Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arch Toxicol ; 96(3): 793-808, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34989853

RESUMEN

Sesquiterpene lactone helenalin is used as an antiphlogistic in European and Chinese folk medicine. The pharmacological activities of helenalin have been extensively investigated, yet insufficient information exists about its metabolic properties. The objectives of the present study were (1) to investigate the in vitro NADPH-dependent metabolism of helenalin (5 and 100 µM) using human and rat liver microsomes and liver cytosol, (2) to elucidate the role of human cytochrome P450 (CYP) enzymes in its oxidative metabolism, and (3) to study the inhibition of human CYPs by helenalin. Five oxidative metabolites were detected in NADPH-dependent human and rat liver microsomal incubations, while two reduced metabolites were detected only in NADPH-dependent human microsomal and cytosolic incubations. In human liver microsomes, the main oxidative metabolite was 14-hydroxyhelenalin, and in rat liver microsomes 9-hydroxyhelenalin. The overall oxidation of helenalin was several times more efficient in rat than in human liver microsomes. In humans, CYP3A4 and CYP3A5 followed by CYP2B6 were the main enzymes responsible for the hepatic metabolism of helenalin. The extrahepatic CYP2A13 oxidized helenalin most efficiently among CYP enzymes, possessing the Km value of 0.6 µM. Helenalin inhibited CYP3A4 (IC50 = 18.7 µM) and CYP3A5 (IC50 = 62.6 µM), and acted as a mechanism-based inhibitor of CYP2A13 (IC50 = 1.1 µM, KI = 6.7 µM, and kinact = 0.58 ln(%)/min). It may be concluded that the metabolism of helenalin differs between rats and humans, in the latter its oxidation is catalyzed by hepatic CYP2B6, CYP3A4, CYP3A5, and CYP3A7, and extrahepatic CYP2A13.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/metabolismo , Sesquiterpenos de Guayano/metabolismo , Animales , Inhibidores Enzimáticos del Citocromo P-450/administración & dosificación , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Masculino , NADP/metabolismo , Ratas , Ratas Wistar , Sesquiterpenos de Guayano/administración & dosificación , Sesquiterpenos de Guayano/farmacología , Especificidad de la Especie
2.
Mol Biol Rep ; 48(12): 8221-8225, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34655016

RESUMEN

Arglabin (l(R),10(S)-epoxy-5(S),5(S),7(S)-guaia-3(4),ll(13)-dien-6,12-olide), is a natural sesquiterpene γ-lactone which was first isolated from Artemisia glabella. The compound has been shown to possess anti-inflammatory activity through inhibition of the NLR Family pyrin domain-containing 3 (NLRP3) inflammasome and production of proinflammatory cytokines including interleukin (IL)-1ß and IL-18. A more hydrophilic derivative of the compound also exhibited antitumor activity in the breast, colon, ovarian, and lung cancer. Some other synthetic derivatives of the compound have also been synthesized with antitumor, cytotoxic, antibacterial, and antifungal activities. Since both NLRP3 inflammasome and cytokine storm are associated with the pathogenesis of COVID-19 and its lethality, compounds like arglabin might have therapeutic potential to attenuate the inflammasome-induced acute respiratory distress syndrome and/or the cytokine storm associated with COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Sesquiterpenos de Guayano/uso terapéutico , Antiinflamatorios/farmacología , Antivirales/farmacología , Artemisia , COVID-19/metabolismo , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Citocinas , Humanos , Inflamasomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pandemias , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , SARS-CoV-2/patogenicidad , Sesquiterpenos de Guayano/química , Sesquiterpenos de Guayano/metabolismo , Transducción de Señal/efectos de los fármacos
3.
J Ethnopharmacol ; 281: 114525, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34411657

RESUMEN

ETHNO-PHARMACOLOGICAL RELEVANCE: Parthenium hysterophorus L. is a noxious weed and a species of flowering plant in the Asteraceae family. It is regarded as the seventh most deadly weed in the world: harmful to both humans and livestock. It is widely known as Congress Grass or Feverfew. Despite its pitfalls, P. hysterophorus bestows medicinal effects. Although prolific in nature and difficult to control, many novel applications of this controversial herb have been discovered as an approach to manage the weed. AIM: The current review aims to compile all the ethnobotanical, phytochemistry, biological activities and utilities, clinical studies and toxicity data available on P. hysterophorus and its major chemical constituent parthenin. MATERIALS AND METHODS: Extensive literature surveyed Google search, Google scholar, Wiley online library, Elsevier, Springer, Science direct, American Chemical Society, Royal Society of Chemistry and Research Gate. RESULT: According to the study, P. hysterophorus is utilized as a traditional medicine throughout Central America and the Caribbean. It can be used to treat skin infections, dermatitis, amoebic dysentery, and as an analgesic in the treatment of muscular rheumatism. The extracts obtained from P. hysterophorus have anti-inflammatory, antioxidant, larvicidal, anti-microbial, insecticidal, hypoglycaemic and anti-cancer activity. CONCLUSION: The earlier investigations confirmed that P. hysterophorus has numerous traditional and biological applications. However, the scientific data are limited in clinical and toxicological studies. Therefore, further research is required on clinical and toxicological aspects to understand the complete potential and effects of P. hysterophorus.


Asunto(s)
Asteraceae , Extractos Vegetales , Animales , Asteraceae/metabolismo , Etnobotánica , Humanos , Fitoquímicos/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/toxicidad , Malezas , Plantas Medicinales , Sesquiterpenos de Guayano/metabolismo
4.
Phytochem Anal ; 23(1): 44-51, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21618308

RESUMEN

INTRODUCTION: Thapsia spp. (Apiaceae) are the major natural source of polyoxygenated guaianolide sesquiterpene lactones known as thapsigargins, which induce apoptosis in mammalian cells via a high affinity inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase. The mechanism of biosynthesis of thapsigargins has not been elucidated, and probable biochemical precursors such as hydrocarbon or oxygenated sesquiterpenes have not been identified in previous phytochemical analyses of essential oils from this genus. OBJECTIVE: To investigate the utility of solid phase micro-extraction (SPME), when compared with classical essential oil distillates, for identifying potential precursors of guaianolide sesquiterpene lactones from Thapsia garganica L. and Thapsia villosa L. type II. METHODOLOGY: A systematic description of the volatile components of roots, flowers, stems and fruits of T. villosa and of root, flower and fruits of T. garganica was constructed via GC-MS analyses of SPME-adsorbed compounds and of essential oils obtained through hydrodistillation of the same tissues. RESULTS: The sesquiterpenoids δ-cadinene, α- and δ-guaiene, elemol and guaiols were found to be major volatile constituents of the roots of T. garganica and T. villosa trapped using SPME. In contrast, these sesquiterpenoids were not detected or were at negligible levels in essential oils, where sesquiterpenoids are potentially converted to azulenes during hydrodistillation. CONCLUSION: The new data reported in this study demonstrates that SPME is a valuable tool for the identification of volatile sesquiterpenes when compared with analysis of essential oils, and we postulate that guaiene is the likely precursor of guaianolide sesquiterpenes from Thapsia.


Asunto(s)
Aceites Volátiles/aislamiento & purificación , Sesquiterpenos de Guayano/biosíntesis , Microextracción en Fase Sólida/métodos , Thapsia/química , Tapsigargina/aislamiento & purificación , Azulenos/metabolismo , Destilación , Flores/química , Frutas/química , Aceites Volátiles/análisis , Aceites Volátiles/química , Aceites de Plantas/análisis , Aceites de Plantas/química , Aceites de Plantas/aislamiento & purificación , Raíces de Plantas/química , Tallos de la Planta/química , Sesquiterpenos de Guayano/metabolismo , Thapsia/metabolismo , Tapsigargina/análisis , Tapsigargina/química
5.
Brain Res ; 1222: 214-21, 2008 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-18586227

RESUMEN

The present study was conducted in mice to validate a double blood infusion model of intracerebral hemorrhage (ICH) that does not use anticoagulant. We investigated the effect of intrastriatal infusion of blood on hematoma volume, neurologic function, brain edema and swelling, and markers of neuroinflammation and oxidative DNA damage. Anesthetized C57BL/6 adult male mice were infused in the left striatum with 4 microl of blood over 20 min at 0.2 microl /min; the needle was left in place for 7 min, and the remaining 6 microl of blood was then infused over 30 min. The injection needle was slowly withdrawn 20 min after the second injection. Sham-operated control mice received only needle insertion. The hematoma produced in this model was primarily restricted to the striatum, and the mice demonstrated severe neurologic deficits that appeared within 60 min and remained evident at 72 h. Brain water content and swelling were significantly increased and were associated with a marked increase in ICH-induced neutrophil infiltration, microglial/macrophage and astrocyte activation, cytochrome c release, and oxidative DNA damage. Other groups have mixed the anticoagulant heparin with the infused blood, an agent that could affect in vivo clot formation. We believe that this double blood infusion model that does not use anticoagulant improves upon the procedure and provides an easy and reproducible alternative for inducing ICH in mice; it should be useful for studying the pathophysiology of ICH and for testing potential pharmaceutical and surgical interventions.


Asunto(s)
Transfusión de Sangre Autóloga/métodos , Hemorragia Cerebral/terapia , Modelos Animales de Enfermedad , Animales , Edema Encefálico/etiología , Estudios de Casos y Controles , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/patología , Cuerpo Estriado/metabolismo , Citocromos c/metabolismo , Daño del ADN/fisiología , Lateralidad Funcional , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/etiología , Sesquiterpenos de Guayano/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA