduction and are sensitive to the balance of the two reproductive modes when there are a limited number of mating morphs within a population. This study asked how the clonal and sexual reproductive modes perform in populations that contain only a single morph and where fitness gain through sexual reproduction is rare. In clonal aquatic Nymphoides montana, polymorphic populations normally contain two mating morphs in equal frequencies. Populations are sexually fertile and appear to be maintained by pollen transfer between the two partners. However, in a monomorphic population of N. montana where mating opportunities are unavailable, female and male function is impaired and clonality maintains the population. Here, the consequences of intraspecific variation in sexuality were explored between monomorphic and polymorphic N. montana populations in eastern Australia. METHODS: Comparative measurements of male and female fertility, total dry mass and genotypic diversity using ISSR markers were made between populations with variable sexuality. KEY RESULTS AND CONCLUSIONS: Very few seeds were produced in the monomorphic population under natural and glasshouse conditions due to dysfunctional pollen and ovules. Stigma-anther separation was minimal in the monomorphic population, which may be a consequence of the relaxed selective pressures that regulate the maintenance of sexual function. However, clonal reproduction was favoured at the expense of sexual reproduction in the monomorphic population; this may facilitate the establishment of sterility throughout the population via resource reallocation or pleiotropic effects. The ISSR results showed that the monomorphic population was one large, single genotype, unlike the multi-genotypic fertile polymorphic populations. Evolutionary loss of sex in a clonal population in which a mating morph is absent was evident; under these conditions clonal growth may assure reproduction and expand the population via spreading stolons.


Asunto(s)
Cromosomas de las Plantas/genética , Magnoliopsida/fisiología , Infertilidad Vegetal/fisiología , Polimorfismo Genético/genética , Selección Genética/genética , Australia , Biomasa , Dermatoglifia del ADN , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Genética de Población , Genotipo , Geografía , Magnoliopsida/genética , Magnoliopsida/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Reproducción , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología
18.
BMC Genet ; 14: 85, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24047500

RESUMEN

BACKGROUND: Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. RESULTS: We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. CONCLUSIONS: The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding.


Asunto(s)
Beta vulgaris/genética , Genoma de Planta , Selección Genética/genética , Cruzamiento , Carbohidratos/química , Carbohidratos/genética , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Potasio/metabolismo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Sodio/metabolismo
19.
Genet Res (Camb) ; 93(3): 233-54, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21554777

RESUMEN

Crow et al. (1990) and Barton (1992) have examined the critical migration rate for swamping selection in the nuclear system. Here, I use the same methodology to examine the critical migration rate in the cytonuclear system for hermaphrodite plants with a mixed mating system. Two selection schemes for a nuclear gene (heterozygote disadvantage and directional selection) and the directional selection scheme for organelle genes are considered. Results show that under random mating, the previous results are applicable to plant species by appropriate re-parameterization of the migration rate for nuclear and paternal organelle genes. A simple complementary relationship exists between seed and pollen flow in contributing to the critical migration rate. Under the mixed mating system, the critical migration rate of seeds and pollen for nuclear and paternal organelle genes can be changed due to the effects of selection and the cytonuclear linkage disequilibrium generated by migration and inbreeding. A negative but not complementary relationship exists between seed and pollen flow in contributing to the critical migration rate, varying with the mating system. Partial selfing can also adjust the critical seed flow for the maternal organelle gene, with a small critical migration rate for species of a high selfing rate. Both concordance and discordance among cytonuclear genes can occur under certain conditions during the process of swamping selection. This theory predicts the presence of various contributions of seed versus pollen flow to genetic swamping for plants with diverse mating systems.


Asunto(s)
Núcleo Celular/genética , Fertilización/genética , Genética de Población , Plantas/genética , Polen/genética , Semillas/genética , Selección Genética/genética , Simulación por Computador , Cruzamientos Genéticos , Citoplasma/fisiología , Desequilibrio de Ligamiento , Modelos Genéticos , Modelos Teóricos
20.
Environ Health Perspect ; 117(10): 1541-8, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20019904

RESUMEN

BACKGROUND: The human CYP3A gene cluster codes for cytochrome P450 (CYP) subfamily enzymes that catalyze the metabolism of various exogenous and endogenous chemicals and is an obvious candidate for evolutionary and environmental genomic study. Functional variants in the CYP3A locus may have undergone a selective sweep in response to various environmental conditions. OBJECTIVE: The goal of this study was to profile the allelic structure across the human CYP3A locus and investigate natural selection on that locus. METHODS: From the CYP3A locus spanning 231 kb, we resequenced 54 genomic DNA fragments (a total of 43,675 bases) spanning four genes (CYP3A4, CYP3A5, CYP3A7, and CYP3A43) and two pseudogenes (CYP3AP1 and CYP3AP2), and randomly selected intergenic regions at the CYP3A locus in Africans (24 individuals), Caucasians (24 individuals), and Chinese (29 individuals). We comprehensively investigated the nucleotide diversity and haplotype structure and examined the possible role of natural selection in shaping the sequence variation throughout the gene cluster. RESULTS: Neutrality tests with Tajima's D, Fu and Li's D* and F*, and Fay and Wu's H indicated possible roles of positive selection on the entire CYP3A locus in non-Africans. Sliding-window analyses of nucleotide diversity and frequency spectrum, as well as haplotype diversity and phylogenetically inferred haplotype structure, revealed that CYP3A4 and CYP3A7 had recently undergone or were undergoing a selective sweep in all three populations, whereas CYP3A43 and CYP3A5 were undergoing a selective sweep in non-Africans and Caucasians, respectively. CONCLUSION: The refined allelic architecture and selection spectrum for the human CYP3A locus highlight that evolutionary dynamics of molecular adaptation may underlie the phenotypic variation of the xenobiotic disposition system and varied predisposition to complex disorders in which xenobiotics play a role.


Asunto(s)
Citocromo P-450 CYP3A/genética , Adolescente , Hidrocarburo de Aril Hidroxilasas/genética , Pueblo Asiatico , Genética de Población , Haplotipos , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo Genético/genética , Selección Genética/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA