Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Talanta ; 264: 124692, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276677

RESUMEN

Cardiovascular diseases are among the major causes of mortality and morbidity. Warfarin is often prescribed for these disorders, an anticoagulant with inter and intra-dosage variability dose required to achieve the target international normalized ratio. Warfarin presents a narrow therapeutic index, and due to its variability, it can often be associated with the risk of hemorrhage, or in other patients, thromboembolism. Single-nucleotide polymorphisms are included in the causes that contribute to this variability. The Cytochrome P450 (CYP) 2C9*3 genetic polymorphism modifies its enzymatic activity, and hence warfarin's plasmatic concentration. Thus, the need for a selective, rapid, low-cost, and real-time detection device is crucial before prescribing warfarin. In this work, a disposable electrochemical DNA-based biosensor capable of detecting CYP2C9*3 polymorphism was developed. By analyzing genomic databases, two specific 78 base pairs DNA probes; one with the wild-type adenine (Target-A) and another with the cytosine (Target-C) single-nucleotide genetic variation were designed. The biosensor implied the immobilization on screen-printed gold electrodes of a self-assembled monolayer composed by mercaptohexanol and a linear CYP2C9*3 DNA-capture probe. To improve the selectivity and avoid secondary structures a sandwich format of the CYP2C9*3 allele was designed using complementary fluorescein isothiocyanate-labeled signaling DNA probe and enzymatic amplification of the electrochemical signal. Chronoamperometric measurements were performed at a range of 0.015-1.00 nM for both DNA targets achieving limit of detection of 42 p.m. The developed DNA-based biosensor was able to discriminate between the two synthetic target DNA targets, as well as the targeted denatured genomic DNA, extracted from volunteers genotyped as non-variant homozygous (A/A) and heterozygous (A/C) of the CYP2C9*3 polymorphism.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Técnicas Biosensibles , Humanos , Warfarina , Polimorfismo de Nucleótido Simple , Farmacogenética , Citocromo P-450 CYP2C9/genética , Hidrocarburo de Aril Hidroxilasas/genética , Vitamina K Epóxido Reductasas/genética , Anticoagulantes , ADN/genética , Genotipo , Sondas de ADN/genética
2.
Anal Chim Acta ; 1207: 339795, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35491037

RESUMEN

DNA hydrogels are powerful candidates for stable and sensitive detection of disease-related nucleic acids. However, the ability to accurately detect is the cornerstone of disease diagnosis. To improve the accuracy of DNA hydrogels for detecting targets, we herein reported the design of pH-responsive DNA hydrogels with ratiometric fluorescence. The DNA hydrogels were prepared from the pH-sensitive ZnO-NH2 and CO-Y-DNA probe assembled by the three complementary strands. With the use of miRNA-21 as the model analyte, the DNA hydrogels were applied to fluorescence ratio detection. Under acidic conditions, the ZnO-NH2 was decomposed, thereby releasing the CO-Y-DNA probe. Target miRNA-21 hybridized to the CO-Y-DNA probe, causing the change of fluorescence ratio between TAMRA and Cy5 that both modified in the CO-Y-DNA probe. The developed DNA hydrogels exhibited high accuracy and sensitivity with a low detection limit to 83 pM. In addition, the DNA hydrogels showed long-term stability against DNase I and GSH.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Óxido de Zinc , ADN/genética , Sondas de ADN/genética , Hidrogeles , Concentración de Iones de Hidrógeno
3.
Talanta ; 226: 122202, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33676722

RESUMEN

In the regulatory network, miRNAs play a regulatory role in a cooperative or antagonistic manner. Simultaneous accurate detection and imaging of multiplexed miRNAs in living cells are of great significance for miRNA-associated biological research and disease diagnosis and treatment. Herein, a MnO2 nanosheet-mediated target-binding-induced fluorescence resonance energy transfer (FRET) strategy was developed for detection and imaging of multiplexed miRNAs in living cells. Two pairs of DNA probes (P1-AF 488/P1'-Cy3 and P2-AF 488/P2'-AF 594) contained the complementary sequence to target miRNAs (miRNA-373 and miRNA-96) and labelled with different fluorescence dyes were designed. They were adsorbed onto MnO2 nanosheets by physisorption to form DNA/MnO2 nanocomposite probes. When the DNA/MnO2 nanocomposite probes were taken up by cells, the MnO2 nanosheets were reduced by intracellular glutathione, accompanying the release of DNA probe pairs. Then the DNA probe pairs specifically recognized and combined with miRNA-373 and miRNA-96 to form stable duplexes, respectively, bringing labelled fluorophores into close proximity to occur FRET. Based on this, the simultaneous imaging of miRNA-373 and miRNA-96 in MDA-MB-231 and L02 cells was successfully implemented. The results displayed a higher expression level of target miRNAs in MDA-MB-231 cells compared to L02 cells. The changes in expression levels of miRNA-96 induced by anti-miRNA-96 or mimics in MDA-MB-231 cells could also be monitored. In addition, the ratiometric detections of multiplexed miRNAs were achieved by utilizing the DNA probe pairs. The proposed strategy provides an alternative method for simultaneous accurate detection and imaging of multiplexed miRNAs and has potential application in biomedical applications.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , MicroARNs , Línea Celular Tumoral , Sondas de ADN/genética , Humanos , Compuestos de Manganeso , MicroARNs/genética , Óxidos
4.
ACS Sens ; 5(8): 2514-2522, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32664724

RESUMEN

MicroRNA (MiRNA)-based noninvasive diagnostics are hampered by the challenge in the quantification of circulating miRNAs using a general strategy. Here, we present a base-stacking effect-mediated ultrasensitive electrochemical miRNA sensor (BSee-miR) with a universal sandwich configuration. In the BSee-miR, a short DNA probe (10 nucleotides) self-assembled on a gold electrode surface could effectively capture the target miRNA synergizing with another sequence based on coaxial sandwich base-stacking, which rivals the fully complementary strength. Importantly, such a sandwich structure is flexible to incorporate signal amplification strategies (e.g., biotin-avidin) that are usually difficult to achieve in short sequence detection. Using this design, the BSee-miR achieves a broad dynamic range with a detection limit down to 7.5 fM. Furthermore, we found a high-curvature nanostructuring synergetic base-stacking effect that could improve the sensitivity of the BSee-miR by two orders of magnitude (79.3 aM). Our BSee-miR also has a single-base resolution to discriminate the highly homologous miRNAs. More importantly, this approach is universal and has been used to probe target miRNAs varying in sequences and secondary structures. Our ultrasensitive sensor could detect miRNA in cell lysates and human blood and distinguish cancer patients from normal individuals, promising a versatile tool to measure clinically relevant miRNAs for tumor diagnostics.


Asunto(s)
MicroARNs , Sondas de ADN/genética , Electrodos , Oro , Humanos , Límite de Detección
5.
Mikrochim Acta ; 187(1): 4, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31797053

RESUMEN

An ultrasensitive electrochemical biosensor is described for the determination of microRNAs. It is based on the use of DNA-templated copper nanoparticles (Cu NPs) as signalling probe. MicroRNA-222 was selected as the model analyte. The probe was obtained from two different oligonucleotides (containing complementary bases) via hybridization chain reaction to form long DNA concatemers as template. The Cu NPs were formed by reaction of ascorbate with copper sulfate. The biosensor was fabricated as follows: (a) Capture probe (cDNA) with a thiolated group was immobilized on reduced graphene oxide modified with gold nanoparticles (rGO/Au NPs), (b) materials was placed on a glassy carbon electrode (GCE); (c) the modified electrode (cDNA/rGO/Au NPs/GCE) was sequentially hybridized with microRNA-222 and signal probe; this results in the formation of a sandwich structure of cDNA-microRNA-signal probe on surface of the modified electrode. Differential pulse voltammetry was employed to record the electrochemical response of biosensor in pH 6.0 solution. As a result, a sensitive oxidation current with a peak potential at 0.10 V (vs. SCE) was obtained corresponding to Cu NPs. The experimental conditions were optimized. Under optimal conditions, the biosensor exhibited wide linear response range (0.5 fM to 70 nM) and low limit of detection (0.03 fM; at S/N = 3). The assay possesses high selectivity and can discriminate analyte microRNA from single-base mismatched microRNA. Graphical abstractA sensitive electrochemical biosensor is described for the determination of microRNA-222 by using a dsDNA-templated Cu NPs as signalling probe. (A) represents the preparation of signal probe, and (B) represents the fabrication of electrochemical microRNA sensor.


Asunto(s)
Técnicas Biosensibles/métodos , Cobre/química , Sondas de ADN/química , Nanopartículas del Metal/química , MicroARNs/análisis , Secuencia de Bases , Sondas de ADN/genética , Electroquímica , Humanos , Límite de Detección , Modelos Lineales , MicroARNs/sangre , MicroARNs/química
6.
Analyst ; 144(22): 6689-6697, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31598619

RESUMEN

A sensitive and label-free fluorometric method has been developed for the determination of polynucleotide kinase (PNK) activity, by employing exonuclease III (Exo III)-assisted cyclic signal amplification and poly(thymine)-templated copper nanoparticles (polyT-CuNPs). In the presence of PNK, cDNA with 5'-hydroxyl termini was phosphorylated and then hybridized with tDNA to form the cDNA/tDNA duplex, which subsequently triggered the λ exonuclease cleavage reaction, eventually resulting in the release of tDNA. The released tDNA could unfold the hairpin structure of HP DNA to generate partially complementary duplex (tDNA/HP DNA), wherein the HP DNA possessed T-rich sequences (T30) and tDNA recognition sequence. With the help of Exo III digestion, the tDNA was able to initiate the cycle for the generation of T-rich sequences, the template for the formation of fluorescent CuNPs. Conversely, the cDNA could not be cleaved by λ exonuclease without PNK and individual HP DNA could not be hydrolyzed by Exo III. The T-rich sequence was caged in HP DNA, resulting in a weak fluorescence signal. Under optimized conditions, the fluorescence intensity was linearly correlated to a concentration range of 0.001 to 1 U mL-1 with a low detection limit of 2 × 10-4 U mL-1. Considering the intriguing analytical performance, this approach could be explored to screen T4 PNK inhibitors and hold promising applications in drug discovery and disease therapy.


Asunto(s)
Pruebas de Enzimas/métodos , Exodesoxirribonucleasas/química , Nanopartículas del Metal/química , Poli T/química , Polinucleótido 5'-Hidroxil-Quinasa/análisis , Espectrometría de Fluorescencia/métodos , Bacteriófago T4/enzimología , Secuencia de Bases , Técnicas Biosensibles/métodos , Cobre/química , ADN/química , ADN/genética , Sondas de ADN/química , Sondas de ADN/genética , Células HeLa , Humanos , Secuencias Invertidas Repetidas , Límite de Detección , Hibridación de Ácido Nucleico , Reproducibilidad de los Resultados
7.
Analyst ; 144(18): 5504-5510, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31389925

RESUMEN

Simultaneous detection of different types of cancer biomarkers (nucleic acids and proteins) could facilitate early diagnosis of cancer and clinical treatment. Herein, a simultaneous detection platform of proteins and nucleic acids has been developed using a single substrate probe combining a label-free and background-eliminated fluorescence assay. Telomerase and telomerase RNA (TR) were chosen as the models. The molecular beacon (dU-BIO-HP) that contains deoxyuridine/biotin in its side arm, a TR recognition sequence in the loop and a telomerase substrate primer at the stem end was ingeniously designed. In the presence of telomerase, the stem of dU-BIO-HP is elongated by the addition of telomere repeats complementary to the assistant DNA. Furthermore, the formed dsDNA performed as engaging primers to initiate a SDA reaction, generating abundant G-quadruplex monomers. Similarly, on TR, the hybridization between TR and dU-BIO-HP can open its stem, triggering another SDA reaction, producing abundant short ssDNAs. With the G-quadruplex binding with ZnPPIX and ssDNA binding with SG for specific fluorescence responses, the label-free multiple detection can be achieved. In our strategy, the deoxyuridine of dU-BIO-HP acts as a barrier to block the DNA extension due to its strong inhibitory effects on DNA polymerase activity and to make sure that the two SDA reactions occurred independently. The biotin of dU-BIO-HP enables the reduction of the background from the binding between SG, ZnPPIX and dU-BIO-HP through streptavidin-biotin interaction. This method showed an excellent sensitivity with telomerase and TR detection limit of 2.18 HeLa cells per mL and 0.16 × 10-12 M, respectively. Furthermore, the telomerase and TR in different cell lines have been evaluated as powerful tools for biomedical research and clinical diagnosis.


Asunto(s)
Biomarcadores de Tumor/análisis , ARN/análisis , Telomerasa/análisis , Biotina/química , Línea Celular Tumoral , Sondas de ADN/química , Sondas de ADN/genética , Desoxiuridina/química , Pruebas de Enzimas/métodos , Colorantes Fluorescentes/química , Humanos , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Hibridación de Ácido Nucleico , Compuestos Orgánicos/química , ARN/genética , Espectrometría de Fluorescencia , Telomerasa/genética
8.
Prep Biochem Biotechnol ; 49(9): 900-907, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31271333

RESUMEN

This work describes, for the first time, the fabrication of poly(L-aspartic acid) (PAA) film modified pencil graphite electrode (PGE) for the detection of hepatitis C Virus 1a (HCV1a). The presence of PAA on the electrode surface can provide free carboxyl groups for covalent binding of biomolecules. The PGE surface was first coated with PAA via electropolymerization of the L-aspartic acid, and avidin was subsequently attached to the PAA modified electrode by covalent attachment. Biotinylated HCV1a probes were immobilized on avidin/PAA/PGE via avidin-biotin interaction. The morphology of PAA/PGE was examined using a scanning electron microscope. The hybridization events were monitored with square wave voltammetry using Meldola's blue (MDB). Compared to non-complementary oligonucleotide sequences, when hybridization was carried out between the probe and its synthetic targets or the synthetic polymerase chain reaction analog of HCV1a, the highest MDB signal was observed. The linear range of the biosensor was 12.5 to 100 nM and limit of detection was calculated as 8.7 nM. The biosensor exhibited favorable stability over relatively long-term storage. All these results suggest that PAA-modified electrode can be used to nucleic acid biosensor application and electropolymerization of L-aspartic acid can be considered as a good candidate for the immobilization of biomolecules.


Asunto(s)
Técnicas Biosensibles/instrumentación , Hepacivirus/genética , Hibridación de Ácido Nucleico , Oligonucleótidos/genética , Péptidos/química , Sondas de ADN/química , Sondas de ADN/genética , Técnicas Electroquímicas/instrumentación , Electrodos , Hepacivirus/aislamiento & purificación , Hepatitis C/virología , Humanos , Ácidos Nucleicos Inmovilizados/química , Ácidos Nucleicos Inmovilizados/genética , Oligonucleótidos/análisis
9.
Artículo en Inglés | MEDLINE | ID: mdl-30945985

RESUMEN

Consumption and exploitation of crocodiles have been rampant for their exotic, nutritive and medicinal attributes. These depredations are alarming and although they have continued to be monitored by wildlife and conservation agencies, unlawful trading of crocodiles shows an increasing trend worldwide. Recently, conventional polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) assays for crocodile have been documented but they are only suitable for identification and cannot quantify adulterations. We described here a quantitative duplex real-time PCR assay with probes to quantify contributions from Crocodylus porosus materials simultaneously. A very short amplicon size of 127bp was used because longer targets could have been broken down in samples, bringing considerable uncertainty in molecular analysis. We have validated a TaqMan probe-based duplex real-time PCR (qPCR) assay for the detection of 0.004 ng DNA in pure state and 0.1% target meat in model chicken meatball. False negative detection was eliminated through an endogenous control (141-bp site of eukaryotic 18S rRNA). Analysis of 12 model chicken meatballs adulterated with C. porosus reflected 96.3-120.2% target recovery at 0.1-10% adulterations. A validation test of 21 commercial food and traditional medicine (TM) crocodile-based products showed 100% effectiveness. Short amplicon sizes, alternative complementary target, exceptional stability and superior sensitivity suggested the assay could be used for the identification and quantitative determination of C. porosus in any food or TM samples even under degraded conditions.


Asunto(s)
Caimanes y Cocodrilos/genética , Sondas de ADN/genética , Contaminación de Alimentos/análisis , Abastecimiento de Alimentos , Medicina Tradicional , Reacción en Cadena en Tiempo Real de la Polimerasa , Animales
10.
Anal Chim Acta ; 1055: 26-35, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-30782367

RESUMEN

In this work, polyaniline nanospindles have been synthesized using iron oxide as sacrificial template. These nanospindles were utilized for the fabrication of PANI-MoS2 nanoflower architectures via hydrothermal route. The electrostatic interaction between PANI and MoS2 improves the conductivity and provides more direct paths for charge transportation. SEM, TEM, XRD, Raman Spectroscopy techniques were employed to explore the crystal structure, and morphological properties of the PANI-MoS2 nanocomposite. Furthermore, an electrochemical biosensing platform based on PANI-MoS2 nanocomposite was fabricated for the specific detection of chronic myelogenous leukemia (CML) by using electrochemical impedance spectroscopy technique. The binding interactions between the pDNA/PANI-MoS2/ITO bioelectrode and target DNA sequence were also studied. The biosensor exhibits high sensitivity and wide detection range (10-6  M to 10-17  M) of target DNA with low detection limit (3 × 10-18  M). Additionally, the specificity studies of the genosensor with various target DNA sequences (complementary, noncomplementary and one base mismatch) and real samples analysis of CML shows its potential for clinical diagnostics.


Asunto(s)
Compuestos de Anilina/química , Biomarcadores de Tumor/análisis , Técnicas Biosensibles/métodos , Disulfuros/química , Molibdeno/química , Adulto , Secuencia de Bases , Sondas de ADN/química , Sondas de ADN/genética , Humanos , Masculino , Persona de Mediana Edad , Nanocompuestos/química , Propiedades de Superficie
11.
Talanta ; 194: 226-232, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609524

RESUMEN

Nucleic acids labeled with a fluorophore/quencher pair are widely used as probes in biomedical research and molecular diagnostics. Here we synthesized novel DNA molecular beacons double labeled with the identical dyes (R6G, ROX and Cy5) at 5'- and 3'-end and studied their photo physical properties. We demonstrated that fluorescence quenching by formation of the homo dimer exciton in such molecular beacons allows using them in homogeneous assays. Further, we developed and evaluated homo Yin-Yang DNA probes labeled with identical dyes and used them for detection of low copy HIV RNA by RT-qPCR. They demonstrated improved sensitivity (LLQ: 10 vs 30 copies mL-1) in comparison to commercially available Abbott RealTime HIV-1 kit based on VIC-BHQ dyes both for model mixtures (naive human plasma with added deactivated HIV-1 virus) and for preliminarily confirmed 36 clinical samples (4 vs 1 positive ones for low-copy samples).


Asunto(s)
Sondas de ADN/genética , VIH-1/genética , Límite de Detección , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Secuencia de Bases , Sondas de ADN/química , Modelos Moleculares , Conformación de Ácido Nucleico
12.
ACS Sens ; 3(11): 2261-2268, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30350587

RESUMEN

Loop-mediated isothermal amplification (LAMP) is a powerful gene amplification method, which has many advantages, including high specificity, sensitivity, and simple operation. However, quantitative analysis of the amplified target gene with the LAMP assay is very difficult. To overcome this limitation, we developed a novel biosensing platform for molecular diagnosis by integrating the LAMP method and retroreflective Janus particle (RJP) together. The final amplified products of the LAMP assay are dumbbell-shaped DNA structures, containing a single-stranded loop with two different sequences. Therefore, the concentration of the amplified products can be measured in a manner similar to the sandwich-type immunoassay. To carry out the sandwich-type molecular diagnostics using the LAMP product, two DNA probes, with complementary sequences to the loop-regions, were prepared and immobilized on both the sensing surface and the surface of the RJPs. When the amplified LAMP product was applied to the sensing surface, the surface-immobilized DNA probe hybridized to the loop-region of the LAMP product to form a double-stranded structure. When the DNA probe-conjugated RJPs were injected, the RJPs bound to the unreacted loop-region of the LAMP product. The number of RJPs bound to the loop-region of the LAMP product was proportional to the concentration of the amplified LAMP product, indicating that the concentration of the target gene can be quantitatively analyzed by counting the number of observed RJPs. Using the developed system, a highly sensitive and selective quantification of Salmonella was successfully performed with a detection limit of 102 CFU.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Técnicas Biosensibles/métodos , Materiales Manufacturados , Imagen Óptica/métodos , Salmonella typhimurium/aislamiento & purificación , Aluminio/química , Aluminio/efectos de la radiación , Secuencia de Bases , Sondas de ADN/química , Sondas de ADN/genética , ADN Bacteriano/genética , ADN Complementario/genética , Oro/química , Oro/efectos de la radiación , Luz , Límite de Detección , Microtecnología , Técnicas de Amplificación de Ácido Nucleico , Hibridación de Ácido Nucleico , Fenómenos Ópticos , Dióxido de Silicio/química , Dióxido de Silicio/efectos de la radiación , Succinimidas/química
13.
Chromosoma ; 127(4): 505-513, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30242479

RESUMEN

Analysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes. We demonstrate that these probes are robust enough to monitor a single chromosome throughout the prophase I of meiosis in polyploid Solanum species. Cultivated potato (Solanum tuberosum, 2n = 4x = 48) is an autotetraploid. We demonstrate that the four copies of each potato chromosome pair as a quadrivalent in 66-78% of the meiotic cells at the pachytene stage. Solanum demissum (2n = 6x = 72) is a hexaploid and has been controversial regarding its nature as an autopolyploid or allopolyploid. Interestingly, no hexavalent pairing was observed in meiosis. Instead, we observed three independent bivalents in 83-98% of the meiotic cells at late diakinesis and early metaphase I for the four chromosomes. These results suggest that S. demissum has evolved into a cytologically stable state with predominantly bivalent pairing in meiosis.


Asunto(s)
Pintura Cromosómica/métodos , Emparejamiento Cromosómico , Cromosomas de las Plantas , Solanum/genética , Sondas de ADN/genética , Poliploidía , Solanum tuberosum/genética
14.
Langmuir ; 34(49): 14817-14824, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30185042

RESUMEN

Light can be used to spatially resolve electrochemical measurements on a semiconductor electrode. This phenomenon has been explored to detect DNA hybridization with light-addressable potentiometric sensors and, more recently, with light-addressable amperometric sensors based on organic-monolayer-protected Si(100). Here, a contribution to the field is presented by comparing sensing performances when bovine serum albumin (BSA) and hexaethylene glycol (OEG6) are employed as antifouling layers that resist nonspecific adsorption to the DNA-modified interface on Si(100) devices. What is observed is that both sensors based on BSA or OEG6 initially allow electrochemical distinction among complementary, noncomplementary, and mismatched DNA targets. However, only surfaces based on OEG6 can sustain electroactivity over time. Our results suggest that this relates to accelerated SiO x formation occasioned by BSA proteins adsorbing on monolayer-protected Si(100) surfaces. Therefore, DNA biosensors were analytically explored on low-doped Si(100) electrodes modified on the molecular level with OEG6 as an antifouling layer. First, light-activated electrochemical responses were recorded over a range of complementary DNA target concentrations. A linear semilog relation was obtained from 1.0 × 10-11 to 1.0 × 10-6 mol L-1 with a correlation coefficient of 0.942. Then, measurements with three independent surfaces indicated a relative standard deviation of 4.5%. Finally, selectivity tests were successfully performed in complex samples consisting of a cocktail mixture of four different DNA sequences. Together, these results indicate that reliable and stable light-activated amperometric DNA sensors can be achieved on Si(100) by employing OEG6 as an antifouling layer.


Asunto(s)
ADN/química , Glicoles de Etileno/química , Albúmina Sérica Bovina/química , Silicio/química , Adsorción/efectos de los fármacos , Animales , Antraquinonas/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Bovinos , ADN/genética , Sondas de ADN/química , Sondas de ADN/genética , Electroquímica/instrumentación , Electroquímica/métodos , Electrodos , Sustancias Intercalantes/química , Luz , Hibridación de Ácido Nucleico , Oxidación-Reducción , Silicio/efectos de la radiación
15.
Biosens Bioelectron ; 113: 108-115, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29753165

RESUMEN

In this present work we made a novel, fast, selective and sensitive electrochemical genobiosensor to detection of EGFR exon 21 point mutation based on two step electropolymerization of Ni(II)-oxytetracycline conducting metallopolymer nanoparticles (Ni-OTC NPs) on the surface of pencil graphite electrode (PGE) which was modified by reduced graphene oxide/carboxyl functionalized ordered mesoporous carbon (rGO/f-OMC) nanocomposite. ssDNA capture probe with amine groups at the5' end which applied as recognition element was immobilized on the rGO/f-OMC/PGE surface via the strong amide bond. Ni-OTC metallopolymer NPs were electropolymerized to rGO/ssDNA-OMC/PGE surface and then hybridization fallows through the peak current change in differential pulse voltammetry (DPV) using Ni-OTC NPs as a redox label. The biosensor was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), FT-IR spectroscopy, energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry and Nitrogen adsorption-desorption analysis. The Ni-OTC current response verified only the complementary sequence indicating a significant reduction current signal in comparison to single point mismatched and non-complementary and sequences. Under optimal conditions, the prepared biosensor showed long-term stability (21 days) with a wide linear range from 0.1 µM to 3 µM with high sensitivity (0.0188 mA/µM) and low detection limit (120 nM).


Asunto(s)
Técnicas Biosensibles/métodos , Receptores ErbB/genética , Ácidos Nucleicos Inmovilizados/química , Neoplasias Pulmonares/genética , Nanopartículas/química , Oxitetraciclina/análogos & derivados , Mutación Puntual , Biomarcadores de Tumor/genética , Carbono/química , Sondas de ADN/química , Sondas de ADN/genética , Técnicas Electroquímicas/métodos , Electrodos , Exones , Grafito/química , Humanos , Ácidos Nucleicos Inmovilizados/genética , Límite de Detección , Nanopartículas/ultraestructura , Hibridación de Ácido Nucleico , Oxidación-Reducción , Óxidos/química
16.
Int J Biol Macromol ; 98: 84-93, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28126458

RESUMEN

An impedimetric genosensor was fabricated for detection of hepatitis C virus (HCV) genotype 1 in serum, based on hybridization of the probe with complementary target cDNA from sample. To achieve it, probe DNA complementary to HCVgene was immobilized on the surface of methylene blue (MB) doped silica nanoparticles MB@SiNPs) modified fluorine doped tin oxide (FTO) electrode. The synthesized MB@SiNPs was characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) pattern. This modified electrode (ssDNA/MB@SiNPs/FTO) served both as a signal amplification platform (due to silica nanoparticles (SiNPs) as well as an electrochemical indicator (due to methylene blue (MB)) for the detection of the HCV DNA in patient serum sample. The genosensor was optimized and evaluated. The sensor showed a dynamic linear range 100-106 copies/mL, with a detection limit of 90 copies/mL. The sensor was applied for detection of HCV in sera of hepatitis patient and could be renewed. The half life of the sensor was 4 weeks. The MB@SiNPs/FTO electrode could be used for preparation of other gensensors also.


Asunto(s)
Sondas de ADN/química , ADN Viral/análisis , Hepacivirus/genética , Azul de Metileno/química , Nanopartículas/química , Dióxido de Silicio/química , Secuencia de Bases , Técnicas Biosensibles/instrumentación , Sondas de ADN/genética , ADN Viral/química , ADN Viral/genética , Impedancia Eléctrica , Electroquímica , Electrodos , Humanos , Límite de Detección , Nanocompuestos/química , Hibridación de Ácido Nucleico
17.
Biosens Bioelectron ; 92: 679-686, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27838203

RESUMEN

Bio-barcode DNA based on gold nanoparticle (bDNA-GNPs) as a new generation of biosensor based detection tools, holds promise for biological science studies. They are of enormous importance in the emergence of rapid and sensitive procedures for detecting toxins of microorganisms. Exotoxin A (ETA) is the most toxic virulence factor of Pseudomonas aeruginosa. ETA has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. In the present study, we developed a fluorescence bio-barcode technology to trace P. aeruginosa ETA. The GNPs were coated with the first target-specific DNA probe 1 (1pDNA) and bio-barcode DNA, which acted as a signal reporter. The magnetic nanoparticles (MNPs) were coated with the second target-specific DNA probe 2 (2pDNA) that was able to recognize the other end of the target DNA. After binding the nanoparticles with the target DNA, the following sandwich structure was formed: MNP 2pDNA/tDNA/1pDNA-GNP-bDNA. After isolating the sandwiches by a magnetic field, the DNAs of the probes which have been hybridized to their complementary DNA, GNPs and MNPs, via the hydrogen, electrostatic and covalently bonds, were released from the sandwiches after dissolving in dithiothreitol solution (DTT 0.8M). This bio-barcode DNA with known DNA sequence was then detected by fluorescence spectrophotometry. The findings showed that the new method has the advantages of fast, high sensitivity (the detection limit was 1.2ng/ml), good selectivity, and wide linear range of 5-200ng/ml. The regression analysis also showed that there was a good linear relationship (∆F=0.57 [target DNA]+21.31, R2=0.9984) between the fluorescent intensity and the target DNA concentration in the samples.


Asunto(s)
ADP Ribosa Transferasas/genética , Toxinas Bacterianas/genética , ADN Bacteriano/genética , Exotoxinas/genética , Oro/química , Nanopartículas de Magnetita/química , Nanopartículas del Metal/química , Pseudomonas aeruginosa/genética , Factores de Virulencia/genética , Técnicas Biosensibles/métodos , Sondas de ADN/química , Sondas de ADN/genética , ADN Bacteriano/análisis , Humanos , Límite de Detección , Nanopartículas de Magnetita/ultraestructura , Nanopartículas del Metal/ultraestructura , Infecciones por Pseudomonas/diagnóstico , Infecciones por Pseudomonas/microbiología , Espectrometría de Fluorescencia/métodos , Exotoxina A de Pseudomonas aeruginosa
18.
Anal Chem ; 88(10): 5097-103, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27086663

RESUMEN

An ultrasensitive and specific electrochemiluminescence (ECL) biosensor has been designed for the p53 DNA sequence, which is based on cascade signal amplification of nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification (HRCA). First of all, biotin modified hairpin capture DNA (HP) probe was immobilized on the surface of streptavidin magnespheres paramagnetic particles (PMPs). Target DNA hybridized with the loop portion of the HP probe, therefore unfolding HP to form a double-stranded DNA (dsDNA) containing the specific nicking site of the nicking endonuclease. Then, the nicking endonuclease recognized the specific nicking site and cleaved the HP into two pieces, liberating target DNA and the complementary sequence piece for the padlock probe. The intact target DNA would initiate the next cycle of hybridization and cleavage, thereby releasing multiple complementary sequences for the padlock probes. The liberated complementary sequences hybridized with the padlock probes, subsequently inducing the HRCA reaction and generating numerous dsDNA segments. Herein, Ru(phen)3(2+) was embedded into dsDNA and worked as ECL signal reporter. The reaction products were eventually pretreated by dialysis tube with the cutoff membrane to remove the residual Ru(phen)3(2+) in the solution for the following ECL measurements. Using this cascade amplification strategy, an ultrasensitive p53 DNA sequence detection method was developed with a wide linear range from 0.05 to 100 fM and a low detection limit of 0.02 fM. Moreover, this cascade amplified ECL biosensor had specific recognition capacity for noncomplementary and single- and double-base mismatched DNA. The proposed ECL biosensor might have a great potential in biomedical research and clinic analysis.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/sangre , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteína p53 Supresora de Tumor/genética , Secuencia de Bases , ADN/genética , Sondas de ADN/química , Sondas de ADN/genética , Técnicas Electroquímicas/métodos , Endonucleasas/química , Humanos , Límite de Detección , Mediciones Luminiscentes
20.
Biosens Bioelectron ; 79: 371-8, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26735871

RESUMEN

A microfluidic hydrogel DNA microarray is developed to overcome the limitations of conventional planar microarrays such as low sensitivity, long overnight hybridization time, lack of a melting verification of proper hybrid, and complicated sample preparation process for genotyping of clinical samples. Unlike our previous prototype hydrogel array which can analyze only single-stranded DNA (ssDNA) targets, the device is the first of its type to allow direct multiplexed single nucleotide polymorphism (SNP) detection of human clinical samples comprising double-stranded DNA (dsDNA). This advance is made possible by incorporating a streptavidin (SA) hydrogel capture/purification element in a double T-junction at the start of the linear hydrogel array structure and fabricating ten different probe DNAs-entrapped hydrogels in microfluidic channels. The purified or unpurified polymerase chain reaction (PCR) products labeled with a fluorophore and a biotin are electrophoresed through the SA hydrogel for binding and purification. After electrophoretic washing, the fluorophore-labeled DNA strand is then thermally released for hybridization capture by its complementary probe gel element. We demonstrate the precise and rapid discrimination of the genotypes of five different clinical targets by melting curve analysis based on temperature-gradient electrophoresis within 3h, which is at least 3-fold decrease in incubation time compared to conventional microarrays. In addition, a 1.7 pg (0.024 femtomoles) limit of detection for clinical samples is achieved which is ~100-fold better sensitivity than planar microarrays.


Asunto(s)
Técnicas Biosensibles , ADN/genética , Técnicas de Genotipaje , Microfluídica/métodos , Sondas de ADN/química , Sondas de ADN/genética , Genotipo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA