Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; 190: 106641, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588925

RESUMEN

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Asunto(s)
Adyuvantes Inmunológicos , Antioxidantes , Bivalvos , Kéfir , Probióticos , Superóxido Dismutasa , Vibrio alginolyticus , Animales , Probióticos/farmacología , Bivalvos/química , Bivalvos/microbiología , Antioxidantes/metabolismo , Kéfir/microbiología , Superóxido Dismutasa/metabolismo , Spirulina/química , Malondialdehído/metabolismo , Malondialdehído/análisis , Alimentación Animal , Monofenol Monooxigenasa/metabolismo , Suplementos Dietéticos , Fosfatasa Alcalina/metabolismo , Muramidasa/metabolismo , Vibriosis/prevención & control
2.
Nutrients ; 16(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398877

RESUMEN

Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements.


Asunto(s)
Spirulina , Masculino , Ratones , Animales , Spirulina/química , Ratones Obesos , Zinc , ARN Ribosómico 16S , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad
3.
Sci Rep ; 14(1): 2809, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307932

RESUMEN

Microalgae species are of economic importance regarded as "green gold" being rich in bioactive compounds. Spirulina and Chlorella are the most popular microalgal species and are marketed as healthy food supplements. At the same time, Amphora holds potential as a source of healthy lipids and essential fatty acids. Yet, there are considerable variations in their reported chemical composition, and less is known about their compositional differences. A multiplexed metabolomic approach was adopted for the quality control (QC) of Spirulina supplements and to compare its constitutive metabolome to Chlorella and Amphora. The adopted protocol comprised gas chromatography-mass spectrometry (GC-MS), ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-HRMS/MS), and ultraviolet-visible spectrophotometry (UV/Vis) for mapping their primary and secondary metabolome. Interestingly, UPLC-HRMS/MS analysis delineated the abundance of fatty acids in Amphora versus glycolipids enrichment in Spirulina, and porphyrins were the main pigments identified in Spirulina, with scarce occurrence in Chlorella. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) analysis of GC-MS data set revealed palmitic acid, 3-mannobiose, and glyceryl-glycoside as being most enriched in Spirulina, versus sucrose and leucine in Chlorella and Amphora, respectively. Despite being of low discriminatory potential, UV/Vis OPLS-DA modeling showed that Spirulina was distinguished with the UV absorbances of carotenoids and chlorophyll pigments, as indicated by its OPLS-DA derived S-plot. Our study provides a QC approach for the analysis of the microalgal species and poses alternative spectral and compositional markers for their discrimination.


Asunto(s)
Chlorella , Microalgas , Spirulina , Chlorella/química , Spirulina/química , Quimiometría , Suplementos Dietéticos
4.
Phytomedicine ; 119: 154964, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37544212

RESUMEN

BACKGROUND: Nutraceuticals have been important for more than two decades for their safety, efficacy, and outstanding effects. Diabetes is a major metabolic syndrome, which may be improved using nutritional pharmaceuticals. Some microalgae species, such as spirulina, stand out by providing biomass with exceptional nutritional properties. Spirulina has a wide range of pharmacological effects, mostly related to phycocyanin. Phycocyanin is a protein compound with antidiabetic properties, known as a nutraceutical. OBJECTIVE: This review delves into phycocyanin applications in diabetes and its complications and ascertains the mechanisms involved. METHODS: Scopus, PubMed, Cochrane Library, Web of Science, and ProQuest databases were systematically reviewed (up to April 30, 2023), in which only animal and cellular studies were found. RESULTS: According to animal studies, the administration of phycocyanin affected biochemical parameters (primary outcome) related to diabetes. These results showed an increase in fasting insulin serum and a decrease in fasting blood glucose, glycosylated serum protein, and glycosylated hemoglobin. In cellular studies, though, phycocyanin prevented methylglyoxal and human islet amyloid polypeptide-induced dysfunction in ß-cells and induced apoptosis through different molecular pathways (secondary outcome), including activation of Nrf2, PI3K/Akt, and suppression of JNK and p38. Also, phycocyanin exerted its antidiabetic effect by affecting the pathways regulating hepatic glucose metabolism. CONCLUSIONS: Thus, based on the available information and literature, targeting these pathways by phycocyanin may unleash an array of benefits, including positive outcomes of the antidiabetic effects of phycocyanin as a nutraceutical. OTHER: This systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) at the National Institute of Health. The registration number is CRD42022307522.


Asunto(s)
Células Secretoras de Insulina , Spirulina , Animales , Humanos , Ficocianina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Revisiones Sistemáticas como Asunto , Hipoglucemiantes/farmacología , Spirulina/química
5.
Adv Exp Med Biol ; 1423: 161-174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37525040

RESUMEN

Spirulina platensis was first isolated from Lake Texcoco by Aztecs in the sixteenth century. In 2012, spirulina was considered to be safe dietary supplement by the Food and Drug Administration (FDA). Spirulina is a cyanophytic microalgae that is often considered as single cell protein. It contains many essential amino acids, proteins, fatty acids, antioxidant pigments, carotenoids, and cyanogenic pigments, that is, phycocyanobilins and phycocyanins (Eriksen, Appl Microbiol Biotechnol, 80(1):1-4, 2008). Components of spirulina are investigated for many health benefits and for pharmaceutical uses (Karkos et al., Spirulina in clinical practice: evidence-based human applications). Spirulina has been found to have a role in growth, immunity (Wu et al., Arch Toxicol, 90(8):1817-40, 2016), antioxidant (Wu et al., Arch Toxicol, 90(8):1817-40, 2016), antiviral (Ayehunie et al., J Acquir Immune Defic Syndr Hum Retrovirol, 18(1):7-12, 1998), antitoxicologic, anti-cancerogenic (Hirahashi et al., Int Immunopharmacol, 2(4):423-34, 2002), antidiabetic (Layam and Reddy, Diabetol Croat, 35(2):29-33, 2006), and neuroprotective properties. In this study, we focused on spirulina components in anti-Parkinson's and anti-Alzheimer's activity. Four potential targets, two for each activity, that is, structure of parkinE3 ligase (PDB ID:4I1H) and structure of BACE bound to 5-(3-(5-chloropyridin-3-yl)phenyl)-5-cyclopropyl-2-imino-3-methylimidazolidin-4one (PDBI D:4DJx) for anti-Parkinson's activity and structure of human MAO B in complex with selective inhibitor safinamide (PDB ID:2V5Z) and crystal structure of human BACE-1 in complex with CNP520(PDB ID:6EQM) for anti-Alzheimer's activity, have been selected. The in silico results and scoring of virtual screening, that is, molecular docking, were compared with commonly used marketed drugs such as levodopa for Parkinson's disease (PD) and rivastigmine (Rösler et al., BMJ, 318(7184):633-40, 1999) for Alzheimer's disease.


Asunto(s)
Antioxidantes , Spirulina , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/química , Spirulina/química , Simulación del Acoplamiento Molecular , Suplementos Dietéticos , Carotenoides
6.
Toxins (Basel) ; 15(6)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37368655

RESUMEN

Spirulina is consumed worldwide, in the form of food or dietary supplements, for its nutritional value and health potential. However, these products may contain cyanotoxins, including hepatotoxic microcystins (MCs), produced by cyanobacterial contaminants. The French spirulina market has the particularity of being supplied half-locally by approximately 180 small-scale spirulina production farms. Data about this particular production and possible contaminations with other cyanobacteria and MCs are scarce. Thus, we collected the results of MC analyses and total cyanobacteria counts, carried out between 2013 and 2021, from 95 French spirulina producers who agreed to share their data. These data consisted of MC concentrations determined with an enzyme-linked immunosorbent assay (ELISA) using 623 dry spirulina samples and 105 samples of spirulina cultures. In addition, potentially unsafe samples of dry spirulina were further investigated through mass spectrometry, as duplicate analysis. We confirmed that the situation of the French spirulina production stayed within the safe regulatory level in terms of MC levels. On the other hand, the inventory of cyanobacterial contaminants, based on 539 count results, included 14 taxa. We present their prevalence, interannual evolution and geographical distribution. We also suggested improvements in cultivation practices to limit their propagation.


Asunto(s)
Microcistinas , Spirulina , Microcistinas/toxicidad , Spirulina/química , Toxinas de Cianobacterias , Suplementos Dietéticos/análisis , Espectrometría de Masas
7.
Front Immunol ; 14: 1072787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798131

RESUMEN

Increase in drug resistance as well as ineffective immunization efforts against various pathogens (viruses, bacteria and fungi) pose a significant threat to the poultry industry. Spirulina is one of the most widely used natural ingredients which is becoming popular as a nutritional supplement in humans, animals, poultry and aquaculture. It contains protein, vitamins, minerals, fatty acids, pigments, and essential amino acids. Moreover, it also has considerable quantities of unique natural antioxidants including polyphenols, carotenoids, and phycocyanin. Dietary supplementation of Spirulina can beneficially affect gut microbial population, serum biochemical parameters, and growth performance of chicken. Additionally, it contains polyphenolic contents having antibacterial effects. Spirulina extracts might inhibit bacterial motility, invasion, biofilm formation, and quorum sensing in addition to acting directly on the bacterium by weakening and making the bacterial cell walls more porous, subsequently resulting in cytoplasmic content leakage. Additionally, Spirulina has shown antiviral activities against certain common human or animal viruses and this capability can be considered to exhibit potential benefits against avian viruses also. Spirulan, a calcium-rich internal polysaccharide of Spirulina, is potentially responsible for its antiviral effect through inhibiting the entry of several viruses into the host cells, boosting the production of nitric oxide in macrophages, and stimulating the generation of cytokines. Comparatively a greater emphasis has been given to the immune modulatory effects of Spirulina as a feed additive in chicken which might boost disease resistance and improve survival and growth rates, particularly under stress conditions. This manuscript reviews biological activities and immune-stimulating properties of Spirulina and its potential use as a dietary supplement in poultry to enhance growth, gut health and disease resistance.


Asunto(s)
Spirulina , Animales , Humanos , Spirulina/química , Aves de Corral , Resistencia a la Enfermedad , Suplementos Dietéticos , Antivirales
8.
Food Funct ; 14(2): 1160-1178, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36601898

RESUMEN

The present study was aimed at developing Arthrospira platensis (Spirulina) fortified traditional foods of the Indian subcontinent, namely sattu (multigrain beverage mix) and chikki (peanut bar) and evaluating their ability to promote recovery from protein and iron deficiency anaemia (IDA) using albino Wistar rats. Addition of Spirulina (at 4% w/w Spirulina inclusion levels) enriched the protein content by 20.33% in sattu and 15.65% in chikki while the iron content was enhanced by 45% in sattu and 29.6% in chikki. In addition, the total carotenoid and polyphenol content and antioxidant capacity of the food products improved after Spirulina incorporation. Supplementation of 100 g of Spirulina fortified food products meets more than 50% of recommended dietary allowances (RDA) of protein, dietary fiber, iron and zinc for the age group 3 to 10 years of children. Spirulina contributed between 11% and 22% of RDA for protein and iron, respectively; however it contributed very negligibly to RDA of dietary fibre with respect to the nutrient requirements for the target age group. Supplementation of Spirulina fortified foods individually promoted bodyweight gain in malnourished rats and restored haemoglobin, serum protein, albumin, serum iron, and hepcidin levels and reduced the iron binding capacity indicating recovery from IDA. Spirulina supplementation ameliorated malnutrition induced oxidative stress in the liver, spleen and kidneys by reducing the lipid peroxidation and enhancing superoxide dismutase and glutathione activities. Histopathological analysis revealed that supplementation of Spirulina fortified foods reversed pathological changes such as fatty changes in the liver cells, thinning of cardiac muscle fibers and degeneration of intestinal villi. Fe-protein deficiency significantly altered the gut microflora by reducing the abundance of beneficial microbes. However, supplementation of Spirulina fortified foods improved the levels of beneficial gut microbes such as Lactobacillus reuteri and Akkermansia muciniphila while reducing the abundance of Helicobacteraceae, Enterobacteria and Clostridia. In summary, supplementation of Spirulina fortified foods promoted recovery from protein and iron deficiency indicating the bioavailability of nutrients (iron and protein) from Spirulina at par with casein and ferrous ascorbate.


Asunto(s)
Microbioma Gastrointestinal , Desnutrición , Spirulina , Ratas , Animales , Alimentos Fortificados , Spirulina/química , Hierro/metabolismo , Alimentos Funcionales , Estrés Oxidativo , Ratas Wistar , Suplementos Dietéticos
9.
Chembiochem ; 24(5): e202200455, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36538283

RESUMEN

The blue biliprotein phycocyanin, produced by photo-autotrophic cyanobacteria including spirulina (Arthrospira) and marketed as a natural food supplement or "nutraceutical," is reported to have anti-inflammatory, antioxidant, immunomodulatory, and anticancer activity. These diverse biological activities have been specifically attributed to the phycocyanin chromophore, phycocyanobilin (PCB). However, the mechanism of action of PCB and the molecular targets responsible for the beneficial properties of PCB are not well understood. We have developed a procedure to rapidly cleave the PCB pigment from phycocyanin by ethanolysis and then characterized it as an electrophilic natural product that interacts covalently with thiol nucleophiles but lacks any appreciable cytotoxicity or antibacterial activity against common pathogens and gut microbes. We then designed alkyne-bearing PCB probes for use in chemical proteomics target deconvolution studies. Target identification and validation revealed the cysteine protease legumain (also known as asparaginyl endopeptidase, AEP) to be a target of PCB. Inhibition of this target may account for PCB's diverse reported biological activities.


Asunto(s)
Proteasas de Cisteína , Spirulina , Ficocianina/farmacología , Ficocianina/química , Ficobilinas/farmacología , Ficobilinas/química , Spirulina/química , Suplementos Dietéticos
10.
Fish Shellfish Immunol ; 130: 359-367, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36126837

RESUMEN

Spirulina (Arthrospira platensis) (SP) has been utilized for a long time as a valued feed supplement because of its proteinous content and other beneficial phytochemical compounds. Herein, we investigated the influences of SP-supplemented diets on growth, body somatic indices, digestive enzymes, hepatic antioxidant activities, and immunological responses of hapa-reared thinlip mullet (Liza ramada) juveniles. Fish were assigned in six triplicate groups and were fed for consecutive 60 days on the prepared experimental diets containing varying SP levels as 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0 g/kg diet and defined as control (CNT or SP0), SP2, SP4, SP6, SP8, and SP10 groups, respectively. The results indicated that dietary SP supplementation linearly and quadratically improved the fish growth performance, and the highest growth indices were found in the SP8 group. However, dietary SP supplementation did not significantly alter feed conversion ratio (FCR), survival rate (%), hepato-somatic index, and viscera-somatic index among all experimental groups. Meanwhile, digestive enzymes (lipase, α-amylase, and proteases) in the mid-intestine were also linearly and quadratically increased in all SP-fed groups, and their uppermost values were noted in the SP8 group. Hepatic antioxidants such as superoxide dismutase, catalase, and total antioxidant capacity in SP-supplemented groups were significantly elevated than the CNT group. Conversely, hepatic malondialdehyde contents were decreased significantly along with increasing dietary SP-supplementation levels. The immunological parameters such as lysozyme, respiratory burst, and alternative complement activities were significantly elevated in SP-fed groups than in the CNT group. These findings evoked that feeding SP-supplemented diets (especially at 8.0 g/kg diet) significantly promoted the growth, digestive enzymes, hepatic antioxidant status, and immunity of L. ramada juveniles.


Asunto(s)
Smegmamorpha , Spirulina , Alimentación Animal/análisis , Animales , Antioxidantes , Catalasa , Dieta/veterinaria , Suplementos Dietéticos , Lipasa , Malondialdehído , Muramidasa , Péptido Hidrolasas , Spirulina/química , Superóxido Dismutasa , alfa-Amilasas
11.
Molecules ; 27(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36080350

RESUMEN

Spirulina is a kind of blue-green algae (BGA) that is multicellular, filamentous, and prokaryotic. It is also known as a cyanobacterium. It is classified within the phylum known as blue-green algae. Despite the fact that it includes a high concentration of nutrients, such as proteins, vitamins, minerals, and fatty acids-in particular, the necessary omega-3 fatty acids and omega-6 fatty acids-the percentage of total fat and cholesterol that can be found in these algae is substantially lower when compared to other food sources. This is the case even if the percentage of total fat that can be found in these algae is also significantly lower. In addition to this, spirulina has a high concentration of bioactive compounds, such as phenols, phycocyanin pigment, and polysaccharides, which all take part in a number of biological activities, such as antioxidant and anti-inflammatory activity. As a result of this, spirulina has found its way into the formulation of a great number of medicinal foods, functional foods, and nutritional supplements. Therefore, this article makes an effort to shed light on spirulina, its nutritional value as a result of its chemical composition, and its applications to some food product formulations, such as dairy products, snacks, cookies, and pasta, that are necessary at an industrial level in the food industry all over the world. In addition, this article supports the idea of incorporating it into the food sector, both from a nutritional and health perspective, as it offers numerous advantages.


Asunto(s)
Spirulina , Suplementos Dietéticos , Alimentos Funcionales , Minerales/química , Ficocianina , Spirulina/química
12.
Bioengineered ; 13(6): 14681-14718, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35946342

RESUMEN

Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.


Increase awareness of the impact and multi-disciplinary up-to-date roles of A. platensis on human lives and the importance of having further research on microalgae.Soliciting a critical analysis study on A. platensis biocomposition for drug delivery research.Insights on the correlation between ionization and drug bioavailability in specific sites in the human body.Offering solutions for improvising an optimized 'Advanced Spirulina Dosage Forms' products to maximize A. platensis therapeutic/pharmacological outcomes.Insights on existing biomaterials for optimization.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Leucemia , Spirulina , Humanos , Lipoproteínas LDL/metabolismo , Péptido Hidrolasas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Ficocianina/química , Polímeros/metabolismo , SARS-CoV-2 , Spirulina/química , Spirulina/metabolismo , Resultado del Tratamiento , Estados Unidos , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35682960

RESUMEN

Cyanobacteria are characterized by high iron content. This study investigated the effects of varying iron concentrations (1, 5, and 10 mg L-1) in the culture media on the biochemical composition and the iron bioaccumulation and speciation in Arthrospira platensis F&M-C256. Iron content measured in biomasses varied from 0.35 to 2.34 mg g-1 dry weight depending on the iron concentration in the culture media. These biomasses can be considered of interest for the production of spirulina-based supplements with low and high iron content. Iron speciation was studied using size exclusion chromatography followed by atomic absorption spectrometry and proteomic analysis. The role of C-phycocyanin as an iron binding protein was also investigated. Overall, the present results provide a better understanding of iron metabolism in cyanobacteria and a foundation for further studies.


Asunto(s)
Spirulina , Medios de Cultivo/metabolismo , Hierro/metabolismo , Proteínas de Unión a Hierro/metabolismo , Proteómica , Spirulina/química
14.
Molecules ; 27(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35630631

RESUMEN

Microalgae and microalgae-derived compounds have great potential as supplements in the human diet and as a source of bioactive products with health benefits. Spirulina (Arthrospira platensis (Nordstedt) Gomont, or Spirulina platensis) belongs to the class of cyanobacteria and has been studied for its numerous health benefits, which include anti-inflammatory properties, among others. This work was aimed at comparing some spirulina products available on the Italian market. The commercial products here analyzed consisted of spirulina cultivated and processed with different approaches. Single-component spirulina products in powder and flake form, free of any type of excipient produced from four different companies operating in the sector, have been analyzed. The macro- and micromorphological examination, and the content of pigments, phycobiliproteins, phenols, and proteins have shown differences regarding the morphology and chemical composition, especially for those classes of particularly unstable compounds such as chlorophylls and carotenoids, suggesting a great influence of both culture conditions and processing methods.


Asunto(s)
Microalgas , Spirulina , Animales , Carotenoides/química , Decapodiformes , Humanos , Polvos , Spirulina/química
15.
Fish Shellfish Immunol ; 126: 122-130, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35613669

RESUMEN

Spirulina platensis is, a freshwater microalga, broadly used worldwide. It not only stimulates the immune systems of aquatic organisms but also provides a protein-rich diet and commonly used in the manufacture of aquafeeds. This study was planned to evaluate the growth performance, hepato-renal, and immune response biomarkers of Spirulina and Betaine on Nile tilapia (Oreochromis niloticus) and their protective effect against infection with Aeromonas hydrophila. O. niloticus juveniles (20.22 ± 0.86 g) were divided into four groups (n = 10 per replicate). For 8 weeks, the first and second groups (TS&TB) were fed with 0.5% and 0.3% concentrations of Spirulina and Betaine supplemented diets, respectively; the third group (TSB) was fed with a Spirulina and Betaine mixed diet; the fourth group was fed with a basal diet (without supplementation, T0), which served as control. Dietary inclusion of Spirulina and Betaine significantly improved (P ˂ 0.05) the weight gain, final weight, and food conversion ratio, especially in the TS group. The activities of hepatic malonaldehyde were unchanged in TS & TSB groups and the muscular significantly decreased (P ˂ 0.05) in the same groups, while both increased in the TB group; meanwhile, levels of glutathione reductase were significantly upregulated in all treated groups. Serum interleukins, TNF- alpha, and IL-10 levels were also significantly reduced in all treatment groups. A significant protective power against pathogenic Aeromonas infection was evidenced in all treated groups. Findings in this study highlight the reputation of Spirulina and Betaine as immunostimulants and protective agents against A. hydrophila infection in O. niloticus.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Spirulina , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Betaína/metabolismo , Betaína/farmacología , Dieta/veterinaria , Suplementos Dietéticos , Resistencia a la Enfermedad , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Spirulina/química
16.
Trop Anim Health Prod ; 54(2): 124, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35235076

RESUMEN

In a 90-day study, 32 growing lambs aged 3 months were utilized to evaluate the effects of various levels of spirulina dietary supplement on productive performance, nutritional digestibility, and meat quality in growing Najdi lambs. The lambs were put into 4 groups of 8 lambs each at random. The diet consisted of a total mixed ration (TMR) without spirulina (CONT), and the TMR diet supplemented with spirulina at the levels of 2 ppm (SPP2), 4 ppm (SPP4), and 8 ppm (SPP8). The treatment groups, especially SPP8, showed a significant (p < 0.05) increase in body weight and average daily gain (p < 0.05) compared to the CONT group. Dry matter intake and acid detergent fiber were also significantly (p ≤ 0.05) higher in SPP8 compared to other treated groups and CONT. The N absorption, N retention, and percentage of N digestibility coefficient were greater (P < 0.05) in lambs in the treatment groups than in the CONT. Blood biochemistry variables were not significantly (p ≤ 0.05) affected by the treatments, with the exception of the serum concentration of triglyceride and bilirubin. Carcass profile and meat quality, including back fat, body wall fat, and cooking loss, were increased significantly (p ≤ 0.05) with dietary spirulina. From the results of the present study, it was concluded that spirulina dietary supplementation at the level of 8 ppm increased weight gain, nutritional digestibility, nitrogen utilization, and meat composition in growing Najdi lambs.


Asunto(s)
Spirulina , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Carne/análisis , Nutrientes , Ovinos , Spirulina/química
17.
J Therm Biol ; 104: 103195, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35180972

RESUMEN

This study was conducted to assess the impact of dietary incorporation of Spirulina platensis and selenium nanoparticles (SeNPs) individually or in combinations on growth performance, antioxidant status, humoral immune response, and microbial populations in diet and ileum of heat-stressed broilers. Ross-308 one-day chicks (n = 450) were fed one of 9 experimental diets with five replicate cages in 2 phases for 35 d. The experimental diets were a control basal diet without supplementation or with 0.1 mg SeNPs, 0.2 mg SeNPs, 5 g Spirulina, 10 g Spirulina, 0.1 mg SeNPs + 5 g Spirulina, 0.1 mg SeNPs + 10 g Spirulina, 0.2 mg SeNPs + 5 g Spirulina and 0.2 mg SeNPs + 10 g Spirulina per kg diet. Dietary supplementation with Spirulina and SeNPs significantly (P < 0.05) increased body weight gain and European production efficiency factor. Serum GPx and SOD were significantly (P < 0.05) increased with dietary Spirulina and SeNPs supplementation, while, TBARS was decreased (P < 0.05). Circulating immunoglobulin IgM, IgA and IgG were increased in treated birds compared to the control ones, while the antibody titers to IBD, AIV, and NDV were not significantly altered. The results showed that SeNPs and Spirulina exhibited dose-dependent antimicrobial activities against ileal counts of total bacterial, total molds and yeast, coliform, E. coli, Salmonella spp. and Enterococcus spp. However, ileal populations of Lactic acid bacteria were increased with dietary Spirulina and SeNPs in a dose-dependent manner. The microbial load in broilers' diets was reduced by dietary incorporation of S. platensis and SeNPs. These results indicate that Spirulina and SeNPs can be potentially used as growth promoters and antioxidant, immunostimulant, and antimicrobial agents in heat-stressed broilers.


Asunto(s)
Antioxidantes/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Inmunidad Humoral/fisiología , Selenio/química , Spirulina/química , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Pollos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Calor , Íleon/metabolismo , Íleon/microbiología , Isotipos de Inmunoglobulinas/sangre , Nanopartículas
18.
Molecules ; 27(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35056669

RESUMEN

Taking into account that many advantages have been associated with the consumption of spirulina (microalgae) in terms of antioxidant capacity, anticancer, anti-inflammatory, and anti-aging activities, the study focuses on spirulina supplementation of semolina-based pasta. Fresh pasta was prepared by mixing semolina flour (Triticum durum) with an addition of 3, 5, 7, and 10% (w/w) of spirulina (Arthrospira platensis) powder. Physicochemical and nutritional analyses were done on raw materials, and on fresh pasta before and after cooking. Sensorial analysis was done shortly after cooking pastas. Spirulina had a high content of protein (71.34%), with all the essential amino acids, a high total fiber (8.45%), as well as ash content (5.93%), which significantly increased the nutritional value of the obtained fresh pasta. Supplemented pastas have a significantly better amino acid profile and higher total fiber content (up to 2.99 g/100 g d.m.) than the control sample. Moreover, the addition of spirulina had a significant effect on the pasta's color, weight gain, and cooking loss after being cooked. The addition of spirulina also affected the scores obtained for the individual parameters (texture, color, flavor, taste, and overall acceptability) of the sensory evaluation.


Asunto(s)
Antioxidantes/farmacología , Suplementos Dietéticos , Harina/análisis , Manipulación de Alimentos/métodos , Spirulina/química , Triticum/química , Color , Culinaria , Fibras de la Dieta , Dureza , Humanos
19.
J Therm Biol ; 103: 103100, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35027195

RESUMEN

Spirulina, the blue green algae is considered to exhibit multifaceted benefits on both human health and animal production. Three hundred sixty day old unsexed broiler chicks of CARIBROVISHAL strain were assigned to five treatment groups each comprising nine replicates of 8 chicks. The experiment was carried out during the hot humid summer season (Mid-April to May) under deep litter rearing system with uniform managemental conditions. Birds were administered orally with Spirulina through drinking water in the morning (06:00-12:00 PM) on daily basis throughout the experimental period at 5, 10, 15 and 20 gL-1 concentration. Spirulina supplementation neither improved nor compromised production performance of broilers reared during hot climatic condition. Results based on one way analysis of variance indicated a significant effect on haemoglobin and total red blood cell count. Serum lipid content and transaminases were reduced, while serum protein concentration was higher (P < 0.01) in the groups administered with 15 and 20 gL-1 of Spirulina. The extent of imparting shank pigmentation was improved in all the supplemented groups. Cell mediated and humoral immunity against Phytoheamagglutunin-P and Newcastle disease vaccination respectively were maximized (P < 0.05) at 20 gL-1. These findings provide direct evidence of dose-related modulation of production, physiological and immunological attributes by Spirulina engendering its further investigation as a potential source of drinking water supplement for stress alleviation in broilers. From the results, it may concluded that Spirulina can be incorporated at 15 or 20 gL-1 for achieving optimal improvement of health and welfare attributes in broilers reared during hot summer without compromising production.


Asunto(s)
Antioxidantes/metabolismo , Agua Potable/química , Respuesta al Choque Térmico/efectos de los fármacos , Spirulina/química , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Pollos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Calor
20.
Fish Shellfish Immunol ; 120: 345-352, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34883257

RESUMEN

Litopenaeus vannamei is one of the most productive shrimp species in the world. However, shrimp farming is suffering from adverse environmental conditions and disease outbreaks. Typically, Lactobacillus pentosus and Arthrospira platensis are used as substitutes for some antibiotics. In the present study, we assessed the effects of dietary supplements along with living bacteria or cell-free extracts of L. pentosus combined with A. platensis on the growth performance, immune response, intestinal microbiota, and disease resistance of L. vannamei against Vibrio alginolyticus. Shrimp fed L. pentosus live bacteria combined with A. platensis showed the best growth performance and lowest feed conversion rate. The supplementation diet with L. pentosus live bacteria and A. platensis could significantly enhance the trypsin activity in shrimp after the feeding trial. Given the lowest feed conversion rate in shrimp fed L. pentosus live bacteria combined with A. platensis, we reasonably speculated that the decrease in feed conversion rate may be related to the increase in trypsin activity. In addition, dietary cell-free extracts of L. pentosus combined with A. platensis enhanced the expression of immune-related genes after the feeding trial or challenge test. Moreover, results of the bacterial challenge test indicated that the shrimp fed cell-free extracts of L. pentosus combined with A. platensis diet resulted in the highest survival rate, which suggested that cell-free extracts of L. pentosus and A. platensis could improve the disease resistance against V. alginolyticus by up-regulating the expressions of immune-related genes. Dietary L.pentosus or A. platensis, or their combination, reduced the abundance of harmful bacteria, including Proteobacteria in shrimp intestine, which suggested that L. pentosus and A. platensis could improve the growth performance and health of shrimp by regulating the structure of the intestinal microbiota. The findings of this study demonstrated that L. pentosus live bacteria and A. platensis exerted synergistic effects on the growth performance and digestion in shrimp, while cell-free extracts of L. pentosus and A. platensis showed synergistic effects on the immune response and disease resistance of shrimp against V. alginolyticus.


Asunto(s)
Dieta/veterinaria , Microbioma Gastrointestinal , Lactobacillus pentosus , Penaeidae , Probióticos , Spirulina/química , Alimentación Animal/análisis , Animales , Resistencia a la Enfermedad , Inmunidad Innata , Penaeidae/crecimiento & desarrollo , Penaeidae/inmunología , Tripsina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA