Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4791, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413638

RESUMEN

Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.


Asunto(s)
Artemisia , Artemisininas , Sesquiterpenos , Artemisia/química , Bioprospección , Artemisininas/metabolismo , Sesquiterpenos/metabolismo
2.
Planta ; 259(3): 58, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308700

RESUMEN

MAIN CONCLUSION: The study demonstrated that Artemisia pallens roots can be a source of terpene-rich essential oil and root-specific ApTPS1 forms germacrene A contributing to major root volatiles. Davana (Artemisia pallens Bess) is a valuable aromatic herb within the Asteraceae family, highly prized for its essential oil (EO) produced in the aerial parts. However, the root volatile composition, and the genes responsible for root volatiles have remained unexplored until now. Here, we show that A. pallens roots possess distinct oil bodies and yields ~ 0.05% of EO, which is primarily composed of sesquiterpenes ß-elemene, neryl isovalerate, ß-selinene, and α-selinene, and trace amounts of monoterpenes ß-myrcene, D-limonene. This shows that, besides aerial parts, roots of davana can also be a source of unique EO. Moreover, we functionally characterized a terpene synthase (ApTPS1) that exhibited high in silico expression in the root transcriptome. The recombinant ApTPS1 showed the formation of ß-elemene and germacrene A with E,E-farnesyl diphosphate (FPP) as a substrate. Detailed analysis of assay products revealed that ß-elemene was the thermal rearrangement product of germacrene A. The functional expression of ApTPS1 in Saccharomyces cerevisiae confirmed the in vivo germacrene A synthase activity of ApTPS1. At the transcript level, ApTPS1 displayed predominant expression in roots, with significantly lower level of expression in other tissues. This expression pattern of ApTPS1 positively correlated with the tissue-specific accumulation level of germacrene A. Overall, these findings provide fundamental insights into the EO profile of davana roots, and the contribution of ApTPS1 in the formation of a major root volatile.


Asunto(s)
Artemisia , Aceites Volátiles , Sesquiterpenos de Germacrano , Sesquiterpenos , Sesquiterpenos/metabolismo , Terpenos , Aceites Volátiles/química , Saccharomyces cerevisiae/metabolismo , Artemisia/genética , Artemisia/metabolismo
3.
New Phytol ; 241(2): 779-792, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933426

RESUMEN

(+)-Nootkatone is a natural sesquiterpene ketone widely used in food, cosmetics, pharmaceuticals, and agriculture. It is also regarded as one of the most valuable terpenes used commercially. However, plants contain trace amounts of (+)-nootkatone, and extraction from plants is insufficient to meet market demand. Alpinia oxyphylla is a well-known medicinal plant in China, and (+)-nootkatone is one of the main components within the fruits. By transcriptome mining and functional screening using a precursor-providing yeast chassis, the complete (+)-nootkatone biosynthetic pathway in Alpinia oxyphylla was identified. A (+)-valencene synthase (AoVS) was identified as a novel monocot-derived valencene synthase; three (+)-valencene oxidases AoCYP6 (CYP71BB2), AoCYP9 (CYP71CX8), and AoCYP18 (CYP701A170) were identified by constructing a valencene-providing yeast strain. With further characterisation of a cytochrome P450 reductase (AoCPR1) and three dehydrogenases (AoSDR1/2/3), we successfully reconstructed the (+)-nootkatone biosynthetic pathway in Saccharomyces cerevisiae, representing a basis for its biotechnological production. Identifying the biosynthetic pathway of (+)-nootkatone in A. oxyphylla unravelled the molecular mechanism underlying its formation in planta and also supported the bioengineering production of (+)-nootkatone. The highly efficient yeast chassis screening method could be used to elucidate the complete biosynthetic pathway of other valuable plant natural products in future.


Asunto(s)
Alpinia , Plantas Medicinales , Sesquiterpenos , Alpinia/metabolismo , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Plantas Medicinales/metabolismo
4.
J Agric Food Chem ; 71(49): 19888-19899, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38048088

RESUMEN

Oolong tea has gained great popularity in China due to its pleasant floral and fruity aromas. Although numerous studies have investigated the aroma differences across various tea cultivars, the genetic mechanism is unclear. This study performed multiomics analysis of three varieties suitable for oolong tea and three others with different processing suitability. Our analysis revealed that oolong tea varieties contained higher levels of cadinane sesquiterpenoids. PanTFBS was developed to identify variants of transcription factor binding sites (TFBSs). We found that the CsDCS gene had two TFBS variants in the promoter sequence and a single nucleotide polymorphism (SNP) in the coding sequence. Integrating data on genetic variations, gene expression, and protein-binding sites indicated that CsDCS might be a pivotal gene involved in the biosynthesis of cadinane sesquiterpenoids. These findings advance our understanding of the genetic factors involved in the aroma formation of oolong tea and offer insights into the enhancement of tea aroma.


Asunto(s)
Camellia sinensis , Sesquiterpenos , Compuestos Orgánicos Volátiles , Camellia sinensis/genética , Camellia sinensis/química , Multiómica , Hojas de la Planta/química , Compuestos Orgánicos Volátiles/metabolismo , Sesquiterpenos Policíclicos/análisis , Sesquiterpenos Policíclicos/metabolismo , Sesquiterpenos/metabolismo , Té/química
5.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139198

RESUMEN

ß-Farnesene is an advanced molecule with promising applications in agriculture, the cosmetics industry, pharmaceuticals, and bioenergy. To supplement the shortcomings of rational design in the development of high-producing ß-farnesene strains, a Metabolic Pathway Design-Fermentation Test-Metabolomic Analysis-Target Mining experimental cycle was designed. In this study, by over-adding 20 different amino acids/nucleobases to induce fluctuations in the production of ß-farnesene, the changes in intracellular metabolites in the ß-farnesene titer-increased group were analyzed using non-targeted metabolomics. Differential metabolites that were detected in each experimental group were selected, and their metabolic pathways were located. Based on these differential metabolites, targeted strain gene editing and culture medium optimization were performed. The overexpression of the coenzyme A synthesis-related gene pantothenate kinase (PanK) and the addition of four mixed water-soluble vitamins in the culture medium increased the ß-farnesene titer in the shake flask to 1054.8 mg/L, a 48.5% increase from the initial strain. In the subsequent fed-batch fermentation, the ß-farnesene titer further reached 24.6 g/L. This work demonstrates the tremendous application value of metabolomics analysis for the development of industrial recombinant strains and the optimization of fermentation conditions.


Asunto(s)
Sesquiterpenos , Yarrowia , Yarrowia/genética , Fermentación , Sesquiterpenos/metabolismo , Redes y Vías Metabólicas , Ingeniería Metabólica
6.
Biotechnol Bioeng ; 120(12): 3612-3621, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37661795

RESUMEN

Beta-elemene, a class of sesquiterpene derived from the Chinese medicinal herb Curcuma wenyujin, is widely used in clinical medicine due to its broad-spectrum antitumor activity. However, the unsustainable plant extraction prompted the search for environmentally friendly strategies for ß-elemene production. In this study, we designed a Yarrowia lipolytica cell factory that can continuously produce germacrene A, which is further converted into ß-elemene with 100% yield through a Cope rearrangement reaction by shifting the temperature to 250°C. First, the productivity of four plant-derived germacrene A synthases was evaluated. After that, the metabolic flux of the precursor to germacrene A was maximized by optimizing the endogenous mevalonate pathway, inhibiting the competing squalene pathway, and expressing germacrene A synthase gene in multiple copies. Finally, the most promising strain achieved the highest ß-elemene titer reported to date with 5.08 g/L. This sustainable and green method has the potential for industrial ß-elemene production.


Asunto(s)
Sesquiterpenos , Yarrowia , Extractos Vegetales , Sesquiterpenos/metabolismo , Sesquiterpenos de Germacrano/metabolismo , Yarrowia/metabolismo , Ingeniería Metabólica
7.
Int J Biol Macromol ; 253(Pt 4): 127044, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742891

RESUMEN

Atractylodes lancea (Thunb.) is a perennial medicinal herb, with its dry rhizomes are rich in various sesquiterpenoids and polyacetylenes components (including atractylodin, atractylon and ß-eudesmol). However, the contents of these compounds are various and germplasms specific, and the mechanisms of biosynthesis in A. lancea are still unknown. In this study, we identified the differentially expressed candidate genes and metabolites involved in the biosynthesis of sesquiterpenoids and polyacetylenes, and speculated the anabolic pathways of these pharmaceutical components by transcriptome and metabolomic analysis. In the sesquiterpenoids biosynthesis, a total of 28 differentially expressed genes (DEGs) and 6 differentially expressed metabolites (DEMs) were identified. The beta-Selinene is likely to play a role in the synthesis of atractylon and ß-eudesmol. Additionally, the polyacetylenes biosynthesis showed the presence of 3 DEGs and 4 DEMs. Notably, some fatty acid desaturase (FAB2 and FAD2) significantly down-regulated in polyacetylenes biosynthesis. The gamma-Linolenic acid is likely involved in the biosynthesis of polyacetylenes and thus further synthesis of atractylodin. Overall, these studies have investigated the biosynthetic pathways of atractylodin, atractylon and ß-eudesmol in A. lancea for the first time, and present potential new anchor points for further exploration of sesquiterpenoids and polyacetylenes compound biosynthesis pathways in A. lancea.


Asunto(s)
Atractylodes , Sesquiterpenos , Atractylodes/genética , Atractylodes/metabolismo , Polímero Poliacetilénico/metabolismo , Transcriptoma , Sesquiterpenos/metabolismo , Metaboloma
8.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2316-2324, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282860

RESUMEN

Patchoulol is an important sesquiterpenoid in the volatile oil of Pogostemon cablin, and is also considered to be the main contributing component to the pharmacological efficacy and fragrance of P. cablin oil, which has antibacterial, antitumor, antioxidant, and other biological activities. Currently, patchoulol and its essential oil blends are in high demand worldwide, but the traditional plant extraction method has many problems such as wasting land and polluting the environment. Therefore, there is an urgent need for a new method to produce patchoulol efficiently and at low cost. To broaden the production method of patchouli and achieve the heterologous production of patchoulol in Saccharomyces cerevisiae, the patchoulol synthase(PS) gene from P. cablin was codon optimized and placed under the inducible strong promoter GAL1 to transfer into the yeast platform strain YTT-T5, thereby obtaining strain PS00 with the production of(4.0±0.3) mg·L~(-1) patchoulol. To improve the conversion rate, this study used protein fusion method to fuse SmFPS gene from Salvia miltiorrhiza with PS gene, leading to increase the yield of patchoulol to(100.9±7.4) mg·L~(-1) by 25-folds. By further optimizing the copy number of the fusion gene, the yield of patchoulol was increased by 90% to(191.1±32.7) mg·L~(-1). By optimizing the fermentation process, the strain was able to achieve a patchouli yield of 2.1 g·L~(-1) in a high-density fermentation system, which was the highest yield so far. This study provides an important basis for the green production of patchoulol.


Asunto(s)
Aceites Volátiles , Pogostemon , Sesquiterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Aceites Volátiles/metabolismo
9.
Phytochemistry ; 211: 113681, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37080413

RESUMEN

The sesquiterpene ß-bisabolene possessing R and S configurations is commonly found in plant essential oils with antimicrobial and antioxidant activities. Here, we report the cloning and functional characterization of a (R)-ß-bisabolene synthase gene (CcTPS2) from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. The biochemical function of CcTPS2 catalyzing the cyclization of farnesyl diphosphate to form a single product (R)-ß-bisabolene was characterized through an engineered Escherichia coli producing diverse polyprenyl diphosphate precursors and in vitro enzyme assay, indicating that CcTPS2 was a high-fidelity (R)-ß-bisabolene synthase. The production of (R)-ß-bisabolene in an engineered E. coli strain harboring the exogenous mevalonate pathway, farnesyl diphosphate synthase and CcTPS1 genes was 17 mg/L under shaking flask conditions. Ultimately, 120 mg of purified (R)-ß-bisabolene was obtained from the engineered E. coli, and its structure was elucidated by detailed spectroscopic analyses (including 1D and 2D NMR, and specific rotation). Four chimeric enzymes were constructed through domain swapping, which altered the product outcome, indicating the region important for substrate and product specificity. In addition, (R)-ß-bisabolene exhibited anti-adipogenic activity in the model organism Caenorhabditis elegans and antibacterial activity selectively against Gram-positive bacteria.


Asunto(s)
Transferasas Alquil y Aril , Lamiaceae , Plantas Medicinales , Sesquiterpenos , Plantas Medicinales/metabolismo , Escherichia coli/genética , Sesquiterpenos/farmacología , Sesquiterpenos/metabolismo , Antibacterianos/farmacología , Lamiaceae/química
10.
Fitoterapia ; 167: 105496, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990291

RESUMEN

Geophila repens (L.) I.M. Johnst (Rubiaceae) is a traditional medicinal plant used in Sri Lanka for the treatment of bacterial infections. Due to its rich endophytic fungi content, it was postulated that endophytically-produced specialized metabolites may be responsible for its purported antibacterial effects. To test this hypothesis, eight pure endophytic fungal cultures were isolated from G. repens then extracted and screened for antibacterial activity in a disc diffusion assay against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. Large scale culturing, extraction, and purification of the most active fungal extract, obtained from Xylaria feejeensis, led to the isolation of 6',7'-didehydrointegric acid (1), 13-carboxyintegric acid (2), and four known compounds including integric acid (3). Compound 3 was isolated as the key antibacterial component (MIC = 16 µg/mL against Bacillus subtilis, 64 µg/mL against Methicillin-Resistant S. aureus). Compound 3 and its analogues were devoid of hemolytic activity up to the highest tested concentration of 45 µg/mL. This study demonstrates that specialized metabolites produced by endophytic fungi may contribute to the biological activity of some medicinal plants. Endophytic fungi should be evaluated as a potential source of antibiotics, especially from unexplored medicinal plants traditionally used for the treatment of bacterial infections.


Asunto(s)
Ascomicetos , Staphylococcus aureus Resistente a Meticilina , Plantas Medicinales , Rubiaceae , Sesquiterpenos , Plantas Medicinales/microbiología , Sesquiterpenos Policíclicos , Estructura Molecular , Antibacterianos/farmacología , Sesquiterpenos/metabolismo , Pruebas de Sensibilidad Microbiana , Hongos , Endófitos
12.
Int J Biol Macromol ; 225: 1543-1554, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436603

RESUMEN

Atractylodes lancea (Thunb.) DC. is an important medicinal plant mainly distributed in China. A. lancea is rich in volatile oils and has a significant effect on various diseases, including coronavirus disease 2019 (COVID-19). Based on the signature constituents of volatile oils, A. lancea is divided into two chemotypes: the Dabieshan and Maoshan chemotype. Gas chromatography-mass spectrometry (GC-MS) results revealed that the hinesol and ß-eudesmol contents in the Dabieshan chemotype were higher than those in the Maoshan chemotype. Next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing technologies were combined to investigate the molecular mechanisms of sesquiterpenoid biosynthesis in A. lancea. A total of 42 differentially expressed genes (DEGs) for terpenoid biosynthesis were identified in the two chemotype groups, and nine full-length terpene synthase (TPS) genes were identified. Subcellular localization revealed that AlTPS1 and AlTPS2 proteins were localized in the nucleus and endoplasmic reticulum. They use FPP as a substrate to generate sesquiterpenoids. AlTPS1 catalyzes biosynthesis of elemol while AlTPS2 is observed to perform ß-farnesene synthase activity. This study provides information for understanding the differences in the accumulation of terpenoids in two chemotypes of A. lancea and lays a foundation for further elucidation of the molecular mechanism of sesquiterpenoid biosynthesis.


Asunto(s)
Atractylodes , COVID-19 , Aceites Volátiles , Sesquiterpenos , Atractylodes/química , Sesquiterpenos/metabolismo , Aceites Volátiles/química , Perfilación de la Expresión Génica
13.
Plant Mol Biol ; 111(1-2): 153-166, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36255594

RESUMEN

KEY MESSAGE: A highly specialized function for individual LTPs for different products from the same terpenoid biosynthesis pathway is described and the function of an LTP GPI anchor is studied. Sequiterpenes produced in glandular trichomes of the medicinal plant Tanacetum parthenium (feverfew) accumulate in the subcuticular extracellular space. Transport of these compounds over the plasma membrane is presumably by specialized membrane transporters, but it is still not clear how these hydrophobic compounds are subsequently transported over the hydrophilic cell wall. Here we identified eight so-called non-specific Lipid transfer proteins (nsLTPs) genes that are expressed in feverfew trichomes. A putative function of these eight nsLTPs in transport of the lipophilic sesquiterpene lactones produced in feverfew trichomes, was tested in an in-planta transport assay using transient expression in Nicotiana benthamiana. Of eight feverfew nsLTP candidate genes analyzed, two (TpLTP1 and TpLTP2) can specifically improve extracellular accumulation of the sesquiterpene costunolide, while one nsLTP (TpLTP3) shows high specificity towards export of parthenolide. The specificity of the nsLTPs was also tested in an assay that test for the exclusion capacity of the nsLTP for influx of extracellular substrates. In such assay, TpLTP3 was identified as most effective in blocking influx of both costunolide and parthenolide, when these substrates are infiltrated into the apoplast. The TpLTP3 is special in having a GPI-anchor domain, which is essential for the export activity of TpLTP3. However, addition of the TpLTP3 GPI-anchor domain to TpLTP1 resulted in loss of TpLTP1 export activity. These novel export and exclusion assays thus provide new means to test functionality of plant nsLTPs.


Asunto(s)
Sesquiterpenos , Tanacetum parthenium , Tanacetum parthenium/química , Tanacetum parthenium/genética , Tanacetum parthenium/metabolismo , Sesquiterpenos/metabolismo , Lípidos
14.
Plant Sci ; 326: 111501, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36257410

RESUMEN

α-Farnesene accumulated in tea plants following infestations by most insects, and mechanical wounding is the common factor. However, the specific mechanism underlying the wounding-regulated accumulation of α-farnesene in tea plants remains unclear. In this study, we observed that histone deacetylase inhibitor treatment induced the accumulation of α-farnesene. The histone deacetylase CsHDA6 interacted directly with CsMYC2, which was an important transcription factor in the jasmonic acid (JA) pathway, and co-regulated the expression of the key α-farnesene synthesis gene CsAFS. Wounding caused by insect infestation affected CsHDA6 production at the transcript and protein levels, while also inhibited the binding of CsHDA6 to the CsAFS promoter. The resulting increased acetylation of histones H3/H4 in CsAFS enhanced the expression of CsAFS and the accumulation of α-farnesene. In conclusion, our study demonstrated the effect of histone acetylation on the production of tea plant HIPVs and revealed the importance of the CsHDA6-CsMYC2 transcriptional regulatory module.


Asunto(s)
Camellia sinensis , Sesquiterpenos , Animales , Camellia sinensis/genética , Camellia sinensis/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Sesquiterpenos/metabolismo , Insectos
15.
Nat Prod Res ; 37(5): 823-828, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35724377

RESUMEN

Four sesquiterpenoids were isolated from an ethyl acetate-soluble fraction of A. princeps ethanolic extract: seco-tanapartholide B (5-epi-seco-tanapartholide A) (1), 4-epi-seco-tanapartholide A (2), 11,13-dehydrodesacetylmatricarin (3) and desacetylmatricarin (4). Compounds 1 - 3 dose-dependently inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-activated macrophages. These compounds also decreased mRNA and protein expression levels of inducible NO synthase and cyclooxygenase-2 as well as mRNA levels of pro-inflammatory cytokines (interleukin-1ß and tumour necrosis factor-α) in LPS-stimulated RAW 264.7 macrophages. Moreover, compound 3 effectively enhanced the expression of heme oxygenase-1 (HO-1) in macrophages in the presence or absence of LPS. Additionally, the exocyclic methylene of α-methylene-γ-lactone moiety of compound 3 was found to be essential for the activation of the NF erythroid 2-related factor 2 (Nrf2)/HO-1 pathway. Here, we firstly report the isolation of compounds 3 and 4 from A. princeps and the anti-inflammatory activity of compound 3 by up-regulation of Nrf2/HO-1 pathway.


Asunto(s)
Artemisia , Sesquiterpenos , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Artemisia/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Sesquiterpenos/farmacología , Sesquiterpenos/metabolismo , ARN Mensajero/genética , Células RAW 264.7 , Óxido Nítrico/metabolismo
16.
BMC Plant Biol ; 22(1): 464, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36171555

RESUMEN

BACKGROUND: Agarwood is a valuable Chinese medicinal herb and spice that is produced from wounded Aquilaria spp., is widely used in Southeast Asia and is highly traded on the market. The lack of highly responsive Aquilaria lines has seriously restricted agarwood yield and the development of its industry. In this article, a comparative transcriptome analysis was carried out between ordinary A. sinensis and Chi-Nan germplasm, which is a kind of A. sinensis tree with high agarwood-producing capacity in response to wounding stress, to elucidate the molecular mechanism underlying wounding stress in different A. sinensis germplasm resources and to help identify and breed high agarwood-producing strains. RESULTS: A total of 2427 and 1153 differentially expressed genes (DEGs) were detected in wounded ordinary A. sinensis and Chi-Nan germplasm compared with the control groups, respectively. KEGG enrichment analysis revealed that genes participating in starch metabolism, secondary metabolism and plant hormone signal transduction might play major roles in the early regulation of wound stress. 86 DEGs related to oxygen metabolism, JA pathway and sesquiterpene biosynthesis were identified. The majority of the expression of these genes was differentially induced between two germplasm resources under wounding stress. 13 candidate genes related to defence and sesquiterpene biosynthesis were obtained by WGCNA. Furthermore, the expression pattern of genes were verified by qRT-PCR. The candidate genes expression levels were higher in Chi-Nan germplasm than that in ordinary A. sinensis during early stage of wounding stress, which may play important roles in regulating high agarwood-producing capacity in Chi-Nan germplasm. CONCLUSIONS: Compared with A. sinensis, Chi-Nan germplasm invoked different biological processes in response to wounding stress. The genes related to defence signals and sesquiterepene biosynthesis pathway were induced to expression differentially between two germplasm resources. A total of 13 candidate genes were identified, which may correlate with high agarwood-producting capacity in Chi-Nan germplasm during the early stage of wounding stress. These genes will contribute to the development of functional molecular markers and the rapid breeding highly of responsive Aquilaria lines.


Asunto(s)
Sesquiterpenos , Thymelaeaceae , Perfilación de la Expresión Génica , Oxígeno/metabolismo , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/metabolismo , Sesquiterpenos/metabolismo , Almidón/metabolismo , Thymelaeaceae/genética , Thymelaeaceae/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4895-4907, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164899

RESUMEN

This study compared the transcriptome of Atractylodes lancea rhizome at different development stages and explored genes encoding the key enzymes of the sesquiterpenoid biosynthesis pathway. Specifically, Illumina NovaSeq 6000 was employed for sequencing the cDNA libraries of A. lancea rhizome samples at the growth stage(SZ), flowering stage(KH), and harvesting stage(CS), respectively. Finally, a total of 388 201 748 clean reads were obtained, and 16 925, 8 616, and 13 702 differentially expressed genes(DEGs) were identified between SZ and KH, KH and CS, and SZ and CS, separately. Among them, 53 genes were involved in the sesquiterpenoid biosynthesis pathways: 9 encoding 6 enzymes of the mevalonic acid(MVA) pathway, 15 encoding 7 enzymes of the 2-C-methyl-D-erythritol-4-phosphate(MEP) pathway, and 29 of sesquiterpenoid and triterpenoid biosynthesis pathway. Weighted gene co-expression network analysis(WGCNA) yielded 12 genes related to sesquiterpenoid biosynthesis for the SZ, 1 gene for the KH, and 1 gene for CS, and several candidate genes for sesquiterpenoid biosynthesis were discovered based on the co-expression network. This study laid a solid foundation for further research on the sesquiterpenoid biosynthesis pathway, analysis of the regulation mechanism, and mechanism for the accumulation of sesquiterpenoids in A. lancea.


Asunto(s)
Atractylodes , Sesquiterpenos , Triterpenos , Atractylodes/genética , Ácido Mevalónico/metabolismo , Rizoma/genética , Sesquiterpenos/metabolismo , Transcriptoma , Triterpenos/metabolismo
18.
Molecules ; 27(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897918

RESUMEN

Zingiber zerumbet, also known as 'Lempoyang', possesses various phytomedicinal properties, such as anticancer, antimicrobial, anti-inflammatory, antiulcer, and antioxidant properties. Secondary metabolites possessing such properties i.e., zerumbone and α-humulene, are found dominantly in the plant rhizome. Synergistic effects of plant growth hormones and elicitors on in vitro α-humulene and zerumbone production, and biomass growth, in adventitious root culture (AdRC) of Z. zerumbet cultivated in a two-stage culture are reported. The culture was induced by supplementation of 1.0 mg/L NAA and 2.0 mg/L IBA (dark), and subsequently maintained in medium supplemented with 1 mg/L NAA and 3 mg/L BAP (16:08 light-dark cycle), yielded the production of zerumbone at 3440 ± 168 µg/g and α-humulene at 3759 ± 798 µg/g. Synergistic elicitation by 400 µM methyl jasmonate (MeJa) and 400 µM salicylic acid (SA) resulted in a 13-fold increase in zerumbone (43,000 ± 200 µg/g), while 400 µM MeJa and 600 µM SA produced a 4.3-fold increase in α-humulene (15,800 ± 5100 µg/g) compared to control.


Asunto(s)
Sesquiterpenos , Zingiberaceae , Sesquiterpenos Monocíclicos , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Salicílico/farmacología , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Zingiberaceae/metabolismo
19.
Biotechnol Lett ; 44(7): 857-865, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643816

RESUMEN

OBJECTIVE: To produce valerenic acid (VA) in Saccharomyces cerevisiae by engineering a heterologous synthetic pathway. RESULT: Valerena-4,7(11)-diene synthase (VDS) derived from Valeriana officinalis (valerian) was expressed in S. cerevisiae to generate valerena-4,7(11)-diene as the precursor of VA. By overexpressing the key genes of the mevalonate pathway ERG8, ERG12 and ERG19, and integrating 4 copies of MBP (maltose-binding protein)-VDS-ERG20 gene expression caskets into the genome, the production of valerena-4,7(11)-diene was improved to 75 mg/L. On this basis, the cytochrome P450 monooxygenase LsGAO2 derived from Lactuca sativa was expressed to oxidize valerena-4,7(11)-diene to produce VA, and the most effective VA production strain was used for fermentation. The yield of VA reached 2.8 mg/L in the flask and 6.8 mg/L in a 5-L bioreactor fed glucose. CONCLUSIONS: An S. cerevisiae strain was constructed and optimized to produce VA, but the valerena-4,7(11)-diene oxidation by LsGAO2 is still the rate-limiting step for VA synthesis that needs to be further optimized in future studies.


Asunto(s)
Indenos , Sesquiterpenos , Valeriana , Fermentación , Indenos/metabolismo , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Valeriana/genética , Valeriana/metabolismo
20.
Nat Commun ; 13(1): 2508, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523896

RESUMEN

Plant essential oils (PEOs) are widely used in cosmetic and nutraceutical industries. The component ratios of PEOs determine their qualities. Controlling the component ratios is challenging in construction of PEO biotechnological platforms. Here, we explore the catalytic reaction pathways of both product-promiscuous and product-specific santalene synthases (i.e., SaSSy and SanSyn) by multiscale simulations. F441 of SanSyn is found as a key residue restricting the conformational dynamics of the intermediates, and thereby the direct deprotonation by the general base T298 dominantly produce α-santalene. The subsequent mutagenesis of this plastic residue leads to generation of a mutant enzyme SanSynF441V which can produce both α- and ß-santalenes. Through metabolic engineering efforts, the santalene/santalol titer reaches 704.2 mg/L and the component ratio well matches the ISO 3518:2002 standard. This study represents a paradigm of constructing biotechnological platforms of PEOs with desirable component ratios by the combination of metabolic and enzymatic engineering.


Asunto(s)
Sesquiterpenos , Ingeniería Metabólica , Aceites de Plantas/química , Sesquiterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA