Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.912
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Food Funct ; 15(9): 5000-5011, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38618651

RESUMEN

The anti-obesity effect of conjugated linoleic acid (CLA) has been well elucidated, but whether CLA affects fat deposition by regulating intestinal dietary fat absorption remains largely unknown. Thus, this study aimed to investigate the effects of CLA on intestinal fatty acid uptake and chylomicron formation and explore the possible underlying mechanisms. We found that CLA supplementation reduced the intestinal fat absorption in HFD (high fat diet)-fed mice accompanied by the decreased serum TG level, increased fecal lipids and decreased intestinal expression of ApoB48 and MTTP. Correspondingly, c9, t11-CLA, but not t10, c12-CLA induced the reduction of fatty acid uptake and TG content in PA (palmitic acid)-treated MODE-K cells. In the mechanism of fatty acid uptake, c9, t11-CLA inhibited the binding of CD36 with palmitoyltransferase DHHC7, thus leading to the decreases of CD36 palmitoylation level and localization on the cell membrane of the PA-treated MODE-K cells. In the mechanism of chylomicron formation, c9, t11-CLA inhibited the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the PA-treated MODE-K cells. In in vivo verification, CLA supplementation reduced the DHHC7-mediated total and cell membrane CD36 palmitoylation and suppressed the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the jejunum of HFD-fed mice. Altogether, these data showed that CLA reduced intestinal fatty acid uptake and chylomicron formation in HFD-fed mice associated with the inhibition of DHHC7-mediated CD36 palmitoylation and the downstream ERK pathway.


Asunto(s)
Antígenos CD36 , Quilomicrones , Dieta Alta en Grasa , Ácidos Linoleicos Conjugados , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Animales , Antígenos CD36/metabolismo , Antígenos CD36/genética , Ácidos Linoleicos Conjugados/farmacología , Ratones , Masculino , Quilomicrones/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/genética , Absorción Intestinal/efectos de los fármacos
2.
Mol Nutr Food Res ; 68(8): e2300643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600887

RESUMEN

SCOPE: Polyphenols are the major active substances in red jujube fruit, and their anti-inflammatory and antioxidant activities suggest their potential utility in the prevention of ulcerative colitis (UC). METHODS AND RESULTS: In this study, the effect of polyphenol extracts from red jujube (Ziziphus jujuba Mill. "Junzao") (PERJ) on the dextron sulfate sodium (DSS)-induced UC mice is investigated. The result shows that PERJ effectively improves clinical symptoms, including food and water intake, the disease activity insex (DAI) and spleen index, and routine blood levels, and alleviates the shortening of the colon, in mice with DSS-induced UC. Meanwhile, PERJ remarkably decreases the expression of proinflammatory factors. Moreover, PERJ repairs intestinal barrier damage by increasing the expression level of mucin 2 and mucin 3, and the result is also confirmed in the histological assessment. Besides, the expression levels of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and mitogen-activated protein kinase cascade (MAPKs) signaling pathway-related proteins are inhibited by the PERJ administration. Finally, 16S rRNA sequencing analyses reveal that PERJ reverses intestinal microbiota dysbiosis by enhancing the abundance of Firmicutes and decreasing that of Proteobacteria and Bacteroidetes. CONCLUSION: PERJ probably inhibits the development of UC by suppressing the NLRP3 and MAPKs signaling pathways and regulating gut microbiota homeostasis, and can be considered as a potential resource for preventing UC.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Sistema de Señalización de MAP Quinasas , Extractos Vegetales , Ziziphus , Animales , Masculino , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Homeostasis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Extractos Vegetales/farmacología , Polifenoles/farmacología , Ziziphus/química
3.
J Ethnopharmacol ; 330: 118067, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jingfang Baidu Powder (JFBDP) is a classic traditional Chinese medicine prescription. Although Jingfang Baidu powder obtained a general consensus on clinical efficacy in treating pneumonia, there were many Chinese herbal drugs in formula, complex components, and large oral dosage, which brings certain obstacles to clinical application. AIM OF THE STUDY: Therefore, screening of the active fraction that exerts anti-pneumonia helps improve the pharmaceutical preparation, improve the treatment compliance of patients, and further contribute to the clinical application, and the screening of the new active ingredients with anti-pneumonia. The histopathological observation, real-time quantitative PCR, western blotting, and immunofluorescence were applied to evaluate the anti-pneumonia efficacy of active fractions from JFBDP. RESULTS: Three fractions from JFBDP inhibit the gene expression of IL-1ß, IL-10, CCL3, CCL5, and CCL22 in lung tissue infected by Klebsiella at various degrees, and presented a good dose-response relationship. JF50 showed stronger anti-inflammatory effects among three fractions including JF30, JF50, and JF75. Besides, JF50 significantly reduced the protein expression of TLR4 and Myd88 in lung tissue infected with Klebsiella, and it also significantly inhibited p-ERK and p-NF-κB p65. JF50 significantly inhibits the protein expression of Caspase 3, Caspase 8, and Caspase 9 in lung tissue infected with Klebsiella at the dose of 25 mg/kg and 50 mg/kg. CONCLUSION: JF50 improves lung pathological damage in Klebsiella pneumonia mice by inhibiting the TLR4/Myd88/NF-κB-ERK signaling pathway, and inhibiting apoptosis of lung tissue cells. These findings provide a reference for further exploring the active substance basis of Jingfang Baidu Powder in treating bacterial pneumonia.


Asunto(s)
Medicamentos Herbarios Chinos , Infecciones por Klebsiella , Factor 88 de Diferenciación Mieloide , Polvos , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Factor 88 de Diferenciación Mieloide/metabolismo , Ratones , Masculino , Infecciones por Klebsiella/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL
4.
Environ Toxicol ; 39(6): 3710-3720, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511855

RESUMEN

Tryptanthrin, an alkaloid applied in traditional Chinese medicine, exhibits a variety of pharmacological activities. This study aimed to investigate the anti-tumor activity of the tryptanthrin derivative (8-cyanoindolo[2,1-b]quinazoline-6,12-dione [CIQ]) in breast cancer cells. In both MDA-MB-231 and MCF-7 breast cancer cells, CIQ inhibited cell viability and promoted caspase-dependent apoptosis. At the concentration- and time-dependent ways, CIQ increased the levels of p-ERK, p-JNK, and p-p38 in breast cancer cells. We found that exposure to the JNK inhibitor or the ERK inhibitor partially reversed CIQ's viability. We also observed that CIQ increased reactive oxygen species (ROS) generation, and upregulated the phosphorylation and expression of H2AX. However, the pretreatment of the antioxidants did not protect the cells against CIQ's effects on cell viability and apoptosis, which suggested that ROS does not play a major role in the mechanism of action of CIQ. In addition, CIQ inhibited the invasion of MDA-MB-231 cells and decreased the expression of the prometastatic factors (MMP-2 and Snail). These findings demonstrated that the possibility of this compound to show promise in playing an important role against breast cancer.


Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias de la Mama , Supervivencia Celular , Quinazolinas , Especies Reactivas de Oxígeno , Humanos , Quinazolinas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Línea Celular Tumoral , Femenino , Células MCF-7 , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
5.
Phytomedicine ; 128: 155550, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522313

RESUMEN

BACKGROUND: The pathogenesis of acute liver injury (ALI) has been a pressing issue in the medical scientific community. We previously found that 5-O-methylvisammioside (MeV) from Saposhnikovia divaricata (Turcz.) Schischk has excellent anti-inflammatory properties. However, the mechanism by which MeV protects against ALI still needs to be deeply investigated. PURPOSE: In the present study, we established an acetaminophen (APAP) -induced ALI mouse model and pre-protected the mice with MeV. METHODS & RESULTS: Our findings indicate that MeV (5 and 10 mg/kg) lowered the blood levels of alanine aminotransferase and aspartate aminotransferase and reduced the infiltration of inflammatory cells in the liver. MeV initially showed an inhibitory effect on ALI. We then analyzed the molecular mechanisms underlying the effects of MeV by transcriptomic and metabolomic analyzes. Through transcriptomic analysis, we identified 4675 differentially expressed genes between the APAP+MeV group and the APAP-induced ALI group, which were mainly enriched in the MAPK pathway, the TNF pathway, and the NF-κB pathway. Through metabolomic analysis, we found that 249 metabolites in the liver were differentially regulated between the APAP+MeV group and the APAP- induced ALI group, which were mainly enriched in the arachidonic acid pathway. The mRNA expression levels of key genes (encoding TNF-α, p38, AP-1, RelB, IL-1ß, and Ptges), as determined by RT-PCR analysis, were consistent with the RNA-seq data. The ELISA results indicate that MeV markedly decreased the serum levels of TNF-α and IL-1ß in mice. Finally, the key proteins in the NF-κB and MAPK pathways were examined using immunoblotting. The results showed that MeV decreased IκB-α phosphorylation and inhibited the nuclear translocation of NF-κB. In addition, MeV reduced the hepatic inflammatory burst mainly by inhibiting the phosphorylation of p38 and JNK in the MAPK pathway. CONCLUSION: The present study demonstrated (i) that MeV could ameliorate APAP-induced ALI by inhibiting arachidonic acid metabolism and the TNF, MAPK, and NF-κB pathways, and (ii) that MeV is a promising drug candidate for the prevention of ALI.


Asunto(s)
Ácido Araquidónico , Enfermedad Hepática Inducida por Sustancias y Drogas , FN-kappa B , Factor de Necrosis Tumoral alfa , Animales , FN-kappa B/metabolismo , Masculino , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , Ácido Araquidónico/metabolismo , Acetaminofén , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Antiinflamatorios/farmacología , Transducción de Señal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Multiómica
6.
Phytomedicine ; 128: 155397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547623

RESUMEN

BACKGROUND: Acute lung injury (ALI) often leads to serious respiratory diseases with high incidence rates and mortality. For centuries, Xiebai San (XBS) has been a classical traditional Chinese medicine (TCM) about respiratory illness such as pneumonia in children. However, the related mechanism of XBS against ALI remains indistinct. PURPOSE: To reveal specific targets of XBS in lipopolysaccharide (LPS)-induced ALI mice using integrated pharmacology. STUDY DESIGN: The integrated method was to expound mechanism and targets of XBS inhibited ALI. METHODS: The primary components in XBS were identified by ultra high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS). The potential drug targets were established using network pharmacology. The anti-ALI effect of XBS was evaluated in mice. Additionally, therapeutic targets were screened by integrating metabolome and transcriptome and verified in lung tissue. RESULTS: In total, 163 chemical components were identified in XBS, and a network of "3 drugs-18 components-86 targets" for XBS against ALI was constructed. In ALI mice, XBS alleviated lung inflammation by decreasing permeation and expression of neutrophils, tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) in bronchoalveolar lavage fluid (BALF), serum, and lung tissue. Next, the transcriptome of lung tissue was analyzed and enriched, indicating the importance of mitogen-activated protein kinase (MAPK), Janus kinase-signal transducer and activator of transcription (JAK-STAT), and others, which was consistent with network pharmacology prediction. Also, western blotting and immunohistochemistry results showed that XBS was against ALI mainly by inhibiting extracellular signal regulated kinase (ERK) and signal transducer and activator of transcription 3 (Stat3) phosphorylation. In addition, the metabolome of lung tissue revealed that XBS mainly regulated pathways involved in arachidonic acid, glycerophospholipid, and tryptophan metabolisms. The expression levels of leukotriene, phosphatidylcholine, kynurenine, and others were also verified. CONCLUSION: XBS alleviated inflammation of ALI by inhibiting the phosphorylation of the ERK/Stat3 pathway and regulating arachidonic acid, glycerophospholipid, and tryptophan metabolisms. This study will guide clinical precision medicine and promote modernization of XBS.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , Factor de Transcripción STAT3 , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Factor de Transcripción STAT3/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ratones , Masculino , Fosforilación/efectos de los fármacos , Lipopolisacáridos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Farmacología en Red , Transducción de Señal/efectos de los fármacos
7.
Neurogastroenterol Motil ; 36(5): e14779, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488234

RESUMEN

BACKGROUND: Gastric motility disorder is an increasingly common problem among people with diabetes. Neurotransmitters have been recognized as critical regulators in the process of gastric motility. Previous study has shown that herb pair huanglian-banxia (HL-BX) can improve gastric motility, but the underlying mechanism is still unclear. The aim of this study was to further investigate the role of HL-BX in modulating brain-gut neurotransmission to promote gastric motility in diabetic rats, and to explore its possible mechanism. METHODS: The diabetic rats were divided into five groups. Gastric emptying rate, intestinal propulsion rate, body weight, and average food intake were determined. Substance P (SP), 5- hydroxytryptamine (5-HT), and glucagon-like peptide -1 (GLP-1) in the serum were measured by enzyme-linked immunosorbent assay. Dopamine (DA) and norepinephrine (NE) in the brain were analyzed by high-pressure liquid chromatography with a fluorescence detector. Protein expression of the tissues in the stomach and brain was determined by Western blot. KEY RESULTS: HL-BX reduced average food intake significantly, increased body weight, and improved gastric emptying rate and intestinal propulsion rate. HL-BX administration caused a significant increase in SP, GLP-1, and 5-HT, but a significant decrease in DA and NE. Interestingly, HL-BX regulated simultaneously the different expressions of MAPK and its downstream p70S6K/S6 signaling pathway in the stomach and brain. Moreover, berberine exhibited a similar effect to HL-BX. CONCLUSIONS: These results indicated that HL-BX promoted gastric motility by regulating brain-gut neurotransmitters through the MAPK signaling pathway. HL-BX and MAPK provide a potential therapeutic option for the treatment of gastroparesis.


Asunto(s)
Diabetes Mellitus Experimental , Medicamentos Herbarios Chinos , Motilidad Gastrointestinal , Sistema de Señalización de MAP Quinasas , Animales , Masculino , Ratas , Encéfalo/metabolismo , Eje Cerebro-Intestino/fisiología , Diabetes Mellitus Experimental/metabolismo , Medicamentos Herbarios Chinos/farmacología , Motilidad Gastrointestinal/fisiología , Motilidad Gastrointestinal/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Neurotransmisores/metabolismo
8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 1943-1955, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36869905

RESUMEN

Shuganning injection (SGNI), a TCM (traditional Chinese medicine) injection with good hepatoprotective effects, exerted therapeutic effects on hepatocellular carcinoma (HCC). However, the active compounds and effects of SGNI on HCC remain unclear. The objective of this study was to investigate the active compounds and potential targets of SGNI in the treatment of HCC, and explore the molecular mechanisms of main compounds. Network pharmacology was applied to predict the active compounds and targets of SGNI on cancer. The interactions between active compounds and target proteins were validated by drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), and pull-down assay. The in vitro test of the effects and mechanism of vanillin and baicalein was elucidated by MTT, western blot, immunofluorescence, and apoptosis analysis. According to compound characteristics, targets, etc., two typical active ingredients (vanillin and baicalein) were selected as representatives to explore the effects on HCC. Vanillin (an important food additive) bound to NF-κB1 and baicalein (a bioactive flavonoid) bound to FLT3 (FMS-like tyrosine kinase 3) were confirmed in this study. Vanillin and baicalein both inhibited cell viability and promoted apoptosis of Hep3B and Huh7 cells. In addition, both vanillin and baicalein could enhance the activation of the p38/MAPK (mitogen-activated protein kinase) signaling pathway, which may partially explain the anti-apoptosis effects of the two compounds. In conclusion, two active compounds of SGNI, vanillin and baicalein, promoted apoptosis of HCC cells via binding with NF-κB1 or FLT3, and regulating the p38/MAPK pathway. Baicalein and vanillin may be good candidates for HCC treatment on drug development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Farmacología en Red , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Farmacología en Red/métodos , Humanos , Línea Celular Tumoral , FN-kappa B/metabolismo , Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
9.
Int J Oncol ; 62(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929198

RESUMEN

Lung cancer is the leading cause of cancer­related mortality worldwide. Non­small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer and is associated with low 5­year overall survival rates. Therefore, novel and effective chemotherapeutic drugs are urgently required for improving the survival outcomes of patients with lung cancer. Cyclovirobuxine D (CVB­D) is a natural steroidal alkaloid, used for the treatment of cardiovascular diseases in Traditional Chinese Medicine. Several studies have also demonstrated the antitumor effects of CVB­D. Therefore, in the present study, the therapeutic effects of CVB­D in lung cancer and the underlying mechanisms were investigated using the in vivo xenograft model of NSCLC in nude mice and in vitro experiments with the NSCLC cell lines. Bioinformatics analyses of RNA­sequencing data, and cell­based functional assays demonstrated that CVB­D treatment significantly inhibited in vitro and in vivo NSCLC cell proliferation, survival, invasion, migration, angiogenesis, epithelial­to­mesenchymal transition and G2/M phase cell cycle. CVB­D exerted its antitumor effects by inhibiting the KIF11­CDK1­CDC25C­cyclinB1 G2/M phase transition regulatory oncogenic network and the NF­κB/JNK signaling pathway. CVB­D treatment significantly reduced the sizes and weights and malignancy of xenograft NSCLC tumors in the nude mice. In conclusion, the present study demonstrated that CVB­D inhibited the growth and progression of NSCLC cells by inhibiting the KIF11­CDK1­CDC25C­CyclinB1 G2/M phase transition regulatory network and the NF­κB/JNK signaling pathway. Therefore, CVB­D is a promising drug for the treatment of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Puntos de Control del Ciclo Celular , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Fosfatasas cdc25/metabolismo , División Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Cinesinas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Desnudos , FN-kappa B/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
10.
Biomed Res Int ; 2022: 8077058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757465

RESUMEN

Purpose: Dioscorea nipponica Makino (DNM) is a traditional herb with multiple medicinal functions. This study is aimed at exploring the therapeutic effects of DNM on asthma and the underlying mechanisms involving RKIP-mediated MAPK signaling pathway. Methods: An ovalbumin-induced asthma model was established in mice, which was further administrated with DNM and/or locostatin (RKIP inhibitor). ELISA was performed to detect the serum titers of OVA-IgE and OVA-IgG1, bronchoalveolar lavage fluid (BALF) levels of inflammation-related biomarkers, and tissue levels of oxidative stress-related biomarkers. The expression of RKIP was measured by quantitative real-time PCR, Western blot, immunohistochemistry, and immunofluorescence. HE staining was used to observe the pathological morphology of lung tissues. The protein expression of MAPK pathway-related proteins was detected by Western blot. Results: Compared with the controls, the model mice exhibited significantly higher serum titers of OVA-IgE and OVA-IgG1, BALF levels of IL-6, IL-8, IL-13, TGF-ß1, and MCP-1, tissue levels of MDA and ROS, lower BALF levels of IL-10 and IFN-γ, and tissue level of GSH. DNM relieved the allergic inflammatory response and oxidative stress in the model mice. DNM also recovered the downregulation of RKIP and the pathological injury of lung tissues in asthma mice. In addition, the Raf-1/MEK/MAPK/ERK pathway in the model mice was blocked by DNM. Silencing of RKIP by locostatin weakened the relieving effects of DNM on asthma through activating the Raf-1/MEK/MAPK/ERK pathway. Conclusion: DNM relieves asthma via blocking the Raf-1/MEK/MAPK/ERK pathway that mediated by RKIP upregulation.


Asunto(s)
Asma , Dioscorea , Sistema de Señalización de MAP Quinasas , Extractos Vegetales , Animales , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Dioscorea/química , Modelos Animales de Enfermedad , Inmunoglobulina E/metabolismo , Inmunoglobulina G/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ovalbúmina , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-raf/metabolismo
11.
Toxicol Appl Pharmacol ; 448: 116092, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35654276

RESUMEN

Gypenosides are major bioactive ingredients of G. pentaphyllum. In our previous study, we found that gypenosides had neuroprotective effects against hypoxia-induced injury. In the current study, we focused on the protective effects of gypenoside-14 (GP-14), which is one of the newly identified bioactive components, on neuronal injury caused by severe hypoxia (0.3% O2). The results showed that GP-14 pretreatment alleviated the cell viability damage and apoptosis induced by hypoxia in PC12 cells. Moreover, GP-14 pretreatment also attenuated primary neuron injuries under hypoxic conditions. Additionally, GP-14 pretreatment significantly ameliorated neuronal damage in the hippocampal region induced by high-altitude cerebral edema (HACE). At the molecular level, GP-14 pretreatment reversed the decreased activities of the AKT and ERK signaling pathways caused by hypoxia in PC12 cells and primary neurons. To comprehensively explore the possible mechanisms, transcriptome sequencing was conducted, and these results indicated that GP-14 could alter the transcriptional profiles of primary neuron. Taken together, our results suggest that GP-14 acts as a neuroprotective agent to protect against neuronal damage induced by severe hypoxia and it is a promising compound for the development of neuroprotective drugs.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neuronas , Fármacos Neuroprotectores , Proteínas Proto-Oncogénicas c-akt , Animales , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Perfilación de la Expresión Génica , Gynostemma/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
12.
J Ethnopharmacol ; 296: 115440, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35671865

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Phikud Navakot (PN), a mixture of nine herbal plants, is an ancient Thai traditional medicine used for relieving circulatory disorders and dizziness. PN has also shown anti-inflammatory effects in rats with acute myocardial infarction. Moreover, phytochemical-inhibiting neuroinflammation, including gallic acid, vanillic acid, ferulic acid, and rutin were detected in PN extract; however, the anti-neuroinflammatory activity of PN extract and its components in a coculture system of microglia and neuronal cells is limited. OBJECTIVE: To investigate the anti-neuroinflammatory activities of PN on lipopolysaccharide (LPS)-induced inflammation in a coculture system of microglia and neuronal cells. METHODS: ELISA and qRT-PCR were used to assess cytokine expression. The phosphorylation of mitogen-activated protein kinases (MAPKs) was determined by Western blotting. Microglia-mediated neuroinflammation was evaluated using a BV-2 microglia-N2a neuron transwell co-culture. RESULTS: PN extract and its component, gallic acid, decreased LPS-induced the mRNA expression of interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), as well as IL-6 protein levels in both microglial monoculture and coculture systems. This was accompanied by a reduction in neurodegeneration triggered by microglia in N2a neurons with increased neuronal integrity markers (ßIII tubulin and tyrosine hydroxylase (TH)). These effects were caused by the ability of PN extract to inhibit extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activation. CONCLUSION: This is the first study to show that PN extract inhibits neurodegeneration in LPS-activated BV-2 microglia by targeting ERK signaling activity.


Asunto(s)
Lipopolisacáridos , Sistema de Señalización de MAP Quinasas , Microglía , Extractos Vegetales , Animales , Técnicas de Cocultivo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Ratas
13.
J Ethnopharmacol ; 296: 115470, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35738471

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: San Pian decoction (SPD), a traditional Chinese medicine preparation composed of eight herbs, has been reported to alleviate migraine. However, its active ingredients and the potential mechanism of action remains unclear. The purpose of this study was to comprehensively analyze SPD for the treatment of chronic migraine based on pharmacological direction and to identify the active ingredients and pharmacological mechanism of SPD in the treatment of migraine. MATERIALS AND METHODS: The active components in SPD were identified by AB SCIEX quadrupole time-of-flight mass spectrometer, and the prediction targets and pharmacological networks related to migraine were constructed. The mechanism of SPD in treating migraine was studied through network pharmacology, which was further verified using pharmacological experiments. RESULTS: A total of 489 targets of 26 compounds were identified. Based on Venn analysis, we found 117 intersection targets between SPD and migraine, that is, these targets were related to the treatment of migraine. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the treatment of migraine using SPD was related to the PI3K/AKT and MAPK signaling pathways. The effect of SPD on migraine was verified by measuring the levels of the inflammatory factors, nitric oxide (NO), interleukin (IL-6), endothelin (ET),5-hydroxytryptamine(5-HT), indoleamine 2,3-dioxygenas (IDO), tumor necrosis factor (TNF-α) and calcitonin gene-related peptide (CGRP). Lastly, real-time polymerase chain reaction and western blotting were used to verify gene and protein expression in the PI3K/AKT and MAPK signaling pathways. Expression of the genes P38, JNK, ERK, PI3K and AKT, and the protein expression of p-P38, p-JNK, p-ERK, p-AKT and p-PI3K were significantly downregulated. Our findings indicated that SPD could prevent inflammation by regulating the inflammatory cytokines and key genes and proteins in the PI3K/AKT and MAPK signaling pathways to treat migraine. CONCLUSION: Our findings reveal that SPD could treat nitroglycerin-induced migraine by regulating p-AKT, p-pI3k, p-p38, p-ERK, p-JNK, IL-6, and TNF-α inflammatory factors in the PI3K/AKT and MAPK signaling pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Trastornos Migrañosos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Nitroglicerina/farmacología , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
14.
J Chem Neuroanat ; 123: 102119, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35697268

RESUMEN

Vascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) seriously affects the quality of life of elderly patients and places a great burden on society and family. With the development of traditional Chinese medicine (TCM), TCM approaches to the prevention and treatment of senile ischemic cerebrovascular disease has received increasing attention. In this study, rats with bilateral common carotid artery occlusion (BCCAO) were treated with berberine (BBR). Their learning and memory function, neuronal injury and repair, the extracellular regulatory protein kinase (ERK)/nuclear factor-E2-related factor 2 (Nrf2) signaling pathway, and impairment and improvement of the blood-brain barrier (BBB) were evaluated. This study found that BBR can alleviate the pathological injury to the brain, reduce neuronal loss and promote neuronal cell survival after CCH by interfering with the ERK/Nrf2 signaling pathway. BBR can reduce BBB injury in CCH rats by inhibiting the expression of VEGF-A and MMP-9 in plasma, which reveals a protective effect of BBR on vascular cognitive impairment. This study provides a new research direction for BBR in the treatment of ischemic cerebrovascular disease.


Asunto(s)
Berberina , Isquemia Encefálica , Disfunción Cognitiva , Sistema de Señalización de MAP Quinasas , Factor 2 Relacionado con NF-E2 , Animales , Berberina/farmacología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/prevención & control , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Quinasas/metabolismo , Calidad de Vida , Ratas , Ratas Sprague-Dawley
15.
Mol Med ; 28(1): 58, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35596156

RESUMEN

BACKGROUND: Glabridin (Glab) is a bioactive component of licorice that can ameliorate diabetes, but its role in diabetic nephropathy (DN) has seldom been reported. Herein, we explored the effect and underlying mechanism of Glab on DN. METHODS: The bioactive component-target network of licorice against DN was by a network pharmacology approach. The protective effect of Glab on the kidney was investigated by a high-fat diet with streptozotocin induced-diabetic rat model. High glucose-induced NRK-52E cells were used for in vitro studies. The effects of Glab on ferroptosis and VEGF/Akt/ERK pathways in DN were investigated in vivo and in vitro using qRT-PCR, WB, and IHC experiments. RESULTS: Bioinformatics analysis constructed a network comprising of 10 bioactive components of licorice and 40 targets for DN. 13 matching targets of Glab were mainly involved in the VEGF signaling pathway. Glab treatment ameliorated general states and reduced FBG, HOMA-ß, and HOMA-insulin index of diabetic rats. The renal pathological changes and the impaired renal function (the increased levels of Scr, BUN, UREA, KIM-1, NGAL, and TIMP-1) were also improved by Glab. Moreover, Glab repressed ferroptosis by increasing SOD and GSH activity, and GPX4, SLC7A11, and SLC3A2 expression, and decreasing MDA and iron concentrations, and TFR1 expression, in vivo and in vitro. Mechanically, Glab significantly suppressed VEGF, p-AKT, p-ERK1/2 expression in both diabetic rats and HG-induced NRK-52E cells. CONCLUSIONS: This study revealed protective effects of Glab on the kidney of diabetic rats, which might exert by suppressing ferroptosis and the VEGF/Akt/ERK pathway.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ferroptosis , Glycyrrhiza , Isoflavonas , Fenoles , Animales , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Ferroptosis/efectos de los fármacos , Glycyrrhiza/metabolismo , Isoflavonas/farmacología , Riñón/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fenoles/farmacología , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Nanomedicine (Lond) ; 17(9): 607-625, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35465693

RESUMEN

Aim: To evaluate whether selenium nanoparticles (SeNPs) can stimulate bone formation and inhibit the bone loss involved in hyperglycemia-induced osteoporosis. Methods: Rat osteoblastic UMR-106 cells were used for in vitro studies and female Sprague-Dawley rats were used for type 2 diabetes-associated osteoporosis in vivo study. Results:In vitro studies show that SeNPs promote osteoblast differentiation via modulating alkaline phosphatase (ALP) activity, and promoting calcium nodule formation and collagen content. The authors also provide evidence regarding the involvement of the BMP-2/MAPKs/ß-catenin pathway in preventing diabetic osteoporosis. Further, in vivo and ex vivo studies suggested that SeNPs can preserve mechanical and microstructural properties of bone. Conclusion: To the best of our knowledge, this study provides the first evidence regarding the therapeutic benefits of SeNPs in preventing diabetes-associated bone fragility.


Osteoporosis is a common complication for people with diabetes. High glucose causes oxidative stress, and the antioxidant and anti-inflammatory properties of selenium nanoparticles (SeNPs) make them useful in the treatment of metabolic disorders associated with high glucose levels. The results of this paper report the protective effects of SeNPs in diabetic osteoporosis using rat osteoblastic UMR-106 cells and female Sprague­Dawley rats with type-2 diabetes-induced osteoporosis. SeNPs promote osteoblast differentiation and mineralization in osteoblasts, preserve bone microstructure and improve biomechanical stability, which suggests that SeNPs could be used therapeutically in the maintenance of diabetic osteoporosis.


Asunto(s)
Proteína Morfogenética Ósea 2 , Diferenciación Celular , Diabetes Mellitus Tipo 2 , Sistema de Señalización de MAP Quinasas , Nanopartículas , Osteoporosis , Selenio , beta Catenina , Animales , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Osteoporosis/complicaciones , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/patología , Ratas , Ratas Sprague-Dawley , Selenio/química , Selenio/farmacología , beta Catenina/metabolismo
17.
Oxid Med Cell Longev ; 2022: 6324292, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251480

RESUMEN

Ovarian cancer is one of the fatal gynecological cancers around the world. Cisplatin is the first-line chemotherapy drug for the clinical treatment of ovarian cancer. However, many patients with ovarian cancer are still suffering from resistance to cisplatin. Therefore, the new drug combinations or treatment strategies for ovarian cancer are urgently needed. Glaucocalyxin B (GLB), a diterpenoid isolated from the aerial parts of Rabdosia japonica, has shown antitumor activity in some tumors. However, the mechanisms by which GLB inhibits ovarian cancer remain unclear. In the present study, we showed that GLB potently inhibits ovarian cancer cell growth in a dose-dependent manner. Furthermore, we found that GLB has a notably synergistic antitumor effect with cisplatin. Mechanistically, we found that GLB enhances the sensitivity of ovarian cancer cells to cisplatin via increasing reactive oxygen species (ROS) levels, the phosphorylation of c-Jun N-terminal kinase (JNK), and DNA damage. Interestingly, a synergistic inhibitory effect of GLB with cisplatin was also observed in the cells which were resistance to cisplatin. Together, these data suggest that GLB can sensitize ovarian cancer cells to cisplatin by increasing ROS levels.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Diterpenos de Tipo Kaurano/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Isodon/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias Ováricas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Ováricas/patología , Especies Reactivas de Oxígeno/metabolismo
18.
BMC Cancer ; 22(1): 256, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35272617

RESUMEN

BACKGROUND: Over half of colorectal cancers (CRCs) are hard-wired to RAS/RAF/MEK/ERK pathway oncogenic signaling. However, the promise of targeted therapeutic inhibitors, has been tempered by disappointing clinical activity, likely due to complex resistance mechanisms that are not well understood. This study aims to investigate MEK inhibitor-associated resistance signaling and identify subpopulation(s) of CRC patients who may be sensitive to biomarker-driven drug combination(s). METHODS: We classified 2250 primary and metastatic human CRC tumors by consensus molecular subtypes (CMS). For each tumor, we generated multiple gene expression signature scores measuring MEK pathway activation, MEKi "bypass" resistance, SRC activation, dasatinib sensitivity, EMT, PC1, Hu-Lgr5-ISC, Hu-EphB2-ISC, Hu-Late TA, Hu-Proliferation, and WNT activity. We carried out correlation, survival and other bioinformatic analyses. Validation analyses were performed in two independent publicly available CRC tumor datasets (n = 585 and n = 677) and a CRC cell line dataset (n = 154). RESULTS: Here we report a central role of SRC in mediating "bypass"-resistance to MEK inhibition (MEKi), primarily in cancer stem cells (CSCs). Our integrated and comprehensive gene expression signature analyses in 2250 CRC tumors reveal that MEKi-resistance is strikingly-correlated with SRC activation (Spearman P < 10-320), which is similarly associated with EMT (epithelial to mesenchymal transition), regional metastasis and disease recurrence with poor prognosis. Deeper analysis shows that both MEKi-resistance and SRC activation are preferentially associated with a mesenchymal CSC phenotype. This association is validated in additional independent CRC tumor and cell lines datasets. The CMS classification analysis demonstrates the strikingly-distinct associations of CMS1-4 subtypes with the MEKi-resistance and SRC activation. Importantly, MEKi + SRCi sensitivities are predicted to occur predominantly in the KRAS mutant, mesenchymal CSC-like CMS4 CRCs. CONCLUSIONS: Large human tumor gene expression datasets representing CRC heterogeneity can provide deep biological insights heretofore not possible with cell line models, suggesting novel repurposed drug combinations. We identified SRC as a common targetable node--an Achilles' heel--in MEKi-targeted therapy-associated resistance in mesenchymal stem-like CRCs, which may help development of a biomarker-driven drug combination (MEKi + SRCi) to treat problematic subpopulations of CRC.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Transcriptoma/efectos de los fármacos
19.
Comput Math Methods Med ; 2022: 7174399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242210

RESUMEN

The testicles and sperm are extremely susceptible to inflammation and oxidative stress. Although Zhibai Dihuang Pill (ZDP) has been reported to treat various infertilities including male infertility induced by Ureaplasma urealyticum (UU) infection, its mechanism is still poorly understood. This study is aimed at clarifying the underlying mechanism of ZDP to protect against UU-infected male infertility. We found that UU-infected infertile rats exhibited weight loss, reduced food intake, and decreased sperm count and vitality. The administration of ZDP improved the general state and sperm motility of rats. In addition, UU infection led to spermatogenesis disorders, impaired secretory function and blood-testis barrier (BTB) of Sertoli cells, and elevated inflammation and oxidative stress. As expected, ZDP suppressed inflammation and oxidative stress to alleviate spermatogenesis disorders. Our research showed that ZDP could improve spermatogenesis disorders and testicular function primarily through the mitogen-activated protein kinase (MAPK) signaling pathway. ZDP exerts its anti-inflammatory and antioxidant effects via the MAPK signaling pathway, thus playing an important role in ameliorating spermatogenesis failure and testicular dysfunction.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Infertilidad Masculina/tratamiento farmacológico , Enfermedades Testiculares/tratamiento farmacológico , Infecciones por Ureaplasma/tratamiento farmacológico , Ureaplasma urealyticum , Animales , Biología Computacional , Modelos Animales de Enfermedad , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Mediadores de Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Ratas , Ratas Sprague-Dawley , Espermatogénesis/efectos de los fármacos , Enfermedades Testiculares/etiología , Enfermedades Testiculares/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Infecciones por Ureaplasma/complicaciones , Infecciones por Ureaplasma/metabolismo
20.
Pharm Biol ; 60(1): 570-578, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35244521

RESUMEN

CONTEXT: Injection of YiQiFuMai (YQFM) powder, a modern Chinese plant-derived medical preparation, has a therapeutic effect in heart failure (HF). However, its therapeutic mechanism remains largely unknown. OBJECTIVE: To investigate the molecular mechanisms of YQFM in HF. MATERIALS AND METHODS: Kinase inhibition profiling assays with 2 mg/mL YQFM were performed against a series of 408 kinases. In addition, the effects of kinase inhibition were validated in cardiomyocyte cell line H9c2. In vivo, HF with reduced ejection fraction (HFrEF) was induced by permanent left anterior descending (LAD) coronary artery ligation for 6 weeks in male Sprague-Dawley rats. Then, HFrEF mice were treated with 0.46 g/kg YQFM or placebo once a day for 2 weeks. Echocardiography, immunohistochemistry, histological staining and Western blotting analysis were performed to assess the myocardial damage and molecular mechanisms. RESULTS: Kinase inhibition profiling analysis demonstrated that mitogen-activated protein kinases (MAPKs) mediated the signalling cascades of YQFM during HF therapy. Meanwhile, p38 and extracellular signal-regulated kinases (ERK1/2) were inhibited after YQFM treatment in H9c2 cells. In rats, the control group had lower left ventricular ejection fraction (LVEF) at 37 ± 1.7% compared with the YQFM group at 54 ± 1.1% (p < 0.0001). Cardiac fibrosis levels in control group rats were significantly higher than YQFM group (30.5 ± 3.0 vs. 14.1 ± 1.0, p < 0.0001). CONCLUSIONS: Our collective in vitro and in vivo experiments demonstrated that YQFM improves left ventricular (LV) function and inhibits fibrosis in HFrEF rats by inhibiting MAPK signalling pathways.


Asunto(s)
Cardiotónicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Animales , Línea Celular , Fibrosis/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Volumen Sistólico/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA