Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Clin Microbiol Antimicrob ; 23(1): 7, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245727

RESUMEN

The ability of Staphylococcus epidermidis and S. aureus to form strong biofilm on plastic devices makes them the major pathogens associated with device-related infections (DRIs). Biofilm-embedded bacteria are more resistant to antibiotics, making biofilm infections very difficult to effectively treat. Here, we evaluate the in vitro activities of anti-staphylococcal drug oxacillin and antimicrobial peptide nisin, alone and in combination, against methicillin-resistant S. epidermidis (MRSE) clinical isolates and the methicillin-resistant S. aureus ATCC 43,300. The minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MBEC) of oxacillin and nisin were determined using the microbroth dilution method. The anti-biofilm activities of oxacillin and nisin, alone or in combination, were evaluated. In addition, the effects of antimicrobial agents on the expression of icaA gene were examined by quantitative real-time PCR. MIC values for oxacillin and nisin ranged 4-8 µg/mL and 64-128 µg/mL, respectively. Oxacillin and nisin reduced biofilm biomass in all bacteria in a dose-dependent manner and this inhibitory effect was enhanced with combinatorial treatment. MBEC ranges for oxacillin and nisin were 2048-8192 µg/mL and 2048-4096 µg/mL, respectively. The addition of nisin significantly decreased the oxacillin MBECs from 8- to 32-fold in all bacteria. At the 1× MIC and 1/2× MIC, both oxacillin and nisin decreased significantly the expression of icaA gene in comparison with untreated control. When two antimicrobial agents were combined at 1/2× MIC concentration, the expression of icaA were significantly lower than when were used alone. Nisin/conventional oxacillin combination showed considerable anti-biofilm effects, including inhibition of biofilm formation, eradication of mature biofilm, and down-regulation of biofilm-related genes, proposing its applications for treating or preventing staphylococcal biofilm-associated infections, including device-related infections.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Nisina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Oxacilina/farmacología , Nisina/farmacología , Nisina/uso terapéutico , Staphylococcus epidermidis , Staphylococcus aureus Resistente a Meticilina/genética , Péptidos Antimicrobianos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antiinfecciosos/farmacología , Staphylococcus , Biopelículas , Pruebas de Sensibilidad Microbiana
2.
Front Cell Infect Microbiol ; 13: 1265027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790910

RESUMEN

Introduction: There is an urgent need to develop therapeutic options for biofilm-producing Staphylococcus aureus (S. aureus). Therefore, the renewed interest in essential oils (EOs), especially carvacrol, linalool and eugenol, has attracted the attention of our research group. Methods: Multidrug resistance and multivirulence profiles in addition to biofilm production of S. aureus strains isolated from cows with mastitis were evaluated using both phenotypic and genotypic methods. The antimicrobial and antibiofilm activities of EOs were tested using both in vitro and molecular docking studies. Moreover, the interactions between commonly used antibiotics and the tested EOs were detected using the checkerboard method. Results: We found that all our isolates (n= 37) were biofilm methicillin resistant S. aureus (MRSA) producers and 40.5% were vancomycin resistant S. aureus (VRSA). Unfortunately, 73 and 43.2% of the recovered MRSA isolates showed multidrug resistant (MDR) and multivirulence patterns, respectively. The antimicrobial activities of the tested EOs matched with the phenotypic evaluation of the antibiofilm activities and molecular docking studies. Linalool showed the highest antimicrobial and antibiofilm activities, followed by carvacrol and eugenol EOs. Fortunately, synergistic interactions between the investigated EOs and methicillin or vancomycin were detected with fractional inhibitory concentration index (FICI) values ≤ 0.5. Moreover, the antimicrobial resistance patterns of 13 isolates changed to sensitive phenotypes after treatment with any of the investigated EOs. Treatment failure of bovine mastitis with resistant S. aureus can be avoided by combining the investigated EOs with available antimicrobial drugs. Conclusion: We hope that our findings can be translated into a formulation of new pharmaceutical dosage forms against biofilm-producing S. aureus pathogens.


Asunto(s)
Mastitis Bovina , Staphylococcus aureus Resistente a Meticilina , Aceites Volátiles , Infecciones Estafilocócicas , Femenino , Animales , Bovinos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus aureus , Staphylococcus aureus Resistente a Meticilina/genética , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Eugenol , Mastitis Bovina/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/veterinaria , Pruebas de Sensibilidad Microbiana
3.
Altern Ther Health Med ; 29(8): 776-781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37708552

RESUMEN

Objective: This study aimed to investigate the prevalence, molecular types, and virulence genes of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections (SSTIs) in the Shaoxing region. Methods: MRSA strains were collected from patients with SSTIs in Shaoxing People's Hospital from January 2019 to December 2019. We conducted SCCmec typing, Staphylococcus protein A (SPA) typing, multilocus sequence typing (MLST), and virulence gene analysis using whole-genome sequencing on all MRSA strains. Results: The detection rate of community-acquired MRSA (CA-MRSA) isolated from SSTI patients in our hospital was 33.3% (6/18). The primary SCCmec types of CA-MRSA strains were IV and V, with IVg(2B) and V(5C2&5) accounting for 16.7% each. Hospital-acquired MRSA (HA-MRSA) strains primarily exhibited SCCmec types IVa(2B) (25.0%), followed by II(2A) (16.7%), V(5C2) (16.7%), and V(5C2&5) (8.3%). SPA typing indicated that CA-MRSA strains causing SSTIs were predominantly t437 (14.3%), t034 (14.3%), t309 (14.3%), t4549 (14.3%), and t7637 (14.3%). The primary SPA type of HA-MRSA strains was t311 (16.7%). MLST typing revealed that the main sequence types (STs) of CA-MRSA strains causing SSTIs were ST22 (33.3%), followed by ST398, ST59, ST88, and ST630, each accounting for 16.7%. The principal STs of HA-MRSA strains were ST398 (16.7%), ST59 (16.7%), ST88 (16.7%), and ST5 (16.7%), followed by ST22, ST630, ST6, and ST188, each at 8.3%. The primary clones of CA-MRSA strains causing SSTIs were ST59-t437-IVg(2B) (16.7%) and ST630-t4549-V(5C2&5) (16.7%), while the primary clones of HA-MRSA strains were ST59-t437-IVa(2B), ST630-t4549-V(5C2&5), ST6-t304-IVa(2B), ST5-t311-II(2A), ST59-t172-IVa(2B), ST398-t571-V(5C2), ST398-t034-V(5C2), and ST5-t311-II(2A), each accounting for 8.3%. The detection rate of the lukSF-PV virulence gene was higher in CA-MRSA strains (50.0%) than in HA-MRSA strains (16.7%). Conclusions: The isolation rate of CA-MRSA strains causing SSTIs was high in Shaoxing People's Hospital, with ST59-t437-IVg(2B) and ST630-t4549-V(5C2&5) being the predominant clones. MRSA strains exhibited multiple virulence genes, with the lukSF-PV gene having a higher detection rate in CA-MRSA strains, signifying its importance as a virulence factor in CA-MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones de los Tejidos Blandos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Virulencia/genética , Infecciones de los Tejidos Blandos/epidemiología , Tipificación de Secuencias Multilocus , Infecciones Estafilocócicas/epidemiología , Epidemiología Molecular , Pruebas de Sensibilidad Microbiana , Antibacterianos
4.
Small ; 19(47): e2304194, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37490549

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) biofilm-associated bacterial keratitis is highly intractable, with strong resistance to ß-lactam antibiotics. Inhibiting the MRSA resistance gene mecR1 to downregulate penicillin-binding protein PBP2a has been implicated in the sensitization of ß-lactam antibiotics to MRSA. However, oligonucleotide gene regulators struggle to penetrate dense biofilms, let alone achieve efficient gene regulation inside bacteria cells. Herein, an eye-drop system capable of penetrating biofilms and targeting bacteria for chemo-gene therapy in MRSA-caused bacterial keratitis is developed. This system employed rolling circle amplification to prepare DNA nanoflowers (DNFs) encoding MRSA-specific aptamers and mecR1 deoxyribozymes (DNAzymes). Subsequently, ß-lactam antibiotic ampicillin (Amp) and zinc oxide (ZnO) nanoparticles are sequentially loaded into the DNFs (ZnO/Amp@DNFs). Upon application, ZnO on the surface of the nanosystem disrupts the dense structure of biofilm and fully exposes free bacteria. Later, bearing encoded aptamer, the nanoflower system is intensively endocytosed by bacteria, and releases DNAzyme under acidic conditions to cleave the mecR1 gene for PBP2a down-regulation, and ampicillin for efficient MRSA elimination. In vivo tests showed that the system effectively cleared bacterial and biofilm in the cornea, suppressed proinflammatory cytokines interleukin 1ß ï¼ˆIL-1ß) and tumor neocrosis factor-alpha (TNF-α), and is safe for corneal epithelial cells. Overall, this design offers a promising approach for treating MRSA-induced keratitis.


Asunto(s)
Queratitis , Staphylococcus aureus Resistente a Meticilina , Óxido de Zinc , Humanos , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/genética , ADN/metabolismo , Ampicilina/metabolismo , Ampicilina/farmacología , beta-Lactamas/metabolismo , beta-Lactamas/farmacología , Queratitis/tratamiento farmacológico , Queratitis/genética , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/metabolismo
5.
Sci Adv ; 9(28): eadg9116, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450586

RESUMEN

The resistance and immune escape of methicillin-resistant Staphylococcus aureus (MRSA) biofilms cause recalcitrant infections. Here, we design a targeting and synergizing cascade PDT with nutritional immunotherapy nanosystems (Arg-PCN@Gel) containing PCN-224 as PDT platform for providing reactive oxygen species (ROS), incorporating arginine (Arg) as nitric oxide (NO) donor to cascade with ROS to produce more lethal ONOO- and promote immune response, and coating with gelatin as targeting agent and persistent Arg provider. The nanosystems adhered to the autolysin of MRSA and inhibited Arg metabolism by down-regulating icdA and icaA. It suppressed polysaccharide intercellular adhesin and extracellular DNA synthesis to prevent biofilm formation. The NO broke mature biofilms and helped ROS and ONOO- penetrate into biofilms to inactivate internal MRSA. Arg-PCN@Gel drove Arg to enhance immunity via inducible NO synthase/NO axis and arginase/polyamine axis and achieve efficient target treatment in MRSA biofilm infections. The targeting and cascading PDT synergized with nutritional immunotherapy provide an effective promising strategy for biofilm-associated infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Especies Reactivas de Oxígeno , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Biopelículas , Inmunoterapia
6.
Microbiol Spectr ; 11(1): e0406122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36519944

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is highly prevalent in U.S. cystic fibrosis (CF) patients and is associated with worse clinical outcomes in CF. These infections often become chronic despite repeated antibiotic therapy. Here, we assessed whether bacterial phenotypes, including antibiotic tolerance, can predict the clinical outcomes of MRSA infections. MRSA isolates (n = 90) collected at the incident (i.e., acute) and early infection states from 57 patients were characterized for growth rates, biofilm formation, hemolysis, pigmentation, and vancomycin tolerance. The resistance profiles were consistent with those in prior studies. Isolates from the early stage of infection were found to produce biofilms, and 70% of the isolates exhibited delta-hemolysis, an indicator of agr activity. Strong vancomycin tolerance was present in 24% of the isolates but was not associated with intermediate vancomycin susceptibility. There were no associations between these phenotypic measures, antibiotic tolerance, and MRSA clearance. Our research suggests that additional factors may be relevant for predicting the clearance of MRSA. IMPORTANCE Chronic MRSA infections remain challenging to treat in patients with cystic fibrosis (CF). The ability of the bacterial population to survive high concentrations of bactericidal antibiotics, including vancomycin, despite lacking resistance is considered one of the main reasons for treatment failures. The connection between antibiotic tolerance and treatment outcomes remains unexplored and can be crucial for prognosis and regimen design toward eradication. In this study, we measured the capacity of 90 MRSA isolates from CF patients to form vancomycin-tolerant persister cells and evaluated their correlation with the clinical outcomes. Additionally, various traits that could reflect the metabolism and/or virulence of those MRSA isolates were systematically phenotyped and included for their predictive power. Our research highlights that despite the importance of antibiotic tolerance, additional factors need to be considered for predicting the clearance of MRSA.


Asunto(s)
Fibrosis Quística , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/genética , Vancomicina/farmacología , Vancomicina/uso terapéutico , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Hemólisis , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Resultado del Tratamiento , Pruebas de Sensibilidad Microbiana
7.
Curr Protein Pept Sci ; 24(2): 156-177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36529917

RESUMEN

BACKGROUND: Multidrug-resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) has become a prime health concern globally. These bacteria are found in hospital areas where they are regularly dealing with antibiotics. This brings many possibilities for its mutation, so drug resistance occurs. INTRODUCTION: Nowadays, these nosocomial MRSA strains spread into the community and live stocks. Resistance in Staphylococcus aureus is due to mutations in their genetic elements. METHODS: As the bacteria become resistant to antibiotics, new approaches like antimicrobial peptides (AMPs) play a vital role and are more efficacious, economical, time, and energy saviours. RESULTS: Machine learning approaches of Artificial Intelligence are the in silico technique which has their importance in better prediction, analysis, and fetching of important details regarding AMPs. CONCLUSION: Anti-microbial peptides could be the next-generation solution to combat drug resistance among Superbugs. For better prediction and analysis, implementing the in silico technique is beneficial for fast and more accurate results.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Inteligencia Artificial , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus aureus , Péptidos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana
8.
PLoS One ; 17(9): e0274956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36129957

RESUMEN

Xenorhabdus and Photorhabdus can produce a variety of secondary metabolites with broad spectrum bioactivity against microorganisms. We investigated the antibacterial activity of Xenorhabdus and Photorhabdus against 15 antibiotic-resistant bacteria strains. Photorhabdus extracts had strong inhibitory the growth of Methicillin-resistant Staphylococcus aureus (MRSA) by disk diffusion. The P. akhurstii s subsp. akhurstii (bNN168.5_TH) extract showed lower minimum inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The interaction between either P. akhurstii subsp. akhurstii (bNN141.3_TH) or P. akhurstii subsp. akhurstii (bNN168.5_TH) or P. hainanensis (bNN163.3_TH) extract in combination with oxacillin determined by checkerboard assay exhibited partially synergistic interaction with fractional inhibitory concentration index (FICI) of 0.53. Time-killing assay for P. akhurstii subsp. akhurstii (bNN168.5_TH) extract against S. aureus strain PB36 significantly decreased cell viability from 105 CFU/ml to 103 CFU/ml within 30 min (P < 0.001, t-test). Transmission electron microscopic investigation elucidated that the bNN168.5_TH extract caused treated S. aureus strain PB36 (MRSA) cell membrane damage. The biosynthetic gene clusters of the bNN168.5_TH contained non-ribosomal peptide synthetase cluster (NRPS), hybrid NRPS-type l polyketide synthase (PKS) and siderophore, which identified potentially interesting bioactive products: xenematide, luminmide, xenortide A-D, luminmycin A, putrebactin/avaroferrin and rhizomide A-C. This study demonstrates that bNN168.5_TH showed antibacterial activity by disrupting bacterial cytoplasmic membrane and the draft genome provided insights into the classes of bioactive products. This also provides a potential approach in developing a novel antibacterial agent.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Photorhabdus , Xenorhabdus , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Oxacilina/farmacología , Photorhabdus/metabolismo , Extractos Vegetales/farmacología , Sintasas Poliquetidas/genética , Sideróforos/metabolismo , Staphylococcus aureus/genética , Xenorhabdus/genética
9.
Microbiol Spectr ; 10(4): e0038722, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913203

RESUMEN

We conducted a pilot whole genome sequencing (WGS) study to characterize the genotypes of nine methicillin resistant staphylococci (MRS) isolates recovered from goats and their farm environments in Eastern Province, Saudi Arabia, between November 2019 to August 2020. Seven out of nine isolates were methicillin resistant Staphylococcus aureus (MRSA), and two were methicillin resistant Staphylococcus epidermidis (MRSE). All MRSA isolates possessed genotypes previously identified to infect humans, including isolates harboring ST6-SCCmec IV-t304 (n = 4), ST5-SCCmec VI- t688 (n = 2) and ST5-SCCmec V-t311 (n = 1). 2 MRSA isolates possessed plasmids that were genetically similar to those identified in S. aureus isolates recovered from humans and poultry. In contrast, plasmids found in three MRSA isolates and one MRSE isolate were genetically similar to those recovered from humans. All MRSA isolates harbored the host innate modulate genes sak and scn previously associated with human infections. The genotypes of MRSE isolates were determined as ST35, a well-known zoonotic sequence type and ST153, which has been associated with humans. However, the MRSE isolates were untypeable due to extra ccr complexes identified in their SCCmec elements. Moreover, we identified in ST153 isolate SCCmec element also harbored the Arginine Catabolic Mobile Element (ACME) IV. All MRS isolates were phenotypically resistant to trimethoprim-sulfamethoxazole, an antibiotic for the decolonization of MRS. Three isolates carried antibiotic resistance genes in their SCCmec elements that were not previously described, including those encoding fusidic acid resistance (fusC) and trimethoprim resistance (dfrC) incorporated in the MRSA SCCmec VI. IMPORTANCE Our findings demonstrate a possible cross-transmission of methicillin resistant staphylococci between goats and their local environments and between goats and humans. Due to ever increasing resistance to multiple antibiotics, the burden of MRS has a significant impact on livestock farming, public health, and the economy worldwide. This study highlights that implementing a holistic approach to whole genome sequencing surveillance in livestock and farm environments would aid our understanding of the transmission of methicillin resistant staphylococci and, most importantly, allow us to implement appropriate infection control and hygiene practices.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Granjas , Cabras , Humanos , Resistencia a la Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Proyectos Piloto , Arabia Saudita , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus/genética , Staphylococcus aureus , Staphylococcus epidermidis
10.
Microbiol Spectr ; 10(4): e0058322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35736238

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that presents great health concerns. Treatment requires the use of last-line antibiotics, such as members of the oxazolidinone family, of which linezolid is the first member to see regular use in the clinic. Here, we report a short time scale selection experiment in which strains of MRSA were subjected to linezolid treatment. Clonal isolates which had evolved a linezolid-resistant phenotype were characterized by whole-genome sequencing. Linezolid-resistant mutants were identified which had accumulated mutations in the ribosomal protein uL3. Multiple clones which had two mutations in uL3 exhibited resistance to linezolid, 2-fold higher than the clinical breakpoint. Ribosomes from this strain were isolated and subjected to single-particle cryo-electron microscopic analysis and compared to the ribosomes from the parent strain. We found that the mutations in uL3 lead to a rearrangement of a loop that makes contact with Helix 90, propagating a structural change over 15 Å away. This distal change swings nucleotide U2504 into the binding site of the antibiotic, causing linezolid resistance. IMPORTANCE Antibiotic resistance poses a critical problem to human health and decreases the utility of these lifesaving drugs. Of particular concern is the "superbug" methicillin-resistant Staphylococcus aureus (MRSA), for which treatment of infection requires the use of last-line antibiotics, including linezolid. In this paper, we characterize the atomic rearrangements which the ribosome, the target of linezolid, undergoes during its evolutionary journey toward becoming drug resistant. Using cryo-electron microscopy, we describe a particular molecular mechanism which MRSA uses to become resistant to linezolid.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Microscopía por Crioelectrón , Humanos , Linezolid/metabolismo , Linezolid/farmacología , Linezolid/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética
11.
Front Cell Infect Microbiol ; 12: 884045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573768

RESUMEN

Staphylococcus aureus has been recognized as an important human pathogen and poses a serious health threat worldwide. With the advent of antibiotic resistance, such as the increased number of methicillin-resistant Staphylococcus aureus (MRSA), there is an urgent need to develop new therapeutical agents. In this study, Chinese traditional medicine Tanreqing (TRQ) has been used as an alternative treating agent against MRSA and we aim to unravel the mode of action of TRQ underlying MRSA inhibition. TRQ treatment affected numerous gene expression as revealed by RNA-seq analysis. Meanwhile, TRQ targeted cell division to inhibit cell growth as shown by illumination microscopy. Besides, we confirmed that TRQ downregulates the expression of virulence factors such as hemolysin and autolysin. Finally, we used a murine model to demonstrate that TRQ efficiently reduces bacterial virulence. Altogether, we have proved TRQ formula to be an effective agent against S. aureus infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/uso terapéutico , División Celular , Medicamentos Herbarios Chinos , Humanos , Medicina Tradicional China , Staphylococcus aureus Resistente a Meticilina/genética , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulencia , Factores de Virulencia/metabolismo
12.
PLoS One ; 16(10): e0258592, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34669727

RESUMEN

Understating how antibiotic tolerance impacts subsequent resistance development in the clinical setting is important to identifying effective therapeutic interventions and prevention measures. This study describes a patient case of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia which rapidly developed resistance to three primary MRSA therapies and identifies genetic and metabolic changes selected in vivo that are associated with rapid resistance evolution. Index blood cultures displayed susceptibility to all (non-beta-lactam) antibiotics with the exception of trimethoprim/ sulfamethoxazole. One month after initial presentation, during the same encounter, blood cultures were again positive for MRSA, now displaying intermediate resistance to vancomycin and ceftaroline and resistance to daptomycin. Two weeks later, blood cultures were positive for a third time, still intermediate resistant to vancomycin and ceftaroline and resistant to daptomycin. Mutations in mprF and vraT were common to all multidrug resistant isolates whereas mutations in tagH, agrB and saeR and secondary mprF mutation emerged sequentially and transiently resulting in distinct in vitro phenotypes. The baseline mutation rate of the patient isolates was unremarkable ruling out the hypermutator phenotype as a contributor to the rapid emergence of resistance. However, the index isolate demonstrated pronounced tolerance to the antibiotic daptomycin, a phenotype that facilitates the subsequent development of resistance during antibiotic exposure. This study exemplifies the capacity of antibiotic-tolerant pathogens to rapidly develop both stable and transient genetic and phenotypic changes, over the course of a single patient encounter.


Asunto(s)
Antibacterianos/farmacología , Bacteriemia/microbiología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Infecciones Estafilocócicas/microbiología , Anciano , Aminoaciltransferasas/genética , Antibacterianos/clasificación , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Evolución Molecular , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Mutación , Infecciones Estafilocócicas/tratamiento farmacológico , Factores de Transcripción/genética
13.
Int J Antimicrob Agents ; 58(6): 106449, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34644603

RESUMEN

Antimicrobial resistance is a major global threat to human health due to the rise, spread and persistence of multi-drug-resistant bacteria or 'superbugs'. There is an urgent need to develop novel chemotherapeutics to overcome this overarching challenge. The authors derivatized a clinically used fluoroquinolone antibiotic ciprofloxacin (Cip), and complexed it to a copper phenanthrene framework. This resulted in the development of two novel metallo-antibiotics of general formula [Cu(N,N)(CipHA)]NO3 where N,N represents a phenanthrene ligand and CipHA represents a hydroxamic acid of Cip derivative. Comprehensive studies, including a detailed proteomic study in which Staphylococcus aureus cells were exposed to the complexes, were undertaken to gain an insight into their mode of action. These new complexes possess potent antibacterial activity against S. aureus and methicillin-resistant S. aureus. In addition, they were found to be well tolerated in vivo in Galleria mellonella larvae, which has both functional and structural similarities to the innate immune system of mammals. These findings suggest that proteins involved in virulence, pathogenesis, and the synthesis of nucleotides and DNA repair mechanisms are most affected. In addition, both complexes affected similar cell pathways when compared with clinically used Cip, including cationic antimicrobial peptide resistance. The Cu-DPPZ-CipHA (DPPZ = dipyrido[3,2-a:2',3'-c]phenazine) analogue also induces cell leakage, which leads to an altered proteome indicative of reduced virulence and increased stress.


Asunto(s)
Antibacterianos/farmacología , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacología , Cobre/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Cobre/química , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Ácidos Hidroxámicos/química , Staphylococcus aureus Resistente a Meticilina/genética , Mariposas Nocturnas/efectos de los fármacos , Fenantrenos/química , Fenantrenos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico
14.
OMICS ; 25(11): 711-724, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34705556

RESUMEN

Antimicrobial resistance is a global threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the most representative drug-resistant pathogens. MRSA spread is increasing due to its ability to establish new reservoirs. To this end, the clonal complex (CC)-130 is an emerging genetic lineage, generally regarded as animal adapted and carrying the mecC gene, and sporadically found in humans. Although the MRSA antibiotic resistance mechanisms have been described, there are limited data on systems-wide omics responses to antibiotic stress, particularly at the proteome level. In this study, a gel-based quantitative proteomics approach was performed to assess the cellular responses of a mecC-harboring CC130 MRSA strain of human origin to subinhibitory doses of cefoxitin. We focused on the global response of MRSA to antibiotic stress and upon this treatment, 53 proteins were significantly differentially expressed. Most of the latter proteins were mapped to having functions in cellular metabolism while some glycolysis-related proteins showed a decreased expression after cefoxitin stress. On the contrary, pyruvate kinase, a potential antimicrobial drug target, was found upregulated. Also, quorum sensing, genetic information processing, and stress response proteins were found upregulated. Low-affinity penicillin-binding protein (mecC-encoded) was found in cefoxitin-treated samples. In conclusion, these new findings on cefoxitin-induced proteome changes provide important insights and molecular leads for innovation in treatment of MRSA specifically, and omics approaches to address antibiotic resistance generally.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Proteoma/genética
15.
mBio ; 12(5): e0203821, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34488457

RESUMEN

Urinary tract infection (UTI) is one of the most common infectious conditions affecting people in the United States and around the world. Our knowledge of the host-pathogen interaction during UTI caused by Gram-positive bacterial uropathogens is limited compared to that for Gram-negative pathogens. Here, we investigated whether copper and the primary copper-containing protein, ceruloplasmin, are mobilized to urine during naturally occurring UTI caused by Gram-positive uropathogens in patients. Next, we probed the role of copper resistance in the fitness of methicillin-resistant Staphylococcus aureus (MRSA) during experimental UTI in a murine model. Our findings demonstrate that urinary copper and ceruloplasmin content are elevated during UTI caused by Enterococcus faecalis, S. aureus, S. epidermidis, and S. saprophyticus. MRSA strains successfully colonize the urinary tract of female CBA mice with selective induction of inflammation in the kidneys but not the bladder. MRSA mutants lacking CopL, a copper-binding cell surface lipoprotein, and the ACME genomic region containing copL, exhibit decreased fitness in the mouse urinary tract compared to parental strains. Copper sensitivity assays, cell-associated copper and iron content, and bioavailability of iron during copper stress demonstrate that homeostasis of copper and iron is interlinked in S. aureus. Importantly, relative fitness of the MRSA mutant lacking the ACME region is further decreased in mice that receive supplemental copper compared to the parental strain. In summary, copper is mobilized to the urinary tract during UTI caused by Gram-positive pathogens, and copper resistance is a fitness factor for MRSA during UTI. IMPORTANCE Urinary tract infection (UTI) is an extremely common infectious condition affecting people throughout the world. Increasing antibiotic resistance in pathogens causing UTI threatens our ability to continue to treat patients in the clinics. Better understanding of the host-pathogen interface is critical for development of novel interventional strategies. Here, we sought to elucidate the role of copper in host-Staphylococcus aureus interaction during UTI. Our results reveal that copper is mobilized to the urine as a host response in patients with UTI. Our findings from the murine model of UTI demonstrate that copper resistance is involved in the fitness of methicillin-resistant S. aureus (MRSA) during interaction with the host. We also establish a critical link between adaptation to copper stress and iron homeostasis in S. aureus.


Asunto(s)
Cobre/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Urinarias/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cobre/orina , Femenino , Humanos , Hierro/metabolismo , Hierro/orina , Staphylococcus aureus Resistente a Meticilina/genética , Ratones , Ratones Endogámicos CBA , Infecciones Estafilocócicas/orina , Sistema Urinario/metabolismo , Sistema Urinario/microbiología , Infecciones Urinarias/orina
16.
Curr Microbiol ; 78(11): 3980-3988, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34557944

RESUMEN

Methicillin-resistant Staphylococcus (S.) aureus (MRSA) is a representative pathogen that produces numerous virulence factors involving manifold cytotoxins and exotoxins. The present study was designed to investigate the influence of Eleutheroside K (ETSK), a single compound isolated from the leaves of Acanthopanax (A.) henryi (Oliv.) Harms, on the exotoxins secreted by MRSA. The transcription and translation of the exotoxins (α-hemolysin and staphylococcal enterotoxins) related to virulence in S. aureus were determined via quantitative RT-PCR and western blot analysis. The effect of ETSK on the production of tumor necrosis factor (TNF)-α was evaluated using enzyme-linked immunosorbent assay. As a result, ETSK at sub-MIC concentrations could reduce the protein expression of α-hemolysin and enterotoxin, and the expression of genes that regulate virulence factors was also inhibited. In addition, the TNF-inducing activity of S. aureus was attenuated by ETSK in a dose-dependent manner. These results revealed that ETSK not only reduced the protein and gene expression levels of related exotoxins but also suppressed the ability of S. aureus to induce macrophages to release cytokines. This study indicated that the inhibition of MRSA infection by ETSK may be achieved by reducing the virulence of S. aureus and highlighted the potential of ETSK as an innovative strategy for the prevention and treatment of MRSA infections.


Asunto(s)
Eleutherococcus , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Extractos Vegetales , Staphylococcus aureus , Virulencia
17.
J Agric Food Chem ; 69(39): 11733-11741, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34558287

RESUMEN

Staphylococcus aureus can cause many diseases and has a strong tendency to develop resistance to multiple antibiotics. In this study, benzyl isothiocyanate (BITC) was shown to have an excellent inhibitory effect on S. aureus ATCC25923 and methicillin-resistant S. aureus strains, with a minimum inhibitory concentration of 10 µg/mL. Under a scanning electron microscope, shrinkage and lysis of the cellular envelope were observed when exposed to BITC, and a bactericidal mode of BITC against S. aureus was further confirmed through flow cytometry. Additionally, the RNA profiles of S. aureus cells exposed to BITC indicated a violent transcriptional response to BITC. Through Kyoto Encyclopedia of Genes and Genomes analysis, it was found that many pathways involving bacterial survival were significantly affected, such as RNA degradation, oxidative phosphorylation, arginine biosynthesis, and so forth. A gene co-expression network was constructed using weighted gene co-expression network analysis, and six biologically meaningful co-expression modules and 125 hub genes were identified from the network. Among them, EfeB, GroES, SmpB, and Lsp were possibly targeted by BITC, leading to the death of S. aureus. Our results indicated a great potential of BITC to be applied in food safety and pharmaceuticals, highlighting its multitarget-directed bactericidal effects on S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Antibacterianos/farmacología , Perfilación de la Expresión Génica , Isotiocianatos , Staphylococcus aureus Resistente a Meticilina/genética , Extractos Vegetales , Staphylococcus aureus/genética
18.
BMC Infect Dis ; 21(1): 578, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34130629

RESUMEN

BACKGROUND: Antibiotic Resistance is an imminent global public health threat. Antibiotic resistance emerged in healthcare settings and has now moved on to the community settings. This study was conducted to identify the rates of asymptomatic colonization with selected antibiotic resistant organisms, (Methicillin Resistant Staphylococcus aureus (MRSA), Extended Spectrum Beta Lactamase (ESBL) producing Escherichia coli and Klebsiella spp and carbapenem resistant E.coli and Klebsiella spp) - among a group of university students in Sri Lanka. Identification of genetic determinants of MRSA and ESBL was an additional objective of the study. METHODS: A self - collected nasal swab and a peri-rectal swab collected after passing stools were obtained. Routine microbiological methods were used for the isolation S.aureus from the nasal swab and E.coli and Klebsiella species from the peri-rectal swab. Antibiotic sensitivity testing was performed as recommended by clinical and laboratory standard institute (CLSI). Three (3) genes that are responsible for ESBL production; blaCTX-M, blaSHV, and blaTEM were tested using previously described primers and PCR procedures. Identification of MecA and PVL genes attributed to MRSA was also done with PCR. RESULTS: A total of 322 participants between 21 and 28 years were recruited representing 5 different faculties of study. Seventy one (22.0%) were colonized with S.aureus and 14 among them with MRSA, making the MRSA colonization rate of 4.3%. Forty five (15%) of the participants were colonized with an ESBL producing E.coli or Klebsiella spp. No one was colonized with carbapenem resistant E.coli or Klebsiella species. Of the 45 ESBL producers the commonest genetic determinant identified was blaCTX-M (n = 36), while 16 isolates had blaTEM and 7 had blaSHV. Similarly, of the 14 isolates identified as MRSA, 3 (21.4%) were found to be PVL positive while 11 (78.6%) were MecA positive. CONCLUSIONS: A high rate of colonization with ESBL producing E.coli and Klebsiella species was noted in our study group.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones Bacterianas/epidemiología , Infecciones Bacterianas/microbiología , Farmacorresistencia Bacteriana , Universidades , Adulto , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Carbapenémicos/uso terapéutico , Estudios de Cohortes , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Klebsiella/aislamiento & purificación , Infecciones por Klebsiella/microbiología , Masculino , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Sri Lanka , Infecciones Estafilocócicas/microbiología , Estudiantes , Adulto Joven , beta-Lactamasas/genética
19.
Toxins (Basel) ; 13(5)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925199

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) can cause chronic lung infections in patients with Cystic Fibrosis (CF). One option for managing them is the use of linezolid. We hereby report the in-host emergence of linezolid resistance (LR) in MRSA in CF siblings via a population analysis. A collection of 171 MRSA strains from 68 samples were characterized by determining their linezolid Minimal Inhibitory Concentrations (MICs), analyzing the locus of staphylococcal protein A (spa) and whole genome sequencing. Courses of linezolid were retraced. Strains belonged to three spa types (t002, t045, t127) and two sequence types (ST1, ST5). Emergence of LR occurred under treatment, one year apart in both siblings, in the CC5-MRSA-I Geraldine clone harboring the toxic shock syndrome toxin-1-encoding gene. Resistance was related to a G2576T substitution present in a variable number of 23S rRNA gene copies. Susceptible and resistant strains were co-isolated within samples. Single Nucleotide Polymorphism-based analysis revealed complex colonizations by highly diversified, clonally related populations. LR remains rare in MRSA and there are very few longitudinal analyses documenting its emergence. Analyzing a large MRSA collection revealed new aspects of LR emergence: it emerges in specific subclonal lineages resulting from adaptive diversification of MRSA in the CF lung and this heterogeneity of intra-sample resistance may contribute to compromising antibiotic management.


Asunto(s)
Fibrosis Quística/complicaciones , Linezolid/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Choque Séptico/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Adolescente , Niño , Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana , Farmacorresistencia Bacteriana Múltiple/genética , Femenino , Técnicas de Genotipaje , Humanos , Linezolid/farmacología , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Choque Séptico/tratamiento farmacológico , Hermanos , Infecciones Estafilocócicas/microbiología , Secuenciación Completa del Genoma
20.
J Water Health ; 19(2): 216-228, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33901019

RESUMEN

Multidrug-resistant Staphylococcus aureus strains have been commonly found in hospitals and communities causing wide ranges of infections among humans and animals. Typing of these strains is a key factor to reveal their clonal dissemination in different regions. We investigated the prevalence and dissemination of different clonal groups of S. aureus with resistance phenotype to multiple antibiotics in two sewage treatment plants (STPs) in Tehran, Iran over four sampling occasions. A total of 576 S. aureus were isolated from the inlet, sludge and outlet. Of these, 80 were identified as methicillin-resistant S. aureus (MRSA) and were further characterized using a combination of Phene Plate (PhP) typing, staphylococcal cassette chromosome mec (SCCmec), ccr types, prophage and antibiotic-resistant profiling. In all, eight common type (CT) and 13 single PhP type were identified in both STPs, with one major CT accounting for 38.8% of the MRSA strains. These strains belonged to three prophage patterns and five prophage types with SCCmec type III being the predominant type. Resistance to 11 out of the 17 antibiotics tested was significantly (P < 0.0059) higher among the MRSA isolates than methicillin-sensitive S. aureus (MSSA) strains. The persistence of the strains in samples collected from the outlet of both STPs was 31.9% for MRSA and 23.1% for MSSA. These data indicated that while the sewage treatment process, in general, is still useful for removing most MRSA populations, some strains with SCCmec type III may have a better ability to survive the STP process.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Humanos , Irán , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Aguas del Alcantarillado , Staphylococcus aureus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA