Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.534
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Plant Mol Biol ; 114(3): 49, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642182

RESUMEN

Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.


Asunto(s)
Brassica napus , Plantones , Plantones/genética , Semillas/genética , Cotiledón/genética , Lípidos , Aminoácidos/metabolismo , Brassica napus/metabolismo
2.
Food Chem ; 448: 139117, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608398

RESUMEN

This study aimed to determine the impact of supplementation with probiotically fermented chickpea (Cicer arietinum L) seeds on the quality parameters and functional characteristics of wheat bread. The addition of chickpea seeds caused significant changes in the chemical composition of the control wheat bread. The legume-supplemented products exhibited higher values of a* and b* color parameters and higher hardness after 24 h of storage than the control. The application of fermented or unfermented chickpeas contributed to an increase in total polyphenol and flavonoid contents, iron chelating capacity, and antioxidant properties of the final product. The variant containing unfermented seeds had the highest riboflavin content (29.53 ± 1.11 µg/100 g d.w.), Trolox equivalent antioxidant capacity (227.02 ± 7.29 µmol·L-1 TX/100 g d.w.), and free radical scavenging activity (71.37 ± 1.30 % DPPH inhibition). The results of this preliminary research have practical importance in the production of innovative bakery products with potential properties of functional food.


Asunto(s)
Antioxidantes , Pan , Cicer , Fermentación , Probióticos , Cicer/química , Pan/análisis , Antioxidantes/química , Antioxidantes/análisis , Probióticos/análisis , Probióticos/química , Semillas/química , Flavonoides/análisis , Flavonoides/química , Polifenoles/química , Polifenoles/análisis , Alimentos Funcionales/análisis , Triticum/química , Triticum/metabolismo
3.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611890

RESUMEN

Folk medicine is widely used in Angola, even for human African trypanosomiasis (sleeping sickness) in spite of the fact that the reference treatment is available for free. Aiming to validate herbal remedies in use, we selected nine medicinal plants and assessed their antitrypanosomal activity. A total of 122 extracts were prepared using different plant parts and solvents. A total of 15 extracts from seven different plants exhibited in vitro activity (>70% at 20 µg/mL) against Trypanosoma brucei rhodesiense bloodstream forms. The dichloromethane extract of Nymphaea lotus (leaves and leaflets) and the ethanolic extract of Brasenia schreberi (leaves) had IC50 values ≤ 10 µg/mL. These two aquatic plants are of particular interest. They are being co-applied in the form of a decoction of leaves because they are considered by local healers as male and female of the same species, the ethnotaxon "longa dia simbi". Bioassay-guided fractionation led to the identification of eight active molecules: gallic acid (IC50 0.5 µg/mL), methyl gallate (IC50 1.1 µg/mL), 2,3,4,6-tetragalloyl-glucopyranoside, ethyl gallate (IC50 0.5 µg/mL), 1,2,3,4,6-pentagalloyl-ß-glucopyranoside (IC50 20 µg/mL), gossypetin-7-O-ß-glucopyranoside (IC50 5.5 µg/mL), and hypolaetin-7-O-glucoside (IC50 5.7 µg/mL) in B. schreberi, and 5-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienyl] resorcinol (IC50 5.3 µg/mL) not described to date in N. lotus. Five of these active constituents were detected in the traditional preparation. This work provides the first evidence for the ethnomedicinal use of these plants in the management of sleeping sickness in Angola.


Asunto(s)
Antiprotozoarios , Nymphaea , Tripanosomiasis Africana , Humanos , Animales , Angola , Semillas , Antiprotozoarios/farmacología , Extractos Vegetales/farmacología
4.
PLoS One ; 19(4): e0300845, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635826

RESUMEN

Cucurbita moschata (Butternut squash) seeds are a rich source of nutrition containing nutrients including iron, zinc, copper, calcium, potassium, and phosphorus. The aim of this study was to determine if Cucurbita Moschata squash seed paste improves zinc and iron status, anthropometric status, and dietary intake in preschool children. A pretest-posttest control group trial using cluster randomisation was conducted over 6 months. Four preschools were randomly assigned to receive 100 g of intervention or 100 g of a placebo as the control to enhance iron and zinc status. A total of 276 preschool children were recruited from eight government registered Early Childhood Development centres in Limpopo province, South Africa. The control group consumed Cucurbita moschata flesh twice-weekly, while the intervention group consumed Cucurbita moschata seed paste twice-weekly during a six-month period. Iron (serum iron, transferrin, transferrin saturation, ferritin) and zinc (serum zinc) status and anthropometric indices such as weight, height and mid upper arm circumference for children were evaluated at baseline and the endpoint. Iron and zinc-rich food consumption was measured using a 24-hour dietary recall and food record during the study, and dietary intake was estimated using a food frequency questionnaire which was conducted at the beginning and endpoint. The intervention group significantly improved in the mean serum iron 0.23 µg/dL (95% CI: 0.11;0.33); ferritin 0.21µg/dL (95% CI: 0.13;0.39), transferrin saturation 0.33% (0.23;0.74) and zinc 0.16 µmol/dl (95% CI: 0.13;0.25) at the end of the study. In addition, the intervention group exhibited greater mean weight for age of 0.13 z-score (95% CI: 0.28; 0.34) and weight for height of 0.04 z-score (95% CI: 0.12,0.05), as well as the consumption of iron (p < 0,001), zinc (p < 0,001), and vitamin C (p < 0.001). At the end of the trial, fiber (p < 0.001), riboflavin (p = 0.001), vitamin B6 (p < 0.001), and vitamin B12 (p < 0.001) were significantly higher in the control group. Thus, the inclusion of intervention in the diet of children in an impoverished area of South Africa improved the iron and zinc status of these children. This supplement could be a cost effective and sustainable approach to improve nutrient status in rural South Africa. Trial registration: Pan African Clinical Trial Registry (PACTR202308740458863).


Asunto(s)
Cucurbita , Hierro , Humanos , Preescolar , Zinc , Sudáfrica , Ferritinas , Semillas , Transferrina
5.
Front Cell Infect Microbiol ; 14: 1296619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638830

RESUMEN

The genus Senna contains globally distributed plant species of which the leaves, roots, and seeds have multiple traditional medicinal and nutritional uses. Notable chemical compounds derived from Senna spp. include sennosides and emodin which have been tested for antimicrobial effects in addition to their known laxative functions. However, studies of the effects of the combined chemical components on intact human gut microbiome communities are lacking. This study evaluated the effects of Juemingzi (Senna sp.) extract on the human gut microbiome using SIFR® (Systemic Intestinal Fermentation Research) technology. After a 48-hour human fecal incubation, we measured total bacterial cell density and fermentation products including pH, gas production and concentrations of short chain fatty acids (SCFAs). The initial and post-incubation microbial community structure and functional potential were characterized using shotgun metagenomic sequencing. Juemingzi (Senna seed) extracts displayed strong, taxon-specific anti-microbial effects as indicated by significant reductions in cell density (40%) and intra-sample community diversity. Members of the Bacteroidota were nearly eliminated over the 48-hour incubation. While generally part of a healthy gut microbiome, specific species of Bacteroides can be pathogenic. The active persistence of the members of the Enterobacteriaceae and selected Actinomycetota despite the reduction in overall cell numbers was demonstrated by increased fermentative outputs including high concentrations of gas and acetate with correspondingly reduced pH. These large-scale shifts in microbial community structure indicate the need for further evaluation of dosages and potential administration with prebiotic or synbiotic supplements. Overall, the very specific effects of these extracts may offer the potential for targeted antimicrobial uses or as a tool in the targeted remodeling of the gut microbiome.


Asunto(s)
Antiinfecciosos , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Microbiota , Humanos , Extracto de Senna/análisis , Extracto de Senna/farmacología , Bacterias , Heces/microbiología , Semillas , Senósidos/análisis , Senósidos/farmacología , Antiinfecciosos/farmacología
6.
Am J Bot ; 111(4): e16309, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584339

RESUMEN

PREMISE: Barriers at different reproductive stages contribute to reproductive isolation. Self-incompatibility (SI) systems that prevent self-pollination could also act to control interspecific pollination and contribute to reproductive isolation, preventing hybridization. Here we evaluated whether SI contributes to reproductive isolation among four co-occurring Opuntia species that flower at similar times and may hybridize with each other. METHODS: We assessed whether Opuntia cantabrigiensis, O. robusta, O. streptacantha, and O. tomentosa, were self-compatible and formed hybrid seeds in five manipulation treatments to achieve self-pollination, intraspecific cross-pollination, open pollination (control), interspecific crosses or apomixis, then recorded flowering phenology and synchrony. RESULTS: All species flowered in the spring with a degree of synchrony, so that two pairs of species were predisposed to interspecific pollination (O. cantabrigiensis with O. robusta, O. streptacantha with O. tomentosa). All species had distinct reproductive systems: Opuntia cantabrigiensis is self-incompatible and did not produce hybrid seeds as an interspecific pollen recipient; O. robusta is a dioecious species, which formed a low proportion of hybrid seeds; O. streptacantha and O. tomentosa are self-compatible and produced hybrid seeds. CONCLUSIONS: Opuntia cantabrigiensis had a strong pollen-pistil barrier, likely due to its self-incompatibility. Opuntia robusta, the dioecious species, is an obligate outcrosser and probably partially lost its ability to prevent interspecific pollen germination. Given that the self-compatible species can set hybrid seeds, we conclude that pollen-pistil interaction and high flowering synchrony represent weak barriers; whether reproductive isolation occurs later in their life cycle (e.g., germination or seedling survival) needs to be determined.


Asunto(s)
Flores , Hibridación Genética , Opuntia , Polinización , Aislamiento Reproductivo , Semillas , Autoincompatibilidad en las Plantas con Flores , Simpatría , Autoincompatibilidad en las Plantas con Flores/fisiología , Flores/fisiología , Semillas/fisiología , Opuntia/fisiología , Reproducción , Polen/fisiología , Especificidad de la Especie , Apomixis/fisiología
7.
Methods Mol Biol ; 2798: 161-181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587742

RESUMEN

The presence of melatonin in plants, called phytomelatonin, has gained great interest in recent years. The determination of phytomelatonin levels in plant extracts for both physiological and plant foodstuff studies requires sophisticated techniques due to the low endogenous levels of this indolic compound with hormonal nature. This chapter presents the most common and advanced techniques in the determination of phytomelatonin, with special emphasis on the techniques of extraction, cleaning, separation, detection, identification, and quantification. Multiple examples and recommendations are presented for a clear overview of the pros and cons of phytomelatonin determinations in plant tissues, seeds, and fruits, mainly.


Asunto(s)
Melatonina , Semillas , Frutas , Indoles
8.
Sci Rep ; 14(1): 8709, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622262

RESUMEN

Sect. tuberculata plant belongs to the Camellia genus and is named for the "tuberculiform protuberance on the surface of the ovary and fruit". It is a species of great ornamental value and potential medicinal value. However, little has been reported on the metabolites of C. tuberculata seeds. Therefore, this study was conducted to investigate the metabolites of C. tuberculata seeds based on UPLC/ESI-Q TRAP-MS/MS with extensively targeted metabolomics. A total of 1611 metabolites were identified, including 107 alkaloids, 276 amino acids and derivatives, 283 flavonoids, 86 lignans and coumarins, 181 lipids, 68 nucleotides and derivatives, 101 organic acids, 190 phenolic acids, 10 quinones, 4 steroids, 17 tannins, 111 terpenoids, and 177 other metabolites. We compared the different metabolites in seeds between HKH, ZM, ZY, and LY. The 1311 identified different metabolites were classified into three categories. Sixty-three overlapping significant different metabolites were found, of which lignans and coumarins accounted for the largest proportion. The differentially accumulated metabolites were enriched in different metabolic pathways between HKH vs. LY, HKH vs. ZM, HKH vs. ZY, LY vs. ZY, ZM vs. LY and ZM vs. ZY, with the most abundant metabolic pathways being 4, 2, 4, 7, 7 and 5, respectively (p < 0.05). Moreover, among the top 20 metabolites in each subgroup comparison in terms of difference multiplicity 7, 8 and 13. ZM and ZY had the highest phenolic acid content. Ninety-six disease-resistant metabolites and 48 major traditional Chinese medicine agents were identified based on seven diseases. The results of this study will not only lead to a more comprehensive and in-depth understanding of the metabolic properties of C. tuberculata seeds, but also provide a scientific basis for the excavation and further development of its medicinal value.


Asunto(s)
Camellia , Hidroxibenzoatos , Lignanos , Camellia/química , Antioxidantes/química , Espectrometría de Masas en Tándem , Flavonoides/análisis , Semillas/química , Metabolómica/métodos , Extractos Vegetales/química , Lignanos/análisis , Cumarinas/análisis
9.
BMC Plant Biol ; 24(1): 284, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627650

RESUMEN

BACKGROUND: Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS: In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 ß-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION: This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.


Asunto(s)
Acer , Transcriptoma , Humanos , Perfilación de la Expresión Génica , Acer/genética , Acer/metabolismo , Ácidos Grasos Insaturados/metabolismo , Semillas , Metaboloma , Aceites de Plantas/metabolismo
10.
Environ Monit Assess ; 196(5): 472, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662176

RESUMEN

Endemic medicinal plants deserve immediate research priorities as they typically show a limited distribution range, represent few and fragmented populations in the wild and are currently facing anthropogenic threats like overharvesting and habitat degradation. One of the important aspects of ensuring their successful conservation and sustainable utilization lies in comprehending the fundamental seed biology, particularly the dormancy status and seed germination requirements of these plants. Here, we studied the seed eco-physiology and regeneration potential of Swertia thomsonii-an endemic medicinal plant of western Himalaya. We investigated the effect of different pre-sowing treatments, sowing media and sowing depth on seed germination parameters of S. thomsonii. Seeds of S. thomsonii exhibit morphophysiological dormancy (MPD), i.e. when the embryo of the seed is morphologically and/or physiologically immature. Wet stratification at 4 °C for 20 days, pre-sowing treatment with 50 ppm GA3 and pre-sowing treatment with 50 ppm KNO3 were found ideal for overcoming dormancy and enhancing the seed germination of S. thomsonii. Furthermore, seed germination and seedling survival were significantly influenced by pre-sowing treatments, sowing media and sowing depth. The percentage of seed germination and seedling survival got enhanced up to 84-86% and 73-75% respectively when seeds were pre-treated with GA3 or KNO3 and then sown in cocopeat + perlite (1:1) at a depth of 1 cm. The information obtained in the present study outlines an efficient protocol for large-scale cultivation of S. thomsonii thereby limiting the pressure of overexploitation from its natural habitats and may also help in the restoration and conservation of this valuable plant species.


Asunto(s)
Conservación de los Recursos Naturales , Germinación , Plantas Medicinales , Semillas , Swertia , Plantas Medicinales/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Swertia/fisiología , India , Plantones/crecimiento & desarrollo , Ecosistema , Latencia en las Plantas
11.
PLoS One ; 19(4): e0300864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635849

RESUMEN

Chia (Salvia hispanica L.) seed (CS) and Pumpkin (Cucurbita moschata) seed (PS) are used in ruminant diets as energy sources. The current experiment studied the impact of dietary inclusion of CS and PS on nutrient intake and digestibility, milk yield, and milk composition of dairy sheep. Twelve primiparous Texel × Suffolk ewes [70 ± 5 days in milk (DIM); 0.320 ± 0.029 kg milk yield] were distributed in a 4 × 3 Latin square design and fed either a butter-based control diet [CON; 13 g/kg dry matter] or two diets with 61 g/kg DM of either CS or PS. Dietary inclusion of CS and PS did not alter live weight (p >0.1) and DM intake (p >0.1). However, compared to the CON, dietary inclusion of both CS and PS increased the digestibility of neutral detergent fiber (p <0.001) and acid detergent lignin (p < 0.001). Milk production (p = 0.001), fat-corrected milk (p < 0.001), and feed efficiency (p < 0.001) were enhanced with PS, while the highest milk protein yield (p < 0.05) and lactose yield (p < 0.001) were for CS-fed ewes. Compared to the CON diet, the ingestion of either CS and/or PS decreased (p < 0.001) the C16:0 in milk. Moreover, both CS and PS tended to enhance the content of C18:3n6 (p > 0.05) and C18:3n3 (p > 0.05). Overall short-term feeding of CS and/or PS (up to 6.1% DM of diet) not only maintains the production performance and digestibility of nutrients but also positively modifies the milk FA composition.


Asunto(s)
Cucurbita , Animales , Femenino , Ovinos , Cucurbita/metabolismo , Lactancia , Salvia hispanica , Detergentes , Fibras de la Dieta/metabolismo , Dieta/veterinaria , Semillas/metabolismo , Digestión , Alimentación Animal/análisis , Zea mays/metabolismo , Suplementos Dietéticos/análisis , Rumen/metabolismo
12.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612461

RESUMEN

Legume crops establish symbiosis with nitrogen-fixing rhizobia for biological nitrogen fixation (BNF), a process that provides a prominent natural nitrogen source in agroecosystems; and efficient nodulation and nitrogen fixation processes require a large amount of phosphorus (P). Here, a role of GmPAP4, a nodule-localized purple acid phosphatase, in BNF and seed yield was functionally characterized in whole transgenic soybean (Glycine max) plants under a P-limited condition. GmPAP4 was specifically expressed in the infection zones of soybean nodules and its expression was greatly induced in low P stress. Altered expression of GmPAP4 significantly affected soybean nodulation, BNF, and yield under the P-deficient condition. Nodule number, nodule fresh weight, nodule nitrogenase, APase activities, and nodule total P content were significantly increased in GmPAP4 overexpression (OE) lines. Structural characteristics revealed by toluidine blue staining showed that overexpression of GmPAP4 resulted in a larger infection area than wild-type (WT) control. Moreover, the plant biomass and N and P content of shoot and root in GmPAP4 OE lines were also greatly improved, resulting in increased soybean yield in the P-deficient condition. Taken together, our results demonstrated that GmPAP4, a purple acid phosphatase, increased P utilization efficiency in nodules under a P-deficient condition and, subsequently, enhanced symbiotic BNF and seed yield of soybean.


Asunto(s)
Glycine max , Fijación del Nitrógeno , Glycine max/genética , Fijación del Nitrógeno/genética , Simbiosis/genética , Semillas/genética , Fósforo , Nitrógeno
13.
J Med Food ; 27(4): 279-286, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603555

RESUMEN

Amaranth is a pseudocereal rich in macronutrients and micronutrients, with about 60 species cultivated worldwide. It is a high nutritional value food because of its many essential amino acids. Recent investigations demonstrate that the phytochemicals and extracts of amaranth have beneficial effects on health, including antidiabetic potential, a decrease in plasmatic cholesterol and blood pressure, and protection from oxidative stress and inflammation. Nowadays, type 2 diabetes has increased worldwide, becoming a problem of public health that makes it necessary to look for alternative strategies for its prevention and treatment. This review aims to summarize the antidiabetic potential of diverse species of the Amaranth genus. A bibliographical review was updated on the plant's therapeutic potential, including stem, leaves, and seeds, to know the benefits and potential as an adjuvant in treating and managing diabetes and associated pathologies (hypertension, dyslipidemia, and heart disease). This analysis contributes to the generation of knowledge about the therapeutic effects of amaranth, promoting the creation of new products, and the opportunity to conduct clinical trials to assess their safety and efficacy.


Asunto(s)
Amaranthus , Diabetes Mellitus Tipo 2 , Humanos , Hipoglucemiantes/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Semillas/química , Amaranthus/química , Micronutrientes
14.
PLoS One ; 19(4): e0301381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625903

RESUMEN

The current effort to valorize waste byproducts to increase sustainability and reduce agricultural loss has stimulated interest in potential utilization of waste components as health-promoting supplements. Tomato seeds are often discarded in tomato pomace, a byproduct of tomato processing, yet these seeds are known to contain an array of compounds with biological activity and prebiotic potential. Here, extract from tomato seeds (TSE), acquired from pomace, was evaluated for their ability to effect changes on the gut microbiota using an ex vivo strategy. The results found that TSE significantly increased levels of the beneficial taxa Bifidobacteriaceae in a donor-independent manner, from a range of 18.6-24.0% to 27.0-51.6% relative abundance following treatment, yet the specific strain of Bifidobacteriaceae enhanced was inter-individually variable. These structural changes corresponded with a significant increase in total short-chain fatty acids, specifically acetate and propionate, from an average of 13.3 to 22.8 mmol/L and 4.6 to 7.4 mmol/L, respectively. Together, these results demonstrated that TSE has prebiotic potential by shaping the gut microbiota in a donor-independent manner that may be beneficial to human health. These findings provide a novel application for TSE harvested from tomato pomace and demonstrate the potential to further valorize tomato waste products.


Asunto(s)
Microbioma Gastrointestinal , Solanum lycopersicum , Humanos , Extractos Vegetales/química , Semillas/química , Antioxidantes/análisis , Prebióticos/análisis
15.
Mymensingh Med J ; 33(2): 350-355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557509

RESUMEN

Evaluation of the in vitro antibacterial activity of Methanolic extracts isolated from Black pepper seeds (Piper nigrum L.) against two infection causing pathogens, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Between July 2022 and June 2023, this experimental study was conducted at the Mymensingh Medical College's Department of Pharmacology and Therapeutics in conjunction with the Department of Microbiology. Using the disc diffusion and broth dilution methods, the antibacterial activity of methanolic extract of black pepper seeds (MBPE) was evaluated at various doses. The solvents Methanol and 10.0% Di Methyl Sulfoxide (DMSO) were used to make the extract. Using the broth dilution procedure, the conventional antibiotic Ciprofloxacin was utilized and the outcome was contrasted with that of Methanol extracts. Methanolic extract of black pepper seeds (MBPE) at seven distinct concentrations (100, 80, 60, 40, 20, 10 and 5 mg/ml) were utilized, then later in chosen concentrations as needed to confirm the extracts' more precise margin of antimicrobial sensitivity. At 80 mg/ml and above doses of the MBPE, it had an inhibitory impact against the aforementioned microorganisms. For Staphylococcus aureus and Escherichia coli the MIC were 60 and 75 mg/ml in MBPE respectively. As of the MIC of Ciprofloxacin was 1µg/ml against Staphylococcus aureus and Escherichia coli. In comparison to MICs of MBPE for the test organisms, the MIC of Ciprofloxacin was the lowest. This study clearly shows that Staphylococcus aureus and Escherichia coli are sensitive to the methanolic extract of black pepper seeds' antibacterial properties.


Asunto(s)
Piper nigrum , Staphylococcus aureus , Humanos , Metanol , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Ciprofloxacina , Semillas , Escherichia coli
16.
PeerJ ; 12: e17112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560474

RESUMEN

Solanum rostratum Dunal, belongs to the Solanaceae family and has drawn attention for its intricate interplay of invasiveness, phytochemical composition, and potential bioactivities. Notably invasive, S. rostratum employs adaptive mechanisms during senescence, featuring thorn formation on leaves, fruits, and stems seed self-propulsion, and resistance to drought. This adaptability has led to its proliferation in countries such as China, Canada, and Australia, extending beyond its Mexican origin. Despite its invasive historical reputation, recent studies unveil a rich array of phytochemicals in S. rostratum, suggesting untapped economic potential due to under-exploration. This review delves into exploring the potential uses of S. rostratum while elucidating the bioactive compounds associated with diverse identified bioactivities. In terms of phytochemistry, S. rostratum reveals an abundance of various bioactive compounds, including alkaloids, flavonoids, phenols, saponins, and glycosides. These compounds confer a range of beneficial bioactivities, encompassing antioxidant, antifungal, anticarcinogenic, anti-inflammatory, phytotoxic, and pesticidal properties. This positions S. rostratum as a reservoir of valuable chemical constituents with potential applications, particularly in medicine and agriculture. The review provides comprehensive insights into the phytochemistry, bioactivities, and bioactivity-guided fractionation of S. rostratum. In this review, we focus on the potential utilization of S. rostratum by emphasizing its phytochemical profile, which holds promise for diverse applications. This review is the first that advocates for further exploration and research to unlock the plant's full potential for both economic and environmental benefit.


Asunto(s)
Solanum , Animales , Solanum/química , Búfalos , Glicósidos , Semillas , Fitoquímicos/farmacología
17.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564033

RESUMEN

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Asunto(s)
Cymbopogon , Agua Potable , Cálculos Renales , Polietilenglicoles , Polietileneimina , Urolitiasis , Animales , Ratas , Petroselinum , Cloruro de Amonio , Goma Arábiga , Emulsiones , Catalasa , Magnesio , Nanogeles , Urolitiasis/inducido químicamente , Urolitiasis/tratamiento farmacológico , Urolitiasis/prevención & control , Semillas , Antioxidantes/uso terapéutico , Etanol , Glutatión , Oxalatos , Glicoles de Etileno , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
18.
PeerJ ; 12: e17136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590707

RESUMEN

The germinations of three common buckwheat (Fagopyrum esculentum) varieties and two Tartary buckwheat (Fagopyrum tataricum) varieties seeds are known to be affected by high temperature. However, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on buckwheat seed germination under high temperature. This work studied the effects of exogenous MT on buckwheat seed germination under high temperature. MT was sprayed. The parameters, including growth, and physiological factors, were examined. The results showed that exogenous MT significantly increased the germination rate (GR), germination potential (GP), radicle length (RL), and fresh weight (FW) of these buckwheat seeds under high-temperature stress and enhanced the content of osmotic adjustment substances and enzyme activity. Comprehensive analysis revealed that under high-temperature stress during germination, antioxidant enzymes play a predominant role, while osmotic adjustment substances work synergistically to reduce the extent of damage to the membrane structure, serving as the primary key indicators for studying high-temperature resistance. Consequently, our results showed that MT had a positive protective effect on buckwheat seeds exposed to high temperature stress, providing a theoretical basis for improving the ability to adapt to high temperature environments.


Asunto(s)
Fagopyrum , Melatonina , Germinación , Melatonina/farmacología , Fagopyrum/química , Temperatura , Semillas/química
19.
J Ovarian Res ; 17(1): 76, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589892

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder in women that necessitates effective and safe treatment alternatives. This study aimed to evaluate the therapeutic efficacy of Vitex negundo seed in a letrozole-induced PCOS rat model. RESULTS: Findings of the present study demonstrated that administration of hydro-ethanolic extract of Vitex negundo (VNE) effectively restored endocrino-metabolic imbalances associated with PCOS, along with correction of antioxidant enzymes level, proinflammatory cytokines, and apoptotic bio-markers. LC-MS analysis confirmed the presence of cinnamic acid, plumbagin and nigundin B as the prominent phytochemicals in VNE. The observed beneficial effects could be attributed to the active compounds in Vitex negundo extract, which exhibited hypoglycemic, hypolipidemic, and catabolic effects on body weight. Additionally, the extract contributed to hormonal balance regulation by modulating the steroidogenic enzymes, specifically by tuning gonadotropins level and correcting the LH:FSH ratio, through the modulation of ERα signalling and downregulation of NR3C4 expression. The antioxidant properties of phytochemicals in Vitex negundo seed were apparent through the correction of SOD and catalase activity. While it's anti-inflammatory and antiapoptotic action were associated with the regulation of mRNA expression of TNF-α, IL-6, BAX, Bcl2. Molecular docking study further indicated the molecular interaction of above mentioned active phytocompounds of VNE with ERα, NR3C4 and with TNFα that plays a critical mechanistic gateway to the regulation of hormone signalling as well as synchronizing the inflammation cascade. Furthermore, the histomorphological improvement of the ovaries supported the ameliorative action of Vitex negundo extract in the letrozole-induced PCOS model. CONCLUSIONS: This study indicates the potential of Vitex negundo seed as a multifaceted therapeutic option for PCOS. VNE offers a holistic strategy for PCOS with antiandrogenic, anti-inflammatory, and antioxidant properties, driven by its major compounds like cinnamic acid, plumbagine, and nigundin B.


Asunto(s)
Cinamatos , Síndrome del Ovario Poliquístico , Vitex , Humanos , Ratas , Femenino , Animales , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Letrozol/uso terapéutico , Vitex/química , Receptor alfa de Estrógeno , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Factor de Necrosis Tumoral alfa , Semillas
20.
Se Pu ; 42(3): 234-244, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38503700

RESUMEN

Ziziphi Spinosae Semen refers to the dried seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou. The seed is composed of a reddish brown coat and a yellow kernel. A comparative study was conducted to investigate differences in the chemical composition and their relative contents between the seed coat and kernel of Ziziphi Spinosae Semen. First, the chemical compounds found in the seed coat and kernel were characterized and identified using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The analytical results tentatively identified 57 chemical compounds based on reference-compound comparison, literature retrieval, and chemical-database (e. g., MassBank) searches; these compounds included 14 triterpenes, 23 flavonoids, 7 alkaloids, 6 carboxylic acids, and 7 other types of compounds. The mass error of the identified compounds was within the mass deviation range of 5×10-6 (5 ppm). Next, two methods of multivariate statistical analysis, namely, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), were used to compare the differential compounds between the two seed parts. A total of 17 differential compounds were screened out via OPLS-DA based on a variable importance in projection (VIP) value of >5. The results revealed that betulinic acid, betulonic acid, alphitolic acid, and jujuboside Ⅰ mainly existed in the seed coat whereas the 13 other compounds, such as spinosin, jujuboside A, and 6‴-feruloylspinosin, mainly existed in the seed kernel. Therefore, these 17 differential compounds can be used to distinguish between the two seed parts. Finally, a semiquantitative method was established using UPLC and a charged aerosol detector (CAD) with inverse gradient compensation in the mobile phase. Six representative compounds with different types were selected to examine the CAD response consistency: magnoflorine (alkaloid), spinosin (flavone), 6‴-feruloylspinosin (flavone), jujuboside A (triterpenoid saponin), jujuboside B (triterpenoid saponin), and betulinic acid (triterpenoid acid). The results showed that the relative standard deviation (RSD) of the average response factors at different levels of these six compounds was 7.04% and that their response intensities were similar. Moreover, each compound in the fingerprint demonstrated good response consistency, and the peak areas obtained directly reflected the contents of each compound. Based on the semiquantitative fingerprints obtained, betulinic acid and oleic acid were considered the main components of the seed coat. The betulinic acid content in the seed coat was approximately 7 times higher than that in the seed kernel. Spinosin, jujuboside A, linoleic acid, betulinic acid, and oleic acid were the main components of the seed kernel. The spinosin content in the seed kernel was 18 times higher than that in the seed coat. In addition, the jujuboside A content in the seed kernel was 24 times higher than that in the seed coat. The proposed method can accurately determine the main components and compare the relative contents of these components in different seed parts. In summary, this study identified the differences in chemical components between the seed coat and kernel of Ziziphi Spinosae Semen and clarified the main components and their relative contents in these parts. The findings can not only provide a basis for the identification of chemical compounds and quality research on different parts of Ziziphi Spinosae Semen but also promote the development and utilization of this traditional Chinese medicine.


Asunto(s)
Alcaloides , Medicamentos Herbarios Chinos , Flavonas , Saponinas , Triterpenos , Ziziphus , Medicamentos Herbarios Chinos/química , Ácido Betulínico , Saponinas/química , Ácidos Oléicos , Cromatografía Líquida de Alta Presión , Ziziphus/química , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA