Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.285
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Aging (Albany NY) ; 16(8): 6937-6953, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643461

RESUMEN

AIMS: This study aimed to evaluate the effects of VC on SIMI in rats. METHODS: In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1ß, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS: High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/ß in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE: Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.


Asunto(s)
Apoptosis , Autofagia , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Sepsis , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Miocardio/metabolismo , Miocardio/patología
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 884-893, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621895

RESUMEN

Sepsis is a systemic inflammatory response syndrome caused by infection, with high morbidity and mortality. Sepsis-induced liver injury(SILI) is one of the manifestations of sepsis-induced multiple organ syndrome. At present, there is no recommended pharmacological intervention for the treatment of SILI. traditional Chinese medicine(TCM), based on the holism and dialectical treatment concept, shows the therapeutic characteristics of multi-target and multi-pathway and can comprehensively prevent and treat SILI by interfering with inflammatory factors, inflammatory signaling pathways, and anti-oxidative stress and inhibiting apoptosis. This article reviewed the experimental studies on the treatment of SILI with TCM to clarify its pathogenic mechanism and therapeutic characteristics, so as to provide more ideas and directions for the development or preparation of new drugs.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Sepsis , Humanos , Medicina Tradicional China , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Apoptosis , Transducción de Señal , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología
3.
J Agric Food Chem ; 72(15): 8460-8475, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564364

RESUMEN

Liver injury and progressive liver failure are severe life-threatening complications in sepsis, further worsening the disease and leading to death. Macrophages and their mediated inflammatory cytokine storm are critical regulators in the occurrence and progression of liver injury in sepsis, for which effective treatments are still lacking. l-Ascorbic acid 6-palmitate (L-AP), a food additive, can inhibit neuroinflammation by modulating the phenotype of the microglia, but its pharmacological action in septic liver damage has not been fully explored. We aimed to investigate L-AP's antisepticemia action and the possible pharmacological mechanisms in attenuating septic liver damage by modulating macrophage function. We observed that L-AP treatment significantly increased survival in cecal ligation and puncture-induced WT mice and attenuated hepatic inflammatory injury, including the histopathology of the liver tissues, hepatocyte apoptosis, and the liver enzyme levels in plasma, which were comparable to NLRP3-deficiency in septic mice. L-AP supplementation significantly attenuated the excessive inflammatory response in hepatic tissues of septic mice in vivo and in cultured macrophages challenged by both LPS and ATP in vitro, by reducing the levels of NLRP3, pro-IL-1ß, and pro-IL-18 mRNA expression, as well as the levels of proteins for p-I-κB-α, p-NF-κB-p65, NLRP3, cleaved-caspase-1, IL-1ß, and IL-18. Additionally, it impaired the inflammasome ASC spot activation and reduced the inflammatory factor contents, including IL-1ß and IL-18 in plasma/cultured superannuants. It also prevented the infiltration/migration of macrophages and their M1-like inflammatory polarization while improving their M2-like polarization. Overall, our findings revealed that L-AP protected against sepsis by reducing macrophage activation and inflammatory cytokine production by suppressing their activation in NF-κB and NLRP3 inflammasome signal pathways in septic liver.


Asunto(s)
Inflamasomas , Sepsis , Ratones , Animales , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Interleucina-18 , Activación de Macrófagos , Transducción de Señal , Hígado/metabolismo , Ácido Ascórbico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Lipopolisacáridos/farmacología
4.
Environ Toxicol ; 39(6): 3341-3355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38440848

RESUMEN

BACKGROUND: Sepsis remains a crucial global health issue characterized by high mortality rates and a lack of specific treatments. This study aimed to elucidate the molecular mechanisms underlying sepsis and to identify potential therapeutic targets and compounds. METHODS: High-throughput sequencing data from the GEO database (GSE26440 as the training set and GSE13904 and GSE32707 as the validation sets), weighted gene co-expression network analysis (WGCNA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, alongside a combination of PPI and machine learning methods (LASSO and SVM) were utilized. RESULTS: WGCNA identified the black module as positively correlated, and the green module as negatively correlated with sepsis. Further intersections of these module genes with age-related genes yielded 57 sepsis-related genes. GO and KEGG pathway enrichment analysis, PPI, LASSO, and SVM selected six hub aging-related genes: BCL6, FOS, ETS1, ETS2, MAPK14, and MYC. A diagnostic model was constructed based on these six core genes, presenting commendable performance in both the training and validation sets. Notably, ETS1 demonstrated significant differential expression between mild and severe sepsis, indicating its potential as a biomarker of severity. Furthermore, immune infiltration analysis of these six core genes revealed their correlation with most immune cells and immune-related pathways. Additionally, compounds were identified in the traditional Chinese medicine Danshen, which upon further analysis, revealed 354 potential target proteins. GO and KEGG enrichment analysis of these targets indicated a primary enrichment in inflammation and immune-related pathways. A Venn diagram intersects these target proteins, and our aforementioned six core genes yielded three common genes, suggesting the potential efficacy of Danshen in sepsis treatment through these genes. CONCLUSIONS: This study highlights the pivotal roles of age-related genes in the molecular mechanisms of sepsis, offers potential biomarkers, and identifies promising therapeutic compounds, laying a robust foundation for future studies on the treatment of sepsis.


Asunto(s)
Envejecimiento , Biomarcadores , Sepsis , Sepsis/tratamiento farmacológico , Sepsis/genética , Humanos , Biomarcadores/metabolismo , Aprendizaje Automático , Redes Reguladoras de Genes/efectos de los fármacos , Perfilación de la Expresión Génica , Ontología de Genes , Bases de Datos Genéticas
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 381-386, 2024 Feb 20.
Artículo en Chino | MEDLINE | ID: mdl-38501424

RESUMEN

OBJECTIVE: To investigate the mechanism of tea polyphenols (TP) for regulating NLRP3 inflammasomes and alleviating acute lung injury in septic mice. METHODS: Sixty C57BL/6 mice were randomly assigned into sham-operated, cecal ligation and puncture (CLP) and CLP +TP treatment groups, and survival of the mice was recorded after modeling in each group. The lung wet/dry weight ratio and myeloperoxidase (MPO) activity were determined, and lung injury of the mice was evaluated using HE staining and acute lung injury score. The expressions of IL-1ß, TNF-α, IL-6, NLRP3, caspase-1 p10, ASC, MPO, and caspase-8 in the lung tissue were detected using ELISA, Western blotting, or immunohistochemical staining. MDA and H2O2 levels in the lungs were detected to evaluate the level of oxidative stress. Immunofluorescence assay was used to investigate the co-localization of NLRP3 and NOX4. RESULTS: The postoperative mortality rate at 72 h, lung wet/dry weight ratio, MPO level and acute lung injury scores were significantly lower in CLP+TP group than in CLP group (P < 0.05). Treatment with TP significantly reduced the expressions of NLRP3-related inflammatory factors (P < 0.05) and lowered MDA and H2O2 levels in the lung tissue of the septic mice (P < 0.05). Immunofluorescence co-staining showed a lower level of NOX4 and NLRP3 co-localization in CLP+TP group than in CLP group. CONCLUSION: TP inhibits NLRP3 inflammasome-associated inflammation to alleviate CLP-induced acute lung injury in mice through a regulatory mechanism that inhibits NOX4 expression and reduces oxidative stress in the lung tissue.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Ratones , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Peróxido de Hidrógeno , Ratones Endogámicos C57BL , Lesión Pulmonar Aguda/tratamiento farmacológico , Pulmón/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo ,
6.
Nutr J ; 23(1): 31, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38444016

RESUMEN

BACKGROUND: Sepsis, a life-threatening organ dysfunction caused by a host's dysregulated response to infection with an inflammatory process, becomes a real challenge for the healthcare systems. L-carnitine (LC) has antioxidant and anti-inflammatory properties as in previous studies. Thus, we aimed to determine the effects of LC on inflammation, oxidative stress, and clinical parameters in critically ill septic patients. METHODS: A randomized double-blinded controlled trial was conducted. A total of 60 patients were randomized to receive LC (3 g/day, n = 30) or placebo (n = 30) for 7 days. Inflammatory and oxidative stress parameters (C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), superoxide dismutase (SOD), malondialdehyde (MDA), total antioxidant capacity (TAC), 28-day mortality rate, and some monitoring variables were evaluated. RESULTS: There was no statistically significant difference between study arms in baseline characteristics and disease severity scores. CRP (p < 0.001) and ESR (p: 0.004) significantly reduced, and SOD (p < 0.001) and TAC (p < 0.001) significantly improved in the LC group after 7 days. Between-group analysis revealed a significant reduction in CRP (p: 0.001) and serum chloride (p: 0.032), an increase in serum albumin (p: 0.036) and platelet (p: 0.004) significantly, and an increase in SOD marginally (p: 0.073). The 28-day mortality rate was also lower in the LC group compared with placebo (7 persons vs. 15 persons) significantly (odds ratio: 0.233, p: 0.010). CONCLUSIONS: L-carnitine ameliorated inflammation, enhanced antioxidant defense, reduced mortality, and improved some clinical outcomes in critically ill patients with sepsis. TRIAL REGISTRATION: IRCT20201129049534N1; May 2021.


Asunto(s)
Antioxidantes , Sepsis , Humanos , Antioxidantes/uso terapéutico , Enfermedad Crítica , Inflamación/tratamiento farmacológico , Estrés Oxidativo , Proteína C-Reactiva , Sepsis/tratamiento farmacológico , Carnitina/uso terapéutico , Superóxido Dismutasa , Suplementos Dietéticos
7.
Phytomedicine ; 128: 155520, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489892

RESUMEN

BACKGROUND: Sepsis is considered as a severe illness due to its high mortality. Sepsis can cause septic encephalopathy, thus leading to brain injury, behavioral and cognitive dysfunction. Pyroptosis is a type of regulated cell death (RCD) and takes a crucial part in occurrence and development of sepsis. Americanin B (AMEB) is a lignan compounds, which is extracted from Vernicia fordii. In our previous study, AMEB could inhibit microglial activation in inflammatory cell model. However, the function of AMEB in septic encephalopathy mice is uncertain. It would be worthwhile to ascertain the role and mechanism of AMEB in sepsis. PURPOSE: Current study designs to certify the relationship between pyroptosis and septic encephalopathy, and investigate whether AMEB can restrain NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation and restrict pyroptosis by targeting NLRP3 in septic mice model. STUDY DESIGN: C57BL/6 mice were utilized to perform sepsis model in vivo experiments. BV-2 cell lines were used for in vitro experiments. METHODS: In vivo sepsis model was established by lipopolysaccharide (LPS) intraperitoneal injection in male C57BL/6 J mice and in vitro model was exposed by LPS plus ATP in BV-2 cells. The survival rate was monitored on the corresponding days. NLRP3, apoptosis associated Speck-like protein (ASC), caspase-1, GasderminD (GSDMD), interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) level were detected by western blotting and immunofluorescence analysis. Molecular docking, cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) experiments, RNAi transfection and quantitative real-time PCR were applied to confirm the potential target of AMEB. RESULTS: The results suggested that AMEB could rise survival percentage and lighten brain injury in LPS-induced sepsis mice. In addition, AMEB could inhibit pyroptosis and the activiation of NLRP3 inflammasome. The inhibiting function of AMEB on the activiation of NLRP3 inflammasome is weakened following si-NLRP3 transfection. Moreover, AMEB exerted anti-pyroptosis effect via targeting NLRP3 protein. CONCLUSIONS: Our findings first indicate NLRP3 is an effective druggable target for septic encephalopathy related brain injury, and also provide a candidate-AMEB for the treatment of septic encephalopathy. These emerging findings on AMEB in models of sepsis suggest an innovative approach that may be beneficial in the prevention of septic encephalopathy.


Asunto(s)
Modelos Animales de Enfermedad , Indenos , Lipopolisacáridos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Encefalopatía Asociada a la Sepsis , Sulfonamidas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Ratones , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Masculino , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Furanos/farmacología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Interleucina-1beta/metabolismo
8.
Int Immunopharmacol ; 132: 111870, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38547771

RESUMEN

Extracellular histones have been determined as important mediators of sepsis, which induce excessive inflammatory responses in macrophages and impair innate immunity. Magnesium (Mg2+), one of the essential nutrients of the human body, contributes to the proper regulation of immune function. However, no reports indicate whether extracellular histones affect survival and bacterial phagocytosis in macrophages and whether Mg2+ is protective against histone-induced macrophage damage. Our clinical data revealed a negative correlation between circulating histone and monocyte levels in septic patients, and in vitro experiments confirmed that histones induced mitochondria-associated apoptosis and defective bacterial phagocytosis in macrophages. Interestingly, our clinical data also indicated an association between lower serum Mg2+ levels and reduced monocyte levels in septic patients. Moreover, in vitro experiments demonstrated that Mg2+ attenuated histone-induced apoptosis and defective bacterial phagocytosis in macrophages through the PLC/IP3R/STIM-mediated calcium signaling pathway. Importantly, further animal experiments proved that Mg2+ significantly improved survival and attenuated histone-mediated lung injury and macrophage damage in histone-stimulated mice. Additionally, in a cecal ligation and puncture (CLP) + histone-induced injury mouse model, Mg2+ inhibited histone-mediated apoptosis and defective phagocytosis in macrophages and further reduced bacterial load. Overall, these results suggest that Mg2+ supplementation may be a promising treatment for extracellular histone-mediated macrophage damage in sepsis.


Asunto(s)
Apoptosis , Señalización del Calcio , Histonas , Macrófagos , Magnesio , Ratones Endogámicos C57BL , Fagocitosis , Sepsis , Animales , Fagocitosis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Magnesio/metabolismo , Histonas/metabolismo , Humanos , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Ratones , Masculino , Señalización del Calcio/efectos de los fármacos , Femenino , Persona de Mediana Edad , Células RAW 264.7
9.
Int Immunopharmacol ; 129: 111580, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38310763

RESUMEN

BACKGROUND: LL-37 (also known as murine CRAMP) is a human antimicrobial peptide that plays a crucial role in innate immune defence against sepsis through various mechanisms. However, its involvement in sepsis-induced lung injury remains unclear. OBJECTIVES: This work investigates the impact of LL-37 on pyroptosis generated by LPS in alveolar epithelial cells. The research utilizes both in vivo and in vitro sepsis-associated acute lung injury (ALI) models to understand the underlying molecular pathways. METHODS: In vivo, an acute lung injury model induced by sepsis was established by intratracheal administration of LPS in C57BL/6J mice, which were subsequently treated with low-dose CRAMP (recombinant murine cathelicidin, 2.5 mg.kg-1) and high-dose CRAMP (5.0 mg.kg-1). In vitro, pyroptosis was induced in a human alveolar epithelial cell line (A549) by stimulation with LPS and ATP. Treatment was carried out with recombinant human LL-37, or LL-37 was knocked out in A549 cells using small interfering RNA (siRNA). Subsequently, haematoxylin and eosin staining was performed to observe the histopathological changes in lung tissues in the control group and sepsis-induced lung injury group. TUNEL and PI staining were used to observe DNA fragmentation and pyroptosis in mouse lung tissues and cells in the different groups. An lactate dehydrogenase (LDH) assay was performed to measure the cell death rate. The expression levels of NLRP3, caspase1, caspase 1 p20, GSDMD, NT-GSDMD, and CRAMP were detected in mice and cells using Western blotting, qPCR, and immunohistochemistry. ELISA was used to assess the levels of interleukin (IL)-1ß and IL-18 in mouse serum, bronchoalveolar lavage fluid (BALF) and lung tissue and cell culture supernatants. RESULTS: The expression of NLRP3, caspase1 p20, NT-GSDMD, IL 18 and IL1ß in the lung tissue of mice with septic lung injury was increased, which indicated activation of the canonical pyroptosis pathway and coincided with an increase in CRAMP expression. Treatment with recombinant CRAMP improved pyroptosis in mice with lung injury. In vitro, treatment with LPS and ATP upregulated these classic pyroptosis molecules, LL-37 knockdown exacerbated pyroptosis, and recombinant human LL-37 treatment alleviated pyroptosis in alveolar epithelial cells. CONCLUSION: These findings indicate that LL-37 protects against septic lung injury by modulating the expression of classic pyroptotic pathway components, including NLRP3, caspase1, and GSDMD and downstream inflammatory factors in alveolar epithelial cells.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/tratamiento farmacológico , Adenosina Trifosfato , Células Epiteliales Alveolares , Lipopolisacáridos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
10.
Free Radic Biol Med ; 214: 80-86, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346662

RESUMEN

Alpha-ketoglutaric acid (2-ketoglutaric acid or 2-oxoglutaric acid, AKG), a crucial intermediate in the tricarboxylic acid cycle, is pivotal in animal antioxidative process. The purpose of this study was to investigate whether AKG has the efficacy to mitigate spleen oxidative stress in lipopolysaccharide (LPS)-induced sepsis piglets through the modulation of mitochondrial dynamics and autophagy. Utilizing a 2 × 2 factorial design, the study encompassed 24 piglets subjected to varying diets (basal or 1% AKG) and immune stimulations (saline or LPS) over 21 days. Subsequently, they were injected intraperitoneally with either LPS or saline solution. The results showed that LPS decreased antioxidant capacity, whereas AKG supplementation increased antioxidant activities compared to control group. LPS elevated mitochondrial fission factor, mitochondrial elongation factor 1, mitochondrial elongation factor 2, dynamin-related protein 1, voltage-dependent anion channel 1, and fission 1 mRNA abundance, but reduced mRNA abundance of mitofusin 1, mitofusin 2, and optic atrophy 1 compared to controls. LPS elevated mRNA abundance of autophagy related protein 5, autophagy related protein 7, P62, Beclin1, and interleukin-1ß mRNA abundance compared to controls. However, AKG supplementation mitigated these effects induced by LPS. Additionally, AKG intake was associated with lower protein expressions of microtubule-associated protein light chain 3, Parkin, and PTEN-induced putative kinase 1 compared to LPS-challenged piglets. These results suggested that AKG could alleviate spleen oxidative stress caused by LPS by regulating mitochondrial dynamics and autophagy.


Asunto(s)
Sepsis , Bazo , Animales , Porcinos , Ácidos Cetoglutáricos , Lipopolisacáridos/toxicidad , Dinámicas Mitocondriales , Antioxidantes , Estrés Oxidativo , Autofagia , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , ARN Mensajero
11.
Photobiomodul Photomed Laser Surg ; 42(2): 148-158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38301209

RESUMEN

Background: Sepsis-induced acute lung injury (ALI) is a clinical syndrome characterized by excessive uncontrolled inflammation. Photobiomodulation such as light-emitting diode (LED) irradiation has been used to attenuate inflammatory disease. Objective: The protective effect of 630 nm LED irradiation on sepsis-induced ALI remains unknown. The purpose of this study was to investigate the role of 630 nm LED irradiation in sepsis-induced ALI and its underlying mechanism. Methods and results: C57BL/6 mice were performed cecal ligation and puncture (CLP) for 12 h to generate experimental sepsis models. Histopathology analysis showed that alveolar injury, inflammatory cells infiltration, and hemorrhage were suppressed in CLP mice after 630 nm LED irradiation. The ratio of wet/dry weigh of lung tissue was significantly inhibited by irradiation. The number of leukocytes was reduced in bronchoalveolar lavage fluid. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results and enzyme-linked immunosorbent assay showed that 630 nm LED irradiation significantly inhibited the mRNA and protein levels of M1 macrophage-related genes in the lung of CLP-induced septic mice. Meanwhile, LED irradiation significantly inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation in the lung of septic mice. In vitro experiments showed that 630 nm LED irradiation significantly inhibited M1 genes mRNA and protein expression in THP-1-derived M1 macrophages without affecting the cell viability. LED irradiation also significantly inhibited the level of STAT1 phosphorylation in THP-1-derived M1 macrophages. Conclusions: We concluded that 630 nm LED is promising as a treatment against ALI through inhibiting M1 macrophage polarization, which is associated with the downregulation of STAT1 phosphorylation.


Asunto(s)
Lesión Pulmonar Aguda , Terapia por Luz de Baja Intensidad , Sepsis , Ratones , Animales , Ratones Endogámicos C57BL , Lesión Pulmonar Aguda/complicaciones , Lesión Pulmonar Aguda/tratamiento farmacológico , Macrófagos , Sepsis/complicaciones , Sepsis/radioterapia , Sepsis/tratamiento farmacológico , ARN Mensajero
12.
Pharm Biol ; 62(1): 250-260, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38389274

RESUMEN

CONTEXT: Sepsis can result in critical organ failure, and notoginsenoside R1 (NGR1) offers mitochondrial protection. OBJECTIVE: To determine whether NGR1 improves organ function and prognosis after sepsis by protecting mitochondrial quality. MATERIALS AND METHODS: A sepsis model was established in C57BL/6 mice using cecum ligation puncture (CLP) and an in vitro model with lipopolysaccharide (LPS, 10 µg/mL)-stimulated primary intestinal microvascular endothelial cells (IMVECs) and then determine NGR1's safe dosage. Groups for each model were: in vivo-a control group, a CLP-induced sepsis group, and a CLP + NGR1 treatment group (30 mg/kg/d for 3 d); in vitro-a control group, a LPS-induced sepsis group, and a LPS + NGR1 treatment group (4 µM for 30 min). NGR1's effects on survival, intestinal function, mitochondrial quality, and mitochondrial dynamic-related protein (Drp1) were evaluated. RESULTS: Sepsis resulted in approximately 60% mortality within 7 days post-CLP, with significant reductions in intestinal microvascular perfusion and increases in vascular leakage. Severe mitochondrial quality imbalance was observed in IMVECs. NGR1 (IC50 is 854.1 µM at 30 min) targeted Drp1, inhibiting mitochondrial translocation, preventing mitochondrial fragmentation and restoring IMVEC morphology and function, thus protecting against intestinal barrier dysfunction, vascular permeability, microcirculatory flow, and improving sepsis prognosis. DISCUSSION AND CONCLUSIONS: Drp1-mediated mitochondrial quality imbalance is a potential therapeutic target for sepsis. Small molecule natural drugs like NGR1 targeting Drp1 may offer new directions for organ protection following sepsis. Future research should focus on clinical trials to evaluate NGR1's efficacy across various patient populations, potentially leading to novel treatments for sepsis.


Asunto(s)
Ginsenósidos , Lipopolisacáridos , Sepsis , Humanos , Ratones , Animales , Células Endoteliales/metabolismo , Microcirculación , Ratones Endogámicos C57BL , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
13.
Int Immunopharmacol ; 129: 111615, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38330799

RESUMEN

Maclurin is a natural phenolic compound isolated from Morus alba(white mulberry) andGarcinia mangostana (purple mangosteen) and has been reported to regulate cancer progression, oxidative stress, and melanogenesis. The regulatory role of maclurin, however, has never been demonstrated. This study investigated in vitro and in vivo anti-inflammatory roles of maclurin and the underlying mechanism in caspase-11 non-canonical inflammasome-stimulated inflammatory responses in macrophages and an animal model of acute lethal sepsis. Maclurin protected J774A.1 macrophages from LPS-induced cytotoxicity and suppressed caspase-11 non-canonical inflammasome-stimulated pyroptosis. Maclurin decreased the secretion and mRNA expression of pro-inflammatory cytokines and inflammatory mediators, such as IL-1ß, IL-18, TNF-α, IL-6, nitric oxide (NO), and inducible NO synthase (iNOS) in caspase-11 non-canonical inflammasome-stimulated J774A.1 macrophages. Mechanistic studies revealed that maclurin markedly suppressed the proteolytic activation of caspase-11 and gasdermin D (GSDMD) in caspase-11 non-canonical inflammasome-stimulated J774A.1 macrophages, while it did not inhibit caspase-11-mediated direct sensing of LPS. In vivo study revealed that maclurin ameliorated acute lethal sepsis in mice by increasing the survival rate and decreasing the serum levels of IL-1ß and IL-18 without significant toxicity. In conclusion, this study suggests that maclurin is a novel anti-inflammatory agent in inflammatory responses and against acute lethal sepsis via the inhibition of the caspase-11 non-canonical inflammasome in macrophages, which justifies its potential as an anti-inflammatory therapeutic agent in traditional medicine.


Asunto(s)
Inflamasomas , Lectinas de Plantas , Sepsis , Animales , Ratones , Inflamasomas/metabolismo , Caspasas/metabolismo , Interleucina-18/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Antiinflamatorios/farmacología
14.
Phytother Res ; 38(4): 1783-1798, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38323338

RESUMEN

Macrophage inflammation plays a central role during the development and progression of sepsis, while the regulation of macrophages by parthanatos has been recently identified as a novel strategy for anti-inflammatory therapies. This study was designed to investigate the therapeutic potential and mechanism of pimpinellin against LPS-induced sepsis. PARP1 and PAR activation were detected by western blot or immunohistochemistry. Cell death was assessed by flow cytometry and western blot. Cell metabolism was measured with a Seahorse XFe24 extracellular flux analyzer. C57, PARP1 knockout, and PARP1 conditional knock-in mice were used in a model of sepsis caused by LPS to assess the effect of pimpinellin. Here, we found that pimpinellin can specifically inhibit LPS-induced macrophage PARP1 and PAR activation. In vitro studies showed that pimpinellin could inhibit the expression of inflammatory cytokines and signal pathway activation in macrophages by inhibiting overexpression of PARP1. In addition, pimpinellin increased the survival rate of LPS-treated mice, thereby preventing LPS-induced sepsis. Further research confirmed that LPS-induced sepsis in PARP1 overexpressing mice was attenuated by pimpinellin, and PARP1 knockdown abolished the protective effect of pimpinellin against LPS-induced sepsis. Further study found that pimpinellin can promote ubiquitin-mediated degradation of PARP1 through RNF146. This is the first study to demonstrate that pimpinellin inhibits excessive inflammatory responses by promoting the ubiquitin-mediated degradation of PARP1.


Asunto(s)
Lipopolisacáridos , Metoxaleno , Sepsis , Animales , Ratones , Inflamación/metabolismo , Macrófagos , Metoxaleno/análogos & derivados , Ratones Endogámicos C57BL , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , Ubiquitinación , Ubiquitinas/metabolismo
15.
Adv Biol (Weinh) ; 8(3): e2300542, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38408269

RESUMEN

Sepsis is a life-threatening syndrome leading to hemodynamic instability and potential organ dysfunction. Oridonin, commonly used in Traditional Chinese Medicine (TCM), exhibits significant anti-inflammation activity. To explore the protective mechanisms of oridonin against the pathophysiological changes, the authors conducted single-cell transcriptome (scRNA-seq) analysis on septic liver models induced by cecal ligation and puncture (CLP). They obtained a total of 63,486 cells, distributed across 11 major cell clusters, and concentrated their analysis on four specific clusters (hepatocytes/Heps, macrophages, endothelial/Endos and T/NK) based on their changes in proportion during sepsis and under oridonin treatment. Firstly, biological changes in Hep, which are related to metabolic dysregulation and pro-inflammatory signaling, are observed during sepsis. Secondly, they uncovered the dynamic profiles of macrophage's phenotype, indicating that a substantial number of macrophages exhibited a M1-skewed phenotype associated with pro-inflammatory characteristics in septic model. Thirdly, they detected an upregulation of both inflammatory cytokines and transcriptomic factor Nfkb1 expression within Endo, along with slight capillarization during sepsis. Moreover, excessive accumulation of cytotoxic NK led to an immune imbalance. Though, oridonin ameliorated inflammatory-related responses and improved the liver dysfunction in septic mice. This study provides fundamental evidence of the protective effects of oridonin against sepsis-induced cytokine storm.


Asunto(s)
Citocinas , Diterpenos de Tipo Kaurano , Sepsis , Ratones , Animales , Citocinas/genética , Citocinas/farmacología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/genética , Hígado , Perfilación de la Expresión Génica
16.
Phytother Res ; 38(5): 2182-2197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38414287

RESUMEN

Excessive reactive oxygen species production during acute lung injury (ALI) will aggravate the inflammatory process and endothelial barrier dysfunction. Carnosol is a natural phenolic diterpene with antioxidant and anti-inflammatory properties, but its role in treating sepsis-induced ALI remains unclear. This study aims to explore the protective effects and underlying mechanisms of carnosol in sepsis-induced ALI. C57BL/6 mouse were preconditioned with carnosol for 1 h, then the model of lipopolysaccharide (LPS)-induced sepsis was established. The degree of pulmonary edema, oxidative stress, and inflammation were detected. Endothelial barrier function was evaluated by apoptosis and cell junctions. In vitro, Mito Tracker Green probe, JC-1 staining, and MitoSOX staining were conducted to investigate the effect of carnosol on mitochondria. Finally, we investigated the role of nuclear factor-erythroid 2-related factor (Nrf2)/sirtuin-3 (SIRT3) in carnosol against ALI. Carnosol alleviated LPS-induced pulmonary oxidative stress and inflammation by inhibiting excess mitochondrial reactive oxygen species production and maintaining mitochondrial homeostasis. Furthermore, carnosol also attenuated LPS-induced endothelial cell barrier damage by reducing vascular endothelial cell apoptosis and restoring occludin, ZO-1, and vascular endothelial-Cadherin expression in vitro and in vivo. In addition, carnosol increased Nrf2 nuclear translocation to promote SIRT3 expression. The protective effects of carnosol on ALI were largely abolished by inhibition of Nrf2/SIRT3. Our study has provided the first evidence that the Nrf2/SIRT3 pathway is a protective target of the endothelial barrier in ALI, and carnosol can serve as a potential therapeutic candidate for ALI by utilizing its ability to target this pathway.


Asunto(s)
Abietanos , Lesión Pulmonar Aguda , Antígenos CD , Lipopolisacáridos , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Especies Reactivas de Oxígeno , Sepsis , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Abietanos/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Lipopolisacáridos/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/metabolismo , Apoptosis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Pulmón/efectos de los fármacos , Antioxidantes/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Cadherinas/metabolismo , Inflamación/tratamiento farmacológico
17.
BMC Infect Dis ; 24(1): 161, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317132

RESUMEN

BACKGROUND: Bloodstream infection of Klebsiella pneumoniae (BSI-KP) were associated with increased mortality. Klebsiella pneumoniae was tested to susceptible to colistin by E-test and broth microdilution method in clinical laboratory. This study aimed to assess the efficacy of colistin versus tigecycline, carbapenem monotherapy and combination in the treatment of BSI-KP. METHODS: Electronic databases such as PubMed, Web of Science and Embase were searched. The last search was in November 24th, 2022, addressing the colistin, carbapenems and tigecycline monotherapy and combination treatments in patients with BSI-KP. The primary outcomes were 30-day or 28-day mortality. OR where available with 95% CI were pooled in random-effects meta-analysis. RESULTS: Following the outlined search strategy, a total of 658 articles were identified from the initial database searching. Six studies, 17 comparisons were included. However, they all were observational design, lacking high-quality randomized controlled trials (RCTs). Moderate or low-quality evidences suggested that colistin monotherapy was associated with an OR = 1.35 (95% CI = 0.62-2.97, P = 0.45, Tau2 = 0.00, I2 = 0%) compared with tigecycline monotherapy, OR = 0.81 (95% CI = 0.27-2.45, P = 0.71, Tau2 = 0.00, I2 = 0%) compared with carbapenem monotherapy. Compared with combination with tigecycline or carbapenem, Colistin monotherapy resulted in OR of 3.07 (95% CI = 1.34-7.04, P = 0.008, Tau2 = 0.00, I2 = 0%) and 0.98 (95%CI = 0.29-3.31, P = 0.98, Tau2 = 0.00, I2 = 0% ), respectively. CONCLUSIONS: Colistin, carbapenem and tigecycline monotherapy showed similar treatment effects in patients who suffered from BSI-KP. Compared with colistin monotherapy, colistin combined tigecycline therapy might play the synergism effects. TRIAL REGISTRATION: retrospectively registered.


Asunto(s)
Infecciones por Klebsiella , Sepsis , Humanos , Colistina/uso terapéutico , Antibacterianos/uso terapéutico , Tigeciclina/uso terapéutico , Klebsiella pneumoniae , Carbapenémicos/uso terapéutico , Sepsis/tratamiento farmacológico , Infecciones por Klebsiella/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
18.
Acta Pharmacol Sin ; 45(5): 1077-1092, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38267547

RESUMEN

Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Sepsis , Animales , Sepsis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacocinética , Masculino , Ratas , Administración Intravenosa
19.
Drug Deliv Transl Res ; 14(5): 1239-1252, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38227165

RESUMEN

Sepsis represents a complex clinical syndrome that results from a harmful host response to infection. The infections most associated with sepsis are pneumonia, intra-abdominal infection, and urinary tract infection. Tea tree oil (TTO) has shown high antibacterial activity; however, it exhibits low aqueous solubility and high volatility, which have motivated its nanoencapsulation. In this study, the performance of nanoemulsions (NE) and nanocapsules (NC) loaded with TTO was compared. These systems were prepared by spontaneous emulsification and nanoprecipitation methods, respectively. Poly-ε-caprolactone or Eudragit® RS100 were tested as polymers for NCs whereas Tween® 80 or Pluronic® F68 as surfactants in NE preparation. Pluronic® F68 and Eudragit® RS100 resulted in more homogeneous and stable nanoparticles. In accelerated stability studies at 4 and 25 °C, both colloidal suspensions (NC and NE) were kinetically stable. NCs showed to be more stable to photodegradation and less cytotoxic than NEs. After sepsis induction by the cecal ligation and puncture (CLP) model, both NE and NC reduced neutrophil infiltration into peritoneal lavage (PL) and kidneys. Moreover, the systems increased group thiols in the kidney and lung tissue and reduced bacterial growth in PL. Taken together, both systems showed to be effective against injury induced by sepsis; however, NCs should be prioritized due to advantages in terms of cytotoxicity and physicochemical stability.


Asunto(s)
Melaleuca , Nanocápsulas , Ácidos Polimetacrílicos , Sepsis , Aceite de Árbol de Té , Aceite de Árbol de Té/farmacología , Poloxámero , Sepsis/tratamiento farmacológico
20.
Phytomedicine ; 124: 155307, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181529

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE), a common neurological complication from sepsis, is widespread among patients in intensive care unit and is linked to substantial morbidity and mortality rates, thus posing a substantial menace to human health. Due to the intricate nature of SAE's pathogenesis, there remains a dearth of efficacious therapeutic protocols, encompassing pharmaceutical agents and treatment modalities, up until the present time. Palmatine exhibits distinctive benefits in the regulation of inflammation for the improvement of sepsis. Nevertheless, the precise functions of palmatine in treating SAE and its underlying mechanism have yet to be elucidated. PURPOSE: This study aimed to evaluate efficiency of palmatine in SAE mice and its underlying mechanisms. STUDY DESIGN AND METHODS: Behavioral experiments, percent survival rate analysis, histological analysis, immunofluorescence staining, ELISA analysis, were performed to evaluate the efficiency of palmatine in SAE mice. Quantibody® mouse inflammation array glass chip was performed to observe the effects of palmatine on inflammation storm in SAE mice. Real-time quantitative and western blotting analyzes were employed to examine the expression of relevant targets in the Notch1/nuclear factor-kappa B (NF-κB) pathway. Finally, brain tissues metabolomics-based analyzes were performed to detect the differentially expressed metabolites and metabolic pathways. The fecal samples were subjected to microbial 16S rRNA analysis and untargeted metabolomics analysis in order to identify the specific flora and metabolites associated with SAE, thereby further investigating the mechanism of palmatine in SAE mice. RESULTS: Our results showed that palmatine significantly improved nerve function, reduced cell apoptosis in brain tissue, and decreased inflammatory cytokine levels in SAE induced-LPS mice. Meanwhile, our results demonstrate the potential of palmatine in modulating key components of the Notch1/NF-κB pathway, enhancing the expression of tight junction proteins, improving intestinal permeability, promoting the growth of beneficial bacteria (such as Lachnospiraceae_NK4A136_group), inhibiting the proliferation of harmful bacteria (such as Escherichia-Shigella), and mitigating metabolic disorders. Ultimately, these observed effects contribute to the therapeutic efficacy of palmatine in treating SAE. CONCLUSION: The findings of our study have provided confirmation regarding the efficacy of palmatine in the treatment of SAE, thereby establishing a solid foundation for further exploration into SAE therapy and the advancement and investigation of palmatine.


Asunto(s)
Alcaloides de Berberina , Encefalopatía Asociada a la Sepsis , Sepsis , Humanos , Animales , Ratones , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Lipopolisacáridos , Eje Cerebro-Intestino , FN-kappa B , ARN Ribosómico 16S , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA