Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Chembiochem ; 25(1): e202300590, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37908177

RESUMEN

Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.


Asunto(s)
Glicina , Sintasas Poliquetidas , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Polienos
2.
Chin J Nat Med ; 21(6): 454-458, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37407176

RESUMEN

Lysobacter harbors a plethora of cryptic biosynthetic gene clusters (BGCs), albeit only a limited number have been analyzed to date. In this study, we described the activation of a cryptic polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) gene cluster (lsh) in Lysobacter sp. DSM 3655 through promoter engineering and heterologous expression in Streptomyces sp. S001. As a result of this methodology, we were able to isolate two novel linear lipopeptides, lysohexaenetides A (1) and B (2), from the recombinant strain S001-lsh. Furthermore, we proposed the biosynthetic pathway for lysohexaenetides and identified LshA as another example of entirely iterative bacterial PKSs. This study highlights the potential of heterologous expression systems in uncovering cryptic biosynthetic pathways in Lysobacter genomes, particularly in the absence of genetic manipulation tools.


Asunto(s)
Lysobacter , Streptomyces , Lysobacter/genética , Lysobacter/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Lipopéptidos/genética , Lipopéptidos/metabolismo , Sintasas Poliquetidas/genética , Familia de Multigenes
3.
PLoS One ; 17(9): e0274956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36129957

RESUMEN

Xenorhabdus and Photorhabdus can produce a variety of secondary metabolites with broad spectrum bioactivity against microorganisms. We investigated the antibacterial activity of Xenorhabdus and Photorhabdus against 15 antibiotic-resistant bacteria strains. Photorhabdus extracts had strong inhibitory the growth of Methicillin-resistant Staphylococcus aureus (MRSA) by disk diffusion. The P. akhurstii s subsp. akhurstii (bNN168.5_TH) extract showed lower minimum inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The interaction between either P. akhurstii subsp. akhurstii (bNN141.3_TH) or P. akhurstii subsp. akhurstii (bNN168.5_TH) or P. hainanensis (bNN163.3_TH) extract in combination with oxacillin determined by checkerboard assay exhibited partially synergistic interaction with fractional inhibitory concentration index (FICI) of 0.53. Time-killing assay for P. akhurstii subsp. akhurstii (bNN168.5_TH) extract against S. aureus strain PB36 significantly decreased cell viability from 105 CFU/ml to 103 CFU/ml within 30 min (P < 0.001, t-test). Transmission electron microscopic investigation elucidated that the bNN168.5_TH extract caused treated S. aureus strain PB36 (MRSA) cell membrane damage. The biosynthetic gene clusters of the bNN168.5_TH contained non-ribosomal peptide synthetase cluster (NRPS), hybrid NRPS-type l polyketide synthase (PKS) and siderophore, which identified potentially interesting bioactive products: xenematide, luminmide, xenortide A-D, luminmycin A, putrebactin/avaroferrin and rhizomide A-C. This study demonstrates that bNN168.5_TH showed antibacterial activity by disrupting bacterial cytoplasmic membrane and the draft genome provided insights into the classes of bioactive products. This also provides a potential approach in developing a novel antibacterial agent.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Photorhabdus , Xenorhabdus , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Oxacilina/farmacología , Photorhabdus/metabolismo , Extractos Vegetales/farmacología , Sintasas Poliquetidas/genética , Sideróforos/metabolismo , Staphylococcus aureus/genética , Xenorhabdus/genética
4.
BMC Plant Biol ; 22(1): 165, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366814

RESUMEN

BACKGROUND: Sesame is a great reservoir of bioactive constituents and unique antioxidant components. It is widely used for its nutritional and medicinal value. The expanding demand for sesame seeds is putting pressure on sesame breeders to develop high-yielding varieties. A hybrid breeding strategy based on male sterility is one of the most effective ways to increase the crop yield. To date, little is known about the genes and mechanism underlying sesame male fertility. Therefore, studies are being conducted to identify and functionally characterize key candidate genes involved in sesame pollen development. Polyketide synthases (PKSs) are critical enzymes involved in the biosynthesis of sporopollenin, the primary component of pollen exine. Their in planta functions are being investigated for applications in crop breeding. RESULTS: In this study, we cloned the sesame POLYKETIDE SYNTHASE A (SiPKSA) and examined its function in male sterility. SiPKSA was specifically expressed in sesame flower buds, and its expression was significantly higher in sterile sesame anthers than in fertile anthers during the tetrad and microspore development stages. Furthermore, overexpression of SiPKSA in Arabidopsis caused male sterility in transgenic plants. Ultrastructural observation showed that the pollen grains of SiPKSA-overexpressing plants contained few cytoplasmic inclusions and exhibited an abnormal pollen wall structure, with a thicker exine layer compared to the wild type. In agreement with this, the expression of a set of sporopollenin biosynthesis-related genes and the contents of their fatty acids and phenolics were significantly altered in anthers of SiPKSA-overexpressing plants compared with wild type during anther development. CONCLUSION: These findings highlighted that overexpression of SiPKSA in Arabidopsis might cause male sterility through defective pollen wall formation. Moreover, they suggested that SiPKSA modulates vibrant pollen development via sporopollenin biosynthesis, and a defect in its regulation may induce male sterility. Therefore, genetic manipulation of SiPKSA might promote hybrid breeding in sesame and other crop species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sesamum , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Fitomejoramiento , Polen , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Sesamum/genética , Sesamum/metabolismo
5.
Microb Cell Fact ; 19(1): 73, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32197639

RESUMEN

BACKGROUND: Acridone alkaloids are heterocyclic compounds that exhibit a broad-range of pharmaceutical and chemotherapeutic activities, including anticancer, antiviral, anti-inflammatory, antimalarial, and antimicrobial effects. Certain plant species such as Citrus microcarpa, Ruta graveolens, and Toddaliopsis bremekampii synthesize acridone alkaloids from anthranilate and malonyl-CoA. RESULTS: We synthesized two acridones in Escherichia coli. Acridone synthase (ACS) and anthraniloyl-CoA ligase genes were transformed into E. coli, and the synthesis of acridone was examined. To increase the levels of endogenous anthranilate, we tested several constructs expressing proteins involved in the shikimate pathway and selected the best construct. To boost the supply of malonyl-CoA, genes coding for acetyl-coenzyme A carboxylase (ACC) from Photorhabdus luminescens were overexpressed in E. coli. For the synthesis of 1,3-dihydroxy-10-methylacridone, we utilized an N-methyltransferase gene (NMT) to supply N-methylanthranilate and a new N-methylanthraniloyl-CoA ligase. After selecting the best combination of genes, approximately 17.3 mg/L of 1,3-dihydroxy-9(10H)-acridone (DHA) and 26.0 mg/L of 1,3-dihydroxy-10-methylacridone (NMA) were synthesized. CONCLUSIONS: Two bioactive acridone derivatives were synthesized by expressing type III plant polyketide synthases and other genes in E. coli, which increased the supplement of substrates. This study showed that is possible to synthesize diverse polyketides in E. coli using plant polyketide synthases.


Asunto(s)
Acridonas/metabolismo , Escherichia coli , Aciltransferasas/genética , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Microorganismos Modificados Genéticamente/metabolismo , Photorhabdus/enzimología , Proteínas de Plantas/genética , Sintasas Poliquetidas/genética , Proteínas Recombinantes/genética
6.
J Gen Appl Microbiol ; 66(1): 24-31, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-31378748

RESUMEN

Endophytic microbes associated with medicinal plants are considered to be potential producers of various bioactive secondary metabolites. The present study investigated the distribution, antimicrobial activity and genetic features of endophytic actinomycetes isolated from the medicinal plant Cinnamomum cassia Presl collected in Hoa Binh province of northern Vietnam. Based on phenotypic characteristics, 111 actinomycetes were isolated from roots, stems and leaves of the host plants by using nine selective media. The isolated actinomycetes were mainly recovered from stems (n = 67; 60.4%), followed by roots (n = 29; 26.1%) and leaves (n = 15; 13.5%). The isolates were accordingly assigned into 5 color categories of aerial mycelium, of which gray is the most dominant (n = 42; 37.8%), followed by white (n = 33; 29.7%), yellow (n = 25; 22,5%), red (n = 8; 7.2%) and green (n = 3; 2.7%). Of the total endophytic actinomycetes tested, 38 strains (occupying 34.2%) showed antimicrobial activity against at least one of nine tested microbes and, among them, 26 actinomycetes (68.4%) revealed anthracycline-like antibiotics production. Analysis of 16S rRNA gene sequences deposited on GenBank (NCBI) of the antibiotic-producing actinomycetes identified 3 distinct genera, including Streptomyces, Microbacterium, and Nocardia, among which Streptomyces genus was the most dominant and represented 25 different species. Further genetic investigation of the antibiotic-producing actinomycetes found that 28 (73.7%) and 11 (28.9%) strains possessed genes encoding polyketide synthase (pks) and nonribosomal peptide synthetase (nrps), respectively. The findings in the present study highlighted endophytic actinomycetes from C. cassia Presl which possessed broad-spectrum bioactivities with the potential for applications in the agricultural and pharmaceutical sectors.


Asunto(s)
Actinobacteria/química , Actinobacteria/clasificación , Antibiosis , Cinnamomum aromaticum/microbiología , Actinobacteria/aislamiento & purificación , Endófitos/química , Endófitos/clasificación , Endófitos/aislamiento & purificación , Péptido Sintasas/genética , Filogenia , Plantas Medicinales/microbiología , Sintasas Poliquetidas/genética , ARN Ribosómico 16S/genética , Metabolismo Secundario , Análisis de Secuencia de ADN , Vietnam
7.
Science ; 366(6465): 606-612, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672892

RESUMEN

Microorganisms living inside plants can promote plant growth and health, but their genomic and functional diversity remain largely elusive. Here, metagenomics and network inference show that fungal infection of plant roots enriched for Chitinophagaceae and Flavobacteriaceae in the root endosphere and for chitinase genes and various unknown biosynthetic gene clusters encoding the production of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). After strain-level genome reconstruction, a consortium of Chitinophaga and Flavobacterium was designed that consistently suppressed fungal root disease. Site-directed mutagenesis then revealed that a previously unidentified NRPS-PKS gene cluster from Flavobacterium was essential for disease suppression by the endophytic consortium. Our results highlight that endophytic root microbiomes harbor a wealth of as yet unknown functional traits that, in concert, can protect the plant inside out.


Asunto(s)
Beta vulgaris/microbiología , Endófitos/fisiología , Microbiota , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Rhizoctonia/patogenicidad , Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Bacteroidetes/fisiología , Biodiversidad , Quitinasas/genética , Resistencia a la Enfermedad , Flavobacterium/fisiología , Genes Bacterianos , Genoma Bacteriano , Metagenoma , Mutagénesis Sitio-Dirigida , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Microbiología del Suelo
8.
Folia Microbiol (Praha) ; 64(4): 481-496, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30680589

RESUMEN

The most diverse and versatile endophytic actinobacteria are relatively unexplored potential sources of bioactive metabolites useful for different medical, agricultural, and other commercial applications. Their diversity in symbiotic association with traditionally utilized medicinal plants of northeast India is scantly available. The present investigation assessed the genetic diversity of endophytic actinobacteria (n = 120) distributed around the root, stem, and leaf tissues of six selected medicinal plants (Emblica officinalis, Terminalia chebula, T. arjuna, Murraya koenigii, Rauwolfia serpentina, and Azadirachta indica) from three different protected areas of evergreen forest-the Gibbon Wildlife Sanctuary (GWS), the Kaziranga National Park (KNP), and the North East Ecological Park (NEEP) of Assam, India. The samples were collected in two seasons (summer and winter). The overall phylogenetic analysis showed significant genetic diversity with 18 distinct genera belonging to 12 families. Overall, the occurrence of Streptomyces genus was predominant across all three sampling sites (76.66%), in both the sampling season (summer and winter). Shannon's and Simpson's diversity estimates showed their presence at A. indica (1.496, 0.778), R. serpentina (1.470, 0.858), and E. officinalis (0.975, 0.353). Among the site sampled, GWS had the most diverse community of actinobacteria (Shannon = 0.86 and Simpson = 0.557). The isolates were antagonistically more active against the investigated plant pathogenic bacteria than fungal pathogens. Further analysis revealed the prevalence of polyketide synthase genes (PKS) type II (84%) and PKS type I (16%) in the genome of the antimicrobial isolates. The overall findings confirmed the presence of biosynthetically active diverse actinobacterial members in the selected medicinal plants which offer potential opportunities towards the exploration of biologically active compounds.


Asunto(s)
Actinobacteria/aislamiento & purificación , Antibiosis , Proteínas Bacterianas/genética , Endófitos/aislamiento & purificación , Filogenia , Plantas Medicinales/microbiología , Sintasas Poliquetidas/genética , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/fisiología , Bacterias , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Endófitos/clasificación , Endófitos/genética , Endófitos/fisiología , Hongos/fisiología , India , Sintasas Poliquetidas/metabolismo , Estaciones del Año , Simbiosis
9.
Pol J Microbiol ; 67(4): 441-454, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30550230

RESUMEN

Paeonia ostii is known for its excellent medicinal values as Chinese traditional plant. To date, the diversity of culturable endophytes associated with P. ostii is in its initial phase of exploration. In this study, 56 endophytic bacteria and 51 endophytic fungi were isolated from P. ostii roots in China. Subsequent characterization of 56 bacterial strains by 16S rDNA gene sequence analysis revealed that nine families and 13 different genera were represented. All the fungal strains were classed into six families and 12 genera based on ITS gene sequence. The biosynthetic potential of all the endophytes was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. The PCR screens were successful in targeting thirteen bacterial PKS, five bacterial NRPS, ten fungal PKS and nine fungal NRPS gene fragments. Bioinformatic analysis of these detected endophyte gene fragments facilitated inference of the potential bioactivity of endophyte bioactive products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. These results suggest that endophytes isolated from P. ostii had abundant population diversity and biosynthetic potential, which further proved that endophytes are valuable reservoirs of novel bioactive compounds.Paeonia ostii is known for its excellent medicinal values as Chinese traditional plant. To date, the diversity of culturable endophytes associated with P. ostii is in its initial phase of exploration. In this study, 56 endophytic bacteria and 51 endophytic fungi were isolated from P. ostii roots in China. Subsequent characterization of 56 bacterial strains by 16S rDNA gene sequence analysis revealed that nine families and 13 different genera were represented. All the fungal strains were classed into six families and 12 genera based on ITS gene sequence. The biosynthetic potential of all the endophytes was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. The PCR screens were successful in targeting thirteen bacterial PKS, five bacterial NRPS, ten fungal PKS and nine fungal NRPS gene fragments. Bioinformatic analysis of these detected endophyte gene fragments facilitated inference of the potential bioactivity of endophyte bioactive products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. These results suggest that endophytes isolated from P. ostii had abundant population diversity and biosynthetic potential, which further proved that endophytes are valuable reservoirs of novel bioactive compounds.


Asunto(s)
Bacterias/clasificación , Endófitos/clasificación , Hongos/clasificación , Variación Genética , Paeonia/microbiología , Bacterias/aislamiento & purificación , China , ADN Bacteriano/genética , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Endófitos/metabolismo , Hongos/aislamiento & purificación , Péptido Sintasas/genética , Filogenia , Raíces de Plantas/microbiología , Plantas Medicinales/microbiología , Sintasas Poliquetidas/genética , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
Plant Physiol ; 178(1): 283-294, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30018171

RESUMEN

Sporopollenin is the major component of the outer pollen wall (sexine). It is synthesized using a pathway of approximately eight genes in Arabidopsis (Arabidopsis thaliana). MALE STERILITY188 (MS188) and its direct upstream regulator ABORTED MICROSPORES (AMS) are two transcription factors essential for tapetum development. Here, we show that all the sporopollenin biosynthesis proteins are specifically expressed in the tapetum and are secreted into anther locules. MS188, a MYB transcription factor expressed in the tapetum, directly regulates the expression of POLYKETIDE SYNTHASE A (PKSA), PKSB, MALE STERILE2 (MS2), and a CYTOCHROME P450 gene (CYP703A2). By contrast, the expression of CYP704B1, ACYL-COA SYNTHETASE5 (ACOS5), TETRAKETIDE a-PYRONE REDUCTASE1 (TKPR1) and TKPR2 are significantly reduced in ams mutants but not affected in ms188 mutants. However, MS188 but not AMS can activate the expression of CYP704B1, ACOS5, and TKPR1 In ms188, dominant suppression of MS188 homologs reduced the expression of these genes, suggesting that MS188 and other MYB family members play redundant roles in activating their expression. The expression of some sporopollenin synthesis genes (PKSA, PKSB, TKPR2, CYP704B1, and ACOS5) was rescued when MS188 was expressed in ams Therefore, MS188 is a key regulator for activation of sporopollenin synthesis, and AMS and MS188 may form a feed-forward loop that activates the expression of the sporopollenin biosynthesis pathway for rapid pollen wall formation.


Asunto(s)
Biopolímeros/biosíntesis , Carotenoides/biosíntesis , Pared Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Polen/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Mutación , Plantas Modificadas Genéticamente , Polen/citología , Polen/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Methods Enzymol ; 605: 3-32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29909829

RESUMEN

The long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFAs) EPA (20:5n-3) and DHA (22:6n-3) are widely recognized as beneficial to human health and development. Select lineages of cosmopolitan marine prokaryotic and eukaryotic microorganisms synthesize these compounds via a unique fatty acid synthase/polyketide synthase mechanism that is distinct from the canonical desaturase/elongase-mediated pathway employed by the majority of eukaryotic single-cell microorganisms and metazoans. This "Pfa synthase" mechanism is highly efficient and has been co-opted for the large-scale industrial production of n-3 LC-PUFAs for commercial applications. Both prokaryotic and eukaryotic microbes containing this pathway can be readily isolated from marine environments and maintained in culture under laboratory conditions. Some strains are genetically tractable and have established methods for genetic modification. The discussion and methods presented here should be useful for the exploitation and optimization of n-3 LC-PUFA products from marine microorganisms.


Asunto(s)
Organismos Acuáticos/metabolismo , Ácidos Grasos Omega-3/biosíntesis , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos , Alimentación Animal , Organismos Acuáticos/genética , Vías Biosintéticas/genética , Suplementos Dietéticos , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Agua de Mar/microbiología
12.
Chin J Nat Med ; 16(3): 210-218, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29576057

RESUMEN

In the present study, we introduced point mutations into Ac_rapA which encodes a polyketide synthase responsible for rapamycin biosynthesis in Actinoplanes sp. N902-109, in order to construct a mutant with an inactivated enoylreductase (ER) domain, which was able to synthesize a new rapamycin analog. Based on the homologous recombination induced by double-strand breaks in chromosome mediated by endonuclease I-SceI, the site-directed mutation in the first ER domain of Ac_rapA was introduced using non-replicating plasmid pLYERIA combined with an I-SceI expression plasmid. Three amino acid residues of the active center, Ala-Gly-Gly, were converted to Ala-Ser-Pro. The broth of the mutant strain SIPI-027 was analyzed by HPLC and a new peak with the similar UV spectrum to that of rapamycin was found. The sample of the new peak was prepared by solvent extraction, column chromatography, and crystallization methods. The structure of new compound, named as SIPI-rapxin, was elucidated by determining and analyzing its MS and NMR spectra and its biological activity was assessed using mixed lymphocyte reaction (MLR). An ER domain-deficient mutant of Actinoplanes sp. N902-109, named as SIPI-027, was constructed, which produced a novel rapamycin analog SIPI-rapxin and its structure was elucidated to be 35, 36-didehydro-27-O-demethylrapamycin. The biological activity of SIPI-rapxin was better than that of rapamycin. In conclusion, inactivation of the first ER domain of rapA, one of the modular polyketide synthase responsible for macro-lactone synthesis of rapamycin, gave rise to a mutant capable of producing a novel rapamycin analog, 35, 36-didehydro-27-O-demethylrapamycin, demonstrating that the enoylreductase domain was responsible for the reduction of the double bond between C-35 and C-36 during rapamycin synthesis.


Asunto(s)
Antibacterianos/química , Antibacterianos/metabolismo , Micromonosporaceae/metabolismo , Sirolimus/análogos & derivados , Sirolimus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Genética , Micromonosporaceae/química , Micromonosporaceae/enzimología , Micromonosporaceae/genética , Mutación , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Dominios Proteicos
13.
J Appl Microbiol ; 125(1): 159-171, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29473986

RESUMEN

AIMS: The effect of nutritional supplementation of two Metarhizium species with riboflavin (Rb) during production of conidia was evaluated on (i) conidial tolerance (based on germination) to UV-B radiation and on (ii) conidial expression following UV-B irradiation, of enzymes known to be active in photoreactivation, viz., photolyase (Phr), laccase (Lac) and polyketide synthase (Pks). METHODS AND RESULTS: Metarhizium acridum (ARSEF 324) and Metarhizium robertsii (ARSEF 2575) were grown either on (i) potato dextrose agar medium (PDA), (ii) PDA supplemented with 1% yeast extract (PDAY), (iii) PDA supplemented with Rb (PDA+Rb), or (iv) PDAY supplemented with Rb (PDAY+Rb). Resulting conidia were exposed to 866·7 mW m-2 of UV-B Quaite-weighted irradiance to total doses of 3·9 or 6·24 kJ m-2 . Some conidia also were exposed to 16 klux of white light (WL) after being irradiated, or not, with UV-B to investigate the role of possible photoreactivation. Relative germination of conidia produced on PDA+Rb (regardless Rb concentration) or on PDAY and exposed to UV-B was higher compared to conidia cultivated on PDA without Rb supplement, or to conidia suspended in Rb solution immediately prior to UV-B exposure. The expression of MaLac3 and MaPks2 for M. acridum, as well as MrPhr2, MrLac1, MrLac2 and MrLac3 for M. robertsii was higher when the isolates were cultivated on PDA+Rb and exposed to UV-B followed by exposure to WL, or exposed to WL only. CONCLUSIONS: Rb in culture medium increases the UV-B tolerance of M. robertsii and M. acridum conidia, and which may be related to increased expression of Phr, Lac and Pks genes in these conidia. SIGNIFICANCE AND IMPACT OF THE STUDY: The enhanced UV-B tolerance of Metarhizium spp. conidia produced on Rb-enriched media may improve the effectiveness of these fungi in biological control programs.


Asunto(s)
Metarhizium , Riboflavina/farmacología , Esporas Fúngicas , Regulación hacia Arriba/efectos de los fármacos , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Lacasa/genética , Lacasa/metabolismo , Metarhizium/efectos de los fármacos , Metarhizium/enzimología , Metarhizium/genética , Metarhizium/efectos de la radiación , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/efectos de la radiación , Rayos Ultravioleta
14.
Microbiologyopen ; 7(1)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28921941

RESUMEN

Strains of Lactococcus lactis isolated from plant tissues possess adaptations that support their survival and growth in plant-associated microbial habitats. We previously demonstrated that genes coding for a hybrid nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) system involved in production of an uncharacterized secondary metabolite are specifically induced in L. lactis KF147 during growth on plant tissues. Notably, this NRPS/PKS has only been identified in plant-isolated strains of L. lactis. Here, we show that the L. lactis KF147 NRPS/PKS genes have homologs in certain Streptococcus mutans isolates and the genetic organization of the NRPS/PKS locus is conserved among L. lactis strains. Using an L. lactis KF147 mutant deficient in synthesis of NrpC, a 4'-phosphopantetheinyl transferase, we found that the NRPS/PKS system improves L. lactis during growth under oxidative conditions in Arapidopsis thaliana leaf lysate. The NRPS/PKS system also improves tolerance of L. lactis to reactive oxygen species and specifically H2 O2 and superoxide radicals in culture medium. These findings indicate that this secondary metabolite provides a novel mechanism for reactive oxygen species detoxification not previously known for this species.


Asunto(s)
Lactococcus lactis/enzimología , Estrés Oxidativo , Péptido Sintasas/metabolismo , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Sintasas Poliquetidas/metabolismo , Estrés Fisiológico , Secuencia Conservada , Peróxido de Hidrógeno/toxicidad , Lactococcus lactis/genética , Lactococcus lactis/crecimiento & desarrollo , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Especies Reactivas de Oxígeno/toxicidad , Homología de Secuencia , Streptococcus mutans/enzimología , Streptococcus mutans/genética
15.
J Biotechnol ; 257: 233-239, 2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-28647529

RESUMEN

Fungal aromatic polyketides display a very diverse and widespread group of natural products. Due to their excellent light absorption properties and widely studied biological activities, they offer numerous application for food, textile and pharmaceutical industry. The biosynthetic pathways of fungal aromatic polyketides usually involve a set of successive enzymes, in which a non-reductive polyketide synthase iteratively catalyzes the essential assembly of simple building blocks into (often polycyclic) aromatic compounds. However, only a limited number of such pathways have been described so far and further elucidation of the individual biosynthetic steps is needed to fully exploit the biotechnological and medicinal potential of these compounds. Here, we identified the bisanthraquinone skyrin as the main pigment of the fungus Cyanodermella asteris, an endophyte that has recently been isolated from the traditional Chinese medicinal plant Aster tataricus. The genome of C. asteris was sequenced, assembled and annotated, which enables first insights into a genome from a non-lichenized member of the class Lecanoromycetes. Genetic and in silico analyses led to the identification of a gene cluster of five genes suggested to encode the enzymatic pathway for skyrin. Our study is a starting point for rational pathway engineering in order to drive the production towards higher yields or more active derivatives. Moreover, our investigations revealed a large potential of secondary metabolite production in C. asteris as well as in all Lecanoromycetes of which genomes were available. These findings convincingly emphasize that Lecanoromycetes are prolific producers of secondary metabolites.


Asunto(s)
Antraquinonas/metabolismo , Antineoplásicos/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Vías Biosintéticas/genética , Endófitos , Policétidos/metabolismo , Ascomicetos/enzimología , Secuencia de Bases , ADN de Hongos/genética , Emodina/metabolismo , Genes Fúngicos , Genoma Fúngico/genética , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Familia de Multigenes , Pigmentos Biológicos/metabolismo , Plantas Medicinales/microbiología , Sintasas Poliquetidas/genética , Metabolismo Secundario/genética
16.
J Biol Chem ; 292(22): 9117-9135, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28411241

RESUMEN

2-Alkylquinolone (2AQ) alkaloids are pharmaceutically and biologically important natural products produced by both bacteria and plants, with a wide range of biological effects, including antibacterial, cytotoxic, anticholinesterase, and quorum-sensing signaling activities. These diverse activities and 2AQ occurrence in vastly different phyla have raised much interest in the biosynthesis pathways leading to their production. Previous studies in plants have suggested that type III polyketide synthases (PKSs) might be involved in 2AQ biosynthesis, but this hypothesis is untested. To this end, we cloned two novel type III PKSs, alkyldiketide-CoA synthase (ADS) and alkylquinolone synthase (AQS), from the 2AQ-producing medicinal plant, Evodia rutaecarpa (Rutaceae). Functional analyses revealed that collaboration of ADS and AQS produces 2AQ via condensations of N-methylanthraniloyl-CoA, a fatty acyl-CoA, with malonyl-CoA. We show that ADS efficiently catalyzes the decarboxylative condensation of malonyl-CoA with a fatty acyl-CoA to produce an alkyldiketide-CoA, whereas AQS specifically catalyzes the decarboxylative condensation of an alkyldiketide acid with N-methylanthraniloyl-CoA to generate the 2AQ scaffold via C-C/C-N bond formations. Remarkably, the ADS and AQS crystal structures at 1.80 and 2.20 Å resolutions, respectively, indicated that the unique active-site architecture with Trp-332 and Cys-191 and the novel CoA-binding tunnel with Tyr-215 principally control the substrate and product specificities of ADS and AQS, respectively. These results provide additional insights into the catalytic versatility of the type III PKSs and their functional and evolutionary implications for 2AQ biosynthesis in plants and bacteria.


Asunto(s)
Alcaloides , Evodia/enzimología , Proteínas de Plantas , Plantas Medicinales/enzimología , Sintasas Poliquetidas , Quinolonas , Alcaloides/biosíntesis , Alcaloides/química , Cristalografía por Rayos X , Evodia/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinales/genética , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Dominios Proteicos , Quinolonas/química , Quinolonas/metabolismo
17.
Phytochemistry ; 134: 38-45, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27884449

RESUMEN

The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule. It is thought that the enzymes responsible for sporopollenin biosynthesis are highly conserved, and thus far, each angiosperm species with a genome sequenced has possessed two ASCL genes, which in Arabidopsis thaliana are PKSA and PKSB. The Gerbera hybrida (gerbera) PKS protein family consists of three chalcone synthases (GCHS1, GCHS3 and GCHS4) and three 2-pyrone synthases (G2PS1, G2PS2 and G2PS3). In previous studies we have demonstrated the functions of chalcone synthases in flavonoid biosynthesis, and the involvement of 2-pyrone synthases in the biosynthesis of antimicrobial compounds found in gerbera. In this study we expanded the gerbera PKS-family by functionally characterizing two gerbera ASCL proteins. In vitro enzymatic studies using purified recombinant proteins showed that both GASCL1 and GASCL2 were able to use medium and long-chain acyl-CoA starters and perform two to three condensation reactions of malonyl-CoA to produce tri- and tetraketide 2-pyrones, usually referred to as alpha-pyrones in sporopollenin literature. Both GASCL1 and GASCL2 genes were expressed only in floral organs, with most expression observed in anthers. In the anthers, transcripts of both genes showed strict tapetum-specific localization.


Asunto(s)
Asteraceae/enzimología , Asteraceae/genética , Flores/metabolismo , Sintasas Poliquetidas/metabolismo , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Biopolímeros , Carotenoides , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Polen/metabolismo , Sintasas Poliquetidas/genética , Pironas/metabolismo , Proteínas Recombinantes/metabolismo
18.
Fungal Genet Biol ; 98: 23-34, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27876630

RESUMEN

Based on genomic analysis, polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) pathways account for biosynthesis of the majority of the secondary metabolites produced by the entomopathogenic fungus Metarhizium robertsii. To evaluate the contribution of these pathways to M. robertsii fitness and/or virulence, mutants deleted for mrpptA, the Sfp-type 4' phosphopantetheinyl transferase gene required for their activation were generated. ΔmrpptA strains were deficient in PKS and NRPS activity resulting in colonies that lacked the typical green pigment and failed to produce the nonribosomal peptides (destruxins, serinocylins, and the siderophores ferricrocin and metachelins) as well as the hybrid polyketide-peptides (NG-39x) that are all produced by the wild type (WT) M. robertsii. The ΔmrpptA colonies were also auxotrophic for lysine. Two other mutant strains were generated: ΔmraarA, in which the α-aminoadipate reductase gene critical for lysine biosynthesis was disrupted, and ΔmrsidA, in which the L-ornithine N5-oxygenase gene that is critical for hydroxamate siderophore biosynthesis was disrupted. The phenotypes of these mutants were compared to those of ΔmrpptA to separate effects of the loss of lysine or siderophore production from the overall effect of losing all polyketide and non-ribosomal peptide production. Loss of lysine biosynthesis marginally increased resistance to H2O2 while it had little effect on the sensitivity to the cell wall disruptor sodium dodecyl sulfate (SDS) and no effect on sensitivity to iron deprivation. In contrast, combined loss of metachelin and ferricrocin through the inactivation of mrsidA resulted in mutants that were as hypersensitive or slightly more sensitive to H2O2, iron deprivation, and SDS, and were either identical or marginally higher in ΔmrpptA strains. In contrast to ΔmrpptA, loss of mrsidA did not completely abolish siderophore activity, which suggests the production of one or more non-hydroxamate iron-chelating compounds. Deletion of mrpptA, mrsidA, and mraarA reduced conidium production and conidia of a GFP-tagged ΔmrpptA strain displayed a longer germination delay than WT on insect cuticles, a deficiency that was rescued by lysine supplementation. Compared with WT, ΔmrpptA strains displayed ∼19-fold reduction in virulence against Drosophila suzukii. In contrast, lysine auxotrophy and loss of siderophores accounted for ∼2 and ∼6-fold decreases in virulence, respectively. Deletion of mrpptA had no significant effect on growth inhibition of Bacillus cereus. Our results suggest that PKS and NRPS metabolism plays a significant role in M. robertsii virulence, depresses conidium production, and contributes marginally to resistance to oxidative stress and iron homeostasis, but has no significant antibacterial effect.


Asunto(s)
Proteínas Fúngicas/genética , Lisina/genética , Metarhizium/genética , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Animales , Drosophila/microbiología , Proteínas Fúngicas/metabolismo , Hierro/metabolismo , Lisina/biosíntesis , Metarhizium/metabolismo , Metarhizium/patogenicidad , Mutación , Estrés Oxidativo/genética , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/metabolismo , Metabolismo Secundario/genética , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/patogenicidad
19.
PLoS One ; 11(9): e0162861, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27649078

RESUMEN

The gene encoding phosphopantetheinyl transferase (PPTase), pfaE, a component of the polyketide synthase (PKS) pathway, is crucial for the production of docosahexaenoic acid (DHA, 22:6ω3), along with the other pfa cluster members pfaA, pfaB, pfaC and pfaD. DHA was produced in Escherichia coli by co-expressing pfaABCD from DHA-producing Colwellia psychrerythraea 34H with one of four pfaE genes from bacteria producing arachidonic acid (ARA, 20:4ω6), eicosapentaenoic acid (EPA, 20:5ω3) or DHA, respectively. Substitution of the pfaE gene from different strain source in E. coli did not influence the function of the PKS pathway producing DHA, although they led to different DHA yields and fatty acid profiles. This result suggested that the pfaE gene could be switchable between these strains for the production of DHA. The DHA production by expressing the reconstituted PKS pathway was also investigated in different E. coli strains, at different temperatures, or with the treatment of cerulenin. The highest DHA production, 2.2 mg of DHA per gram of dry cell weight or 4.1% of total fatty acids, was obtained by co-expressing pfaE(EPA) from the EPA-producing strain Shewanella baltica with pfaABCD in DH5α. Incubation at low temperature (10-15°C) resulted in higher accumulation of DHA compared to higher temperatures. The addition of cerulenin to the medium increased the proportion of DHA and saturated fatty acids, including C12:0, C14:0 and C16:0, at the expense of monounsaturated fatty acids, including C16:1 and C18:1. Supplementation with 1 mg/L cerulenin resulted in the highest DHA yield of 2.4 mg/L upon co-expression of pfaE(DHA) from C. psychrerythraea.


Asunto(s)
Alteromonadaceae/enzimología , Proteínas Bacterianas/metabolismo , Ácidos Docosahexaenoicos/biosíntesis , Escherichia coli/metabolismo , Sintasas Poliquetidas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Alteromonadaceae/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Vías Biosintéticas/genética , Cerulenina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Regulación Bacteriana de la Expresión Génica , Ingeniería Metabólica/métodos , Familia de Multigenes , Sintasas Poliquetidas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Agua de Mar/microbiología , Homología de Secuencia de Aminoácido , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
20.
Sheng Wu Gong Cheng Xue Bao ; 32(2): 250-8, 2016 Feb.
Artículo en Chino | MEDLINE | ID: mdl-27382775

RESUMEN

The chalcone synthase (CHS) superfamily of the type III polyketide synthases (PKSs) generates backbones of a variety of plant secondary metabolites. Benzalacetone synthase (BAS) catalyzes a condensation reaction of decarboxylation between the substrates of 4-coumaric coenzyme A and malonyl coenzyme A to generate benzylidene acetone, whose derivatives are series of compounds with various biological activities. A BAS gene Pcpks2 and a bifunctional CHS/BAS PcPKSI were isolated from medicinal plant P. cuspidatum. Crystallographic and structure-based mutagenesis studies indicate that the functional diversity of the CHS-superfamily enzymes is principally derived from small modifications of the active site architecture. In order to obtain an understanding of the biosynthesis of polyketides in P. cuspidatum, which has been poorly described, as well as of its activation mechanism, PcPKS2 was overexpressed in Escherichia coli as a C-terminally poly-His-tagged fusion protein, purified to homogeneity and crystallized, which is helpful for the clarification of the catalytic mechanism of the enzyme and lays the foundation for its genetic engineering manipulation.


Asunto(s)
Butanonas , Fallopia japonica/enzimología , Sintasas Poliquetidas/metabolismo , Dominio Catalítico , Cristalización , Sintasas Poliquetidas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA