Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0298533, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38536776

RESUMEN

An important cellular barrier to maintain the stability of the brain's internal and external environment is the blood-brain barrier (BBB). It also prevents harmful substances from entering brain tissue through blood circulation while providing protection for the central nervous system. It should be noted, however, that the intact BBB can be a barrier to the transport of most drugs into the brain via the conventional route of administration, which can prevent them from reaching effective concentrations for the treatment of disorders affecting the central nervous system. Electroacupuncture stimulation has been shown to be effective at opening the BBB in a series of experimental studies. This study systematically analyzes the possibility and mechanism by which electroacupuncture opens the BBB. In PubMed, Web of Science, VIP Database, Wanfang Database, and the Chinese National Knowledge Infrastructure, papers have been published for nearly 22 years aimed at opening the BBB and its associated structures. A comparison of EB content between electroacupuncture and control was selected as the primary outcome. There were also results on vascular endothelial growth factor (VEGF), nerve growth factor (NGF), P-Glycoprotein (P-gp), Matrix Metalloproteinase 9 (MMP-9), and glial fibrillary acidic protein (GFAP). We utilized Review Manager software analysis to analyze correlations between studies with a view to exploring the mechanisms of similarity. Evans Blue infiltration forest plot: pooled effect size of 2.04, 95% CI: 1.21 to 2.87, P < 0.01. These results indicate that electroacupuncture significantly increases EB penetration across the BBB. Most studies have reported that GFAP, MMP-9, and VEGF were upregulated after treatment. P-gp expression decreased as well. Electroacupuncture can open the BBB, and the sparse-dense wave is currently the most effective electroacupuncture frequency for opening the BBB. VEGF plays an important role in opening the BBB. It is also important to regulate the expression of MMP-9 and GFAP and inhibit the expression of P-gp.


Asunto(s)
Barrera Hematoencefálica , Electroacupuntura , Ratas , Animales , Barrera Hematoencefálica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratas Sprague-Dawley , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Permeabilidad
2.
Fitoterapia ; 174: 105854, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38331050

RESUMEN

The chemical transformation of lathyrane nucleus through reduction and oxidation reactions using Euphorbia Factor L1 (EFL1) and Euphorbia Factor L1 (EFL3) as examples were investigated, along with a co-modification strategy of lathyrane nucleus and its side ester chain. A total of 38 lathyrane derivatives (5-42) including 34 new compounds were obtained, which greatly enriched the structural diversity of the lathyrane-type diterpenoids. Cytotoxicity against drug-sensitive and drug (adriamycin, ADM) resistant MCF-7 cells showed that 23 out of 38 transformed derivatives possessed obvious cytotoxic activity with IC50 values ranging from 7.0 to 41.1 µM and 3.2 to 45.5 µM, respectively, against both cells, compared to the noncytotoxic EFL1 and EFL3. The multidrug resistance (MDR) reversing activities of these lathyrane derivatives were further evaluated in MCF-7/ADM. Three transformed compounds (reversal fold, RF = 151.33, 62.94 and 47.3 for 27, 37 and 42) showed markedly higher activity than EFL1 (RF = 32.92) and EFL3 (RF = 39.68). Structure-activity relationship study revealed an essential role of C-6/17 and C-12/13 double bonds on lathyrane nucleus for exerting MDR reversal activity. Western blotting analysis showed that 42 could reduce the expression level of P-glycoprotein (P-gp) in MCF-7/ADM cells; however, the most active compound 27 with an unnatural 5/7/7/4 fused-ring diterpenoid skeleton, had no inhibitory effect on P-gp expression.


Asunto(s)
Diterpenos , Euphorbia , Fenilpropionatos , Estructura Molecular , Euphorbia/química , Resistencia a Múltiples Medicamentos , Diterpenos/farmacología , Diterpenos/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP
3.
Phytomedicine ; 126: 155460, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394731

RESUMEN

BACKGROUND: Multidrug resistance is the major obstacle to cancer chemotherapy. Modulation of P-glycoprotein and drug combination approaches have been considered important strategies to overcome drug resistance. PURPOSE: Aiming at generating a small library of Amaryllidaceae-type alkaloids to overcome drug resistance, two major alkaloids, isolated from Pancratium maritimum, lycorine (1), and 2α-10bα-dihydroxy-9-O-demethylhomolycorine (2), were derivatized, giving rise to nineteen derivatives (3 - 21). METHODS: The main chemical transformation of lycorine resulted from the cleavage of ring E of the diacetylated lycorine derivative (3) to obtain compounds that have carbamate and amine functions (5 - 16), while acylation of compound 2 provided derivatives 17 - 21. Compounds 1 - 21 were evaluated for their effects on cytotoxicity, and drug resistance reversal, using resistant human ovarian carcinoma cells (HOC/ADR), overexpressing P-glycoprotein (P-gp/ABCB1), as model. RESULTS: Excluding lycorine (1) (IC50 values of 1.2- 2.5 µM), the compounds were not cytotoxic or showed moderate/weak cytotoxicity. Chemo-sensitization assays were performed by studying the in vitro interaction between the compounds and the anticancer drug doxorubicin. Most of the compounds have shown synergistic interactions with doxorubicin. Compounds 5, 6, 9 - 14, bearing both carbamate and aromatic amine moieties, were found to have the highest sensitization rate, reducing the dose of doxorubicin 5-35 times, highlighting their potential to reverse drug resistance in combination chemotherapy. Selected compounds (4 - 6, 9 - 14, and 21), able of re-sensitizing resistant cancer cells, were further evaluated as P-gp inhibitors. Compound 11, which has a para­methoxy-N-methylbenzylamine moiety, was the strongest inhibitor. In the ATPase assay, compounds 9-11 and 13 behaved as verapamil, suggesting competitive inhibition of P-gp. At the same time, none of these compounds affected P-gp expression at the mRNA or protein level. CONCLUSIONS: This study provided evidence of the potential of Amaryllidaceae alkaloids as lead candidates for the development of MDR reversal agents.


Asunto(s)
Adenocarcinoma , Alcaloides , Alcaloides de Amaryllidaceae , Antineoplásicos , Fenantridinas , Humanos , Alcaloides de Amaryllidaceae/farmacología , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Alcaloides/farmacología , Carbamatos/farmacología , Línea Celular Tumoral
4.
Acta Pharmacol Sin ; 45(5): 1060-1076, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228910

RESUMEN

Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Diterpenos , Resistencia a Antineoplásicos , Compuestos Epoxi , Proteínas Hedgehog , Factor Nuclear 1-alfa del Hepatocito , Neoplasias Pulmonares , Paclitaxel , Fenantrenos , Compuestos Epoxi/farmacología , Compuestos Epoxi/uso terapéutico , Humanos , Fenantrenos/farmacología , Fenantrenos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Diterpenos/farmacología , Diterpenos/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Hedgehog/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Animales , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Ratones Desnudos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Ratones , Ratones Endogámicos BALB C , Células A549
5.
Phytomedicine ; 123: 155210, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006807

RESUMEN

BACKGROUND: Oncogenic multidrug resistance (MDR) is a tough question in cancer therapy. However, no effective medications targeting oncogenic MDR are currently available. Studies have demonstrated that mosloflavone exerts anti-inflammatory effects, yet, its potential to ameliorate MDR remains unclear. PURPOSE: This study aimed to access the capability and elucidate molecular mechanisms of mosloflavone as a MDR resensitizing candidate. METHODS: We investigated the ability of mosloflavone to reverse oncogenic MDR and investigated its underlying mechanisms through cytotoxicity assay, cell cycle assay, apoptosis assay, and zebrafish xenograft model. The modulatory interplay between mosloflavone and P-gp was investigated through analysis of calcein-AM uptake, substrate efflux, ATPase assays, and molecular docking simulation. RESULTS: Mosloflavone inhibited P-gp efflux function in an uncompetitive manner without altering ABCB1 gene expression. In addition, it stimulated P-gp ATPase activity by binding to an active site distinct from that of verapamil. Regarding MDR reversal potential, mosloflavone resensitized MDR cancer cells to chemotherapies by arresting cell cycle and triggering apoptosis, possibly by enhancing reactive oxygen species accumulation and reducing phospho-STAT3. Moreover, in the zebrafish xenograft model, mosloflavone significantly potentiated the antitumor effect of paclitaxel. CONCLUSION: Our findings underscore the potential of mosloflavone as a novel dual modulator of STAT3 and P-gp, indicating it is a promising candidate for overcoming MDR in cancer treatment.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Antineoplásicos , Flavonoides , Animales , Humanos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Pez Cebra/metabolismo , Simulación del Acoplamiento Molecular , Resistencia a Antineoplásicos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos , Adenosina Trifosfatasas/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacología , Antineoplásicos/farmacología , Factor de Transcripción STAT3/metabolismo
6.
J Ethnopharmacol ; 322: 117598, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38113989

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Multi-Drug Resistance (MDR), mediated by P-glycoprotein (P-gp) is one of the barriers to successful chemotherapy in colon cancer patients. Annona muricata L. (A.muricata), commonly known as soursop/Graviola, is a medicinal plant that has been traditionally used in treating diverse diseases including cancer. Phytochemicals of A.muricata (Annonaceous Acetogenins-AGEs) have been well-reported for their anti-cancer effects on various cancers. AIM OF THE STUDY: The study aimed to examine the effect of AGEs in reversing MDR in colorectal cancer cells. METHODS: Based on molecular docking and molecular dynamic simulation, the stability of annonacin upon P-gp was investigated. Further in vitro studies were carried in oxaliplatin-resistant human colon cancer cells (SW480R) to study the biological effect of annonacin, in reversing drug resistance in these cells. RESULTS: Molecular docking and simulation studies have indicated that annonacin stably interacted at the drug binding site of P-gp. In vitro analysis showed that annonacin was able to significantly reduce the expression of P-gp by 2.56 folds. It also induced apoptosis in the drug-resistant colon cancer cells. Moreover, the intracellular accumulation of P-gp substrate (calcein-AM) was observed to increase in resistant cells upon treatment with annonacin. CONCLUSION: Our findings suggest that annonacin could inhibit the efflux of chemotherapeutic drugs mediated by P-gp and thereby help in reversing MDR in colon cancer cells. Further in vivo studies are required to decipher the underlying mechanism of annonacin in treating MDR cancers.


Asunto(s)
Annona , Neoplasias del Colon , Furanos , Lactonas , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Annona/química , Acetogeninas/farmacología , Simulación del Acoplamiento Molecular , Resistencia a Múltiples Medicamentos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Neoplasias del Colon/tratamiento farmacológico , Resistencia a Antineoplásicos
7.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 254-259, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38015511

RESUMEN

The purpose of this study was to detect the changes of P-Glycoprotein (P-GP) expression in rat brain microvessel endothelial cell line RBE4 after the action of Tetramethylpyrazine (TMP) on Carbamazepine (CBZ), so as to clarify the potential mechanism of TMP combined with CBZ against intractable epilepsy drug resistance. The RBE4 cell line was utilized for in vitro analysis. Cells were divided into control, CBZ, and CBZ-TMP group. The expression of P-GP was assessed using Western blot and reverse transcription polymerase chain reaction (RT-PCR). Intracellular concentration of CBZ was measured through high-performance liquid chromatography (HPLC). The differential expression of mRNA was evaluated by RNA sequencing. The intracellular concentration of CBZ in the CBZ-TMP group was significantly higher than that in other groups. The expression of P-GP in the CBZ group was significantly higher than that in the control group, while in the CBZ&TMP group, it was significantly lower than that in the other groups. Comparative analysis also revealed some differentially expressed genes. Compared with the CBZ group, FAM106A, SLC3A2, TENM2, etc. were upregulated most significantly in the CBZ&TMP group. ZBTB10, WDR7, STARD13, etc. were downregulated most significantly. Results suggest that TMP increases the intracellular concentration of CBZ, downregulates the expression of P-GP increased by CBZ, and modulates related cellular metabolism and signaling pathways, thus reversing the drug resistance mechanism of intractable epilepsy, providing a theoretical basis for the combination of traditional Chinese medicine and antiepileptic drugs.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Animales , Ratas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Células Endoteliales , Carbamazepina/farmacología , Encéfalo
8.
Neurotox Res ; 41(5): 408-430, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37086338

RESUMEN

Memory impairment is a result of multiple factors including amyloid-beta (Aß) accumulation. Several receptors are mediated for Aß transport and signaling. Moreover, blood lipids are involved in Aß signaling pathway through these receptors. Mediated blood lipid level by statins aims to regulate Aß signaling cascade. First, the structure of receptors was taken from the RCSB PDB database and prepared with MGLTools and AutoDock tool 4. Second, the ligand was prepared for docking through AutoDock Vina. The binding affinity was calculated, and the binding sites were determined through LigPlot+ software. Besides, pharmacokinetic properties were calculated through multiple software. Finally, a molecular dynamics (MD) simulation was conducted to evaluate ligands stability along with clustering analysis to evaluate proteins connection. Our molecular docking and dynamic analyses revealed silymarin as a potential inhibitor of acetylcholinesterase (AChE), P-glycoprotein, and angiotensin-converting enzyme 2 (ACE2) with 0.704, 0.85, and 0.83 Å for RMSD along with -114.27, -107.44, and -122.51 kcal/mol for free binding energy, respectively. Moreover, rosuvastatin and quercetin have more stability compared to silymarin and donepezil in complex with P-glycoprotein and ACE2, respectively. Eventually, based on clustering and pharmacokinetics analysis, silymarin, rosuvastatin, and quercetin are suggested to be involved in peripheral clearance of Aß. The bioactivity effects of mentioned statins and antioxidants are predicted to be helpful in treating memory impairment in Alzheimer's disease (AD). Nevertheless, mentioned drug effect could be improved by nanoparticles to facilitate penetration of the blood-brain barrier (BBB).


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Silimarina , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/uso terapéutico , Simulación del Acoplamiento Molecular , Acetilcolinesterasa/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Rosuvastatina Cálcica/uso terapéutico , Quercetina/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Silimarina/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/uso terapéutico
9.
Drug Metab Pharmacokinet ; 50: 100500, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36948091

RESUMEN

Black ginger is used as an herbal medicine for self-care and health promotion. Black ginger extract has been shown to alter the function of transporters in several cell types. This study demonstrates the interaction between the extract and 5,7-dimethoxyflavone (DMF) on drug efflux mediated by breast cancer resistance proteins (BCRP) and P-glycoprotein (P-gp) in Caco-2 cells and heterologous cell systems [Madin-Darby canine kidney type II (MDCKII) stably transfected with human BCRP (MDCKII/BCRP) or human P-gp (MDCKII/P-gp)]. The transepithelial flux of 3H-Digoxin and 3H-Estrone sulfate, prototypic substrates of P-gp, and BCRP, respectively, across Caco-2 cell monolayers, MDCKII/BCRP, and MDCKII/P-gp cells were determined. The results demonstrate that black ginger extract (10 µg/ml) significantly increases 3H-Digoxin and 3H-Estrone sulfate transport from the apical to basolateral side while decreasing transport from the basolateral to apical side of Caco-2 cells and MDCKII cell overexpression of BCRP or P-gp. The effect of the extract on 3H-Digoxin and 3H-Estrone sulfate transport was related to a decrease in efflux ratio. Likewise, DMF (5 µM) significantly increased 3H-Digoxin and 3H-Estrone sulfate absorption with a decreased efflux ratio compared to the control. Interestingly, the extract also significantly increased absorption of paclitaxel, an anti-cancer drug, which has poor oral absorption. Taken together, co-administration of drugs as substrates of BCRP and P-gp, with the black ginger extract containing DMF, might alter the pharmacokinetic profiles of the medicine.


Asunto(s)
Absorción Intestinal , Proteínas de Neoplasias , Animales , Perros , Humanos , Preparaciones Farmacéuticas , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Células CACO-2 , Proteínas de Neoplasias/metabolismo , Transporte Biológico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Digoxina/farmacocinética
10.
Phytother Res ; 37(7): 2939-2956, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36938853

RESUMEN

This study investigated antimalarial efficacy and sensitization of chrysosplenetin against artemisinin-resistant Plasmodium berghei K173 and potential molecular mechanism. Our data indicated a risk of artemisinin resistance because a higher parasitaemia% and lower inhibition% under artemisinin treatment against resistant parasites than those in the sensitive groups were observed. Two non-antimalarial components, verapamil and chrysosplentin, being P-gp inhibitors, possessed a strong efficacy against resistant parasites but it was not the case for Bcrp inhibitor novobiocin. Artemisinin-chrysosplenetin combination improved artemisinin susceptibility of resistant P. berghei. Artemisinin activated intestinal P-gp and Abcb1/Abcg2 expressions and suppressed Bcrp whereas chrysosplenetin reversed them. Resistant parasite infection led to a decreased haemozoin in organs or an increased heme in peripheral bloods compared with the sensitives; however, that in Abcb1-deficient knockout (KO)-resistant mice reversely got increased or decreased versus wild type (WT)-resistant animals. Chrysosplenetin as well as rifampin (nuclear receptor agonist) increased the transcription levels of PXR/CAR while showed a versatile regulation on hepatic and enternal PXR/CAR in WT- or KO-sensitive or -resistant parasites. Oppositely, hepatic and enteric NF-κB p52 mRNA decreased conformably in WT but increased in KO-resistant mice. NF-κB pathway potentially involved in the mechanism of chrysosplenetin on inhibiting P-gp expressions while PXR/CAR play a more complicated role in this mechanism.


Asunto(s)
Antimaláricos , Artemisininas , Ratones , Animales , Antimaláricos/farmacología , Plasmodium berghei , Subunidad p52 de NF-kappa B/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Proteínas de Neoplasias , Artemisininas/farmacología , Transducción de Señal , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Homeostasis , Hemo/farmacología
11.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901808

RESUMEN

The modulation of P-glycoprotein (P-gp, ABCB1) can reverse multidrug resistance (MDR) and potentiate the efficacy of anticancer drugs. Tea polyphenols, such as epigallocatechin gallate (EGCG), have low P-gp-modulating activity, with an EC50 over 10 µM. In this study, we optimized a series of tea polyphenol derivatives and demonstrated that epicatechin EC31 was a potent and nontoxic P-gp inhibitor. Its EC50 for reversing paclitaxel, doxorubicin, and vincristine resistance in three P-gp-overexpressing cell lines ranged from 37 to 249 nM. Mechanistic studies revealed that EC31 restored intracellular drug accumulation by inhibiting P-gp-mediated drug efflux. It did not downregulate the plasma membrane P-gp level nor inhibit P-gp ATPase. It was not a transport substrate of P-gp. A pharmacokinetic study revealed that the intraperitoneal administration of 30 mg/kg of EC31 could achieve a plasma concentration above its in vitro EC50 (94 nM) for more than 18 h. It did not affect the pharmacokinetic profile of coadministered paclitaxel. In the xenograft model of the P-gp-overexpressing LCC6MDR cell line, EC31 reversed P-gp-mediated paclitaxel resistance and inhibited tumor growth by 27.4 to 36.1% (p < 0.001). Moreover, it also increased the intratumor paclitaxel level in the LCC6MDR xenograft by 6 fold (p < 0.001). In both murine leukemia P388ADR and human leukemia K562/P-gp mice models, the cotreatment of EC31 and doxorubicin significantly prolonged the survival of the mice (p < 0.001 and p < 0.01) as compared to the doxorubicin alone group, respectively. Our results suggested that EC31 was a promising candidate for further investigation on combination therapy for treating P-gp-overexpressing cancers.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Catequina , Leucemia , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Xenoinjertos , Leucemia/tratamiento farmacológico , Paclitaxel/farmacología , Polifenoles/farmacología ,
12.
Sci Rep ; 13(1): 4528, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941308

RESUMEN

Red ginseng has been used in traditional medicine for centuries in Asia. In this study, we evaluated four types of red ginseng grown in different areas (Chinese red ginseng, Korean red ginseng A, Korean red ginseng B, and Korean red ginseng C) for their ability to inhibit lung tumor formation and growth induced by the carcinogen benzo(a)pyrene (B(a)P) in A/J mice and found that Korean red ginseng B was the most effective at lowering the tumor load among the four red ginseng varieties. Moreover, we analyzed the levels of various ginsenosides (Rg1, Re, Rc, Rb2, Rb3, Rb1, Rh1, Rd, Rg3, Rh2, F1, Rk1, and Rg5) in four kinds of red ginseng extract and found that Korean red ginseng B had the highest level of ginsenoside Rg3 (G-Rg3), which suggested that G-Rg3 may play an important role in its therapeutic efficacy. This work revealed that the bioavailability of G-Rg3 was relatively poor. However, when G-Rg3 was coadministered with verapamil, a P-glycoprotein inhibitor, the G-Rg3 efflux in Caco-2 cells was lowered, the small intestinal absorption rate of G-Rg3 in the rat models was increased, the concentration levels of G-Rg3 were elevated in the intestine and plasma, and its tumor-preventive abilities in the tumorigenesis rat model induced by B(a)P were also augmented. We also found that G-Rg3 reduced B(a)P-induced cytotoxicity and DNA adduct formation in human lung cells and rescued phase II enzyme expression and activity through Nrf2 pathways, which may be the potential mechanisms underlying the inhibitory effects of G-Rg3 on lung tumorigenesis. Our study showed a potentially vital role of G-Rg3 in targeting lung tumors in murine models. The oral bioavailability of this ginsenoside was augmented by targeting P-glycoprotein, which allowed the molecule to exert its anticancer effects.


Asunto(s)
Ginsenósidos , Panax , Ratas , Humanos , Ratones , Animales , Ginsenósidos/farmacología , Benzo(a)pireno/toxicidad , Células CACO-2 , Carcinogénesis , Pulmón , Subfamilia B de Transportador de Casetes de Unión a ATP
13.
ACS Chem Neurosci ; 14(4): 766-772, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36704945

RESUMEN

Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a traditional Chinese medicine that has been widely used in the treatment of various central nervous system (CNS) diseases. However, the mechanism of active components of S. miltiorrhiza crossing the blood-brain barrier (BBB) stays unclear. The purpose of this study was to clarify the mechanism of four ingredients of S. miltiorrhiza, i.e., cryptotanshinone (CTS), dihydrotanshinone I (DTS I), tanshinone IIA (TS IIA), and protocatechuic acid (PCTA) crossing the BBB using the in vitro model. The bidirectional transport of detectable components was tested using the MDCK-MDR1 monolayers. High performance liquid chromatography coupled to triple-quadrupole mass spectrometry (HPLC-QQQ/MS) was used to detect the content changes of S. miltiorrhiza monomer components transported through the BBB. Papp of CTS, DTS I, and TS IIA in the absorption direction were lower than 1.0 × 10-6 cm/s, suggesting that these components were poorly absorbed, while PCTA was moderately absorbed through the BBB. The efflux ratio (ER) of CTS, DTS I, TS IIA, and PCTA were 1.65, 0.92, 4.27, and 1.48, respectively. After treatment with P-gp inhibitor tariquidar, the efflux ratio (ER) of CTS, DTS I, and TS IIA significantly decreased from 1.65 to 1.27, 0.92 to 0.36, and 4.27 to 0.86 (P < 0.05), respectively, while the efflux ratio of PCTA decreased without significance from 1.48 to 0.80. This indicated that the transport of CTS, DTS I, and TS IIA might be related to P-gp. TS IIA and CTS were verified as the substrates of P-gp among the four components since the ER of TS IIA and CTS is greater than 1.5. For PCTA and DTS I, their transport mechanism may be related to other transport proteins or passive transport. The results were confirmed by molecular docking in our current work. In this study, an in vitro BBB model was established and applied to the trans-BBB study of active components in S. miltiorrhiza for the first time, which may provide a basis for further research on the mechanisms of other TCMs in treating CNS diseases and is of great significance in promoting the rational and effective use of TCMs.


Asunto(s)
Barrera Hematoencefálica , Salvia miltiorrhiza , Animales , Humanos , Ratas , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Salvia miltiorrhiza/química , Salvia miltiorrhiza/metabolismo , Línea Celular
14.
Biosens Bioelectron ; 222: 115001, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516634

RESUMEN

P-glycoprotein (P-gp), a transmembrane glycoprotein widely expressed on the surface of various cells, is highly associated with multidrug resistance (MDR) that heralds the malignant progress of disease after drug treatment. Notably, there have been reported that serum P-gp is a potential marker for assessing the progression of disease resistance. Currently, there are few methods for point-of-care serum P-gp detection. In this study, we proposed a gold nanoparticles/electrochemically reduced graphene oxide@carbon nanotube (AuNPs/ERGO@CNT) modified immunosensor based on a one-step electrochemical co-reduction method. The limit of detection (LOD) of our constructed electrochemical immunosensor for P-gp detection reached 0.13 ng/mL, and the detection results in serum were consistent with ELISA. The developed immunosensor is expected to provide a scientific basis for the clinical application of serum P-gp monitoring and integrated medicine.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Nanocompuestos , Oro , Inmunoensayo/métodos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Subfamilia B de Transportador de Casetes de Unión a ATP
15.
Tissue Cell ; 78: 101898, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36049371

RESUMEN

Individuals with Down syndrome (DS) exhibit impaired olfactory function and are at a higher risk of developing Alzheimer's disease (AD). Olfactory dysfunction may be an early clinical symptom of AD. Recent studies have demonstrated that vitamin D3 (VD3) exerts neuroprotective effects in mouse models of AD. In this study, we investigated the effects of VD3 on the morphology, immunolocalization, and markers involved in neuropathogenic processes, apoptosis, proliferation, cell survival, and clearance of amyloid peptides, along with neuronal markers in the olfactory bulb (OB) of an adult female mouse model of DS. Morphological and molecular analyses revealed that trisomic mice exhibited a volume reduction in the external plexiform layer, a decrease in the number of mitral and granule cells, and an increase in the expression of amyloid-ß 42, caspase-3 p12, and P-glycoprotein. VD3 reversed certain morphological abnormalities in the OB of control trisomic mice (Ts(CO)) and decreased the levels of caspase-3 p12 and methylenetetrahydrofolate reductase in the treated groups. The results demonstrated that trisomy factor causes morphofunctional abnormalities in the OB of Ts(CO) mice. Moreover, VD3 could represent a therapeutic target to attenuate morphological and molecular alterations in OB.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Fármacos Neuroprotectores , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Animales , Caspasa 3/metabolismo , Colecalciferol/farmacología , Suplementos Dietéticos , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Síndrome de Down/metabolismo , Femenino , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Ratones , Ratones Transgénicos , Bulbo Olfatorio/metabolismo
16.
Bioorg Chem ; 129: 106170, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36174443

RESUMEN

P-glycoprotein (P-gp), a transmembrane glycoprotein, is mainly involved in lung cancer multidrug resistance. Several P-gp inhibitors have been developed to enhance the efficacy of chemotherapeutics and overcome drug resistance. However, most of them failed in the clinical stages due to undesirable side effects. Therefore, there is a requirement to develop P-gp inhibitors from natural sources. Dietary spice bioactives have been well-known for their anticancer activities. However, their role in modulating the P-gp activity has not been well investigated. Therefore, we have screened for the potential bioactives from various spice plants with P-gp modulatory activity using computational molecular docking analysis. The computational analysis revealed several key bioactives from curry leaves, specifically mahanimbine, exhibited a strong binding affinity with P-gp. Unfortunately, mahanimbine is available with few commercial sources at very high prices. Therefore, we prepared a curry leaves extract and isolated mahanimbine by a novel, yet simple, extraction method that requires less time and causes minimum environmental hazards. After purification, structure, and mass were confirmed for the isolated compound by IR spectrum and LC-MS/MS analysis, respectively. In the mechanistic study, hydrolysis of ATP and substrate efflux by P-gp are coupled. Hence, ATP binding at the ATPase-binding site is one of the fundamental steps for the P-gp efflux cycle. We found that mahanimbine demonstrated to stimulate P-gp ATPase activity. Concurrently, it enhanced the intracellular accumulation of P-gp substrates Rhodamine 123 and Hoechst stain, which indicates that mahanimbine modulates the function of P-gp. In addition, we have analyzed the complementary effect of mahanimbine with the chemotherapeutic drug gefitinib. We found that mahanimbine synergistically enhanced gefitinib efficiency by increasing its intracellular accumulation in lung cancer cells. Overall, mahanimbine has been shown to be a potent P-gp modulator. Therefore, mahanimbine can be further developed as a potential candidate to overcome chemoresistance in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Murraya , Humanos , Murraya/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos , Simulación del Acoplamiento Molecular , Gefitinib/farmacología , Cromatografía Liquida , Espectrometría de Masas en Tándem , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Adenosina Trifosfato , Adenosina Trifosfatasas/metabolismo , Línea Celular Tumoral
17.
Phytochemistry ; 203: 113354, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35940427

RESUMEN

Aiming at overcoming multidrug resistance (MDR) in cancer, we have been studying Momordica balsamina, a vegetable known as African pumpkin. Five undescribed cucurbitane-type triterpenoids (balsaminaepoxide, balsaminatriol, balsaminoic acid, balsaminal, and balsaminol G) along with five known cucurbitacins were isolated from the methanol extract of Momordica balsamina aerial parts, whose structures were elucidated by spectroscopic data, mainly 1D and 2D NMR experiments. Compounds were evaluated for their ability as P-glycoprotein (P-gp/ABCB1) inhibitors in multidrug resistant human ABCB1-transfected mouse lymphoma cells (L5178Y, MDR) and resistant human colon adenocarcinoma cells (COLO 320), using the rhodamine-123 exclusion test, by flow cytometry. Several compounds, which were found to be non-cytotoxic, strongly inhibited P-gp efflux activity in a dose-dependent manner in both cell models. In MRD mouse lymphoma cells, balsaminol G and karavilagenin B were the most active, while in resistant colon adenocarcinoma cells, the strongest inhibitory activity was found for balsaminaepoxide, balsaminatriol and karavilagenin C, being several-fold more active than the positive control verapamil. In chemosensitivity assays, in a model of combination chemotherapy, selected compounds showed to interact synergistically with doxorubicin, thus substantiating their potential as MDR reversers. The strongest synergistic interaction was found for balsaminal and balsaminol G.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Cucurbita , Linfoma , Momordica , Triterpenos , Subfamilia B de Transportador de Casetes de Unión a ATP , Animales , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Cucurbitacinas , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Humanos , Metanol , Ratones , Momordica/química , Extractos Vegetales/farmacología , Rodaminas , Triterpenos/química , Triterpenos/farmacología , Verapamilo
18.
Nutrients ; 14(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807759

RESUMEN

The single nucleotide polymorphisms (SNPs) rs3808607, rs2072183, rs2032582, and rs1761667 are associated with coenzyme Q10 (CoQ10) bioavailability in women after long-term CoQ10 supplementation. However, the beneficial aspects of the association between these SNPs and CoQ10 supplementation remain unknown. We investigated their relationship using the subjective quality of life score SF-36 by reanalyzing previous data from 92 study participants who were receiving ubiquinol (a reduced form of CoQ10) supplementation for 1 year. Two-way repeated-measures analysis of variance revealed a significant interaction between rs1761667 and the SF-36 scores of role physical (p = 0.016) and mental health (p = 0.017) in women. Subgrouping of participants based on the above four SNPs revealed significant interactions between these SNPs and the SF-36 scores of general health (p = 0.045), role emotional (p = 0.008), and mental health (p = 0.019) and increased serum CoQ10 levels (p = 0.008), suggesting that the benefits of CoQ10 supplementation, especially in terms of psychological parameters, are genotype-dependent in women. However, significant interactions were not observed in men. Therefore, inclusion of SNP subgrouping information in clinical trials of CoQ10 supplementation may provide conclusive evidence supporting other beneficial health effects exerted by the association between these SNPs and CoQ10 on women.


Asunto(s)
Calidad de Vida , Ubiquinona , Subfamilia B de Transportador de Casetes de Unión a ATP , Antioxidantes , Disponibilidad Biológica , Colesterol 7-alfa-Hidroxilasa , Suplementos Dietéticos , Femenino , Humanos , Masculino , Proteínas de Transporte de Membrana
19.
Xenobiotica ; 52(5): 511-519, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35855663

RESUMEN

Kampo medicines are widely used in Japan; however, their potential to cause drug interactions still remains unclear and needs to be further investigated. The effects of goreisan on the P-glycoprotein (P-gp) and the cytochrome P-450 (CYP), which are associated with drug interactions, were investigated.The inhibitory effect of goreisan extract on P-gp was evaluated using a Caco-2 cell permeability assay. The results indicated that it inhibited P-gp function in a concentration-dependent manner.The inhibitory effect of three goreisan ingredients (alisol A, tumulosic acid, and (E)-cinnamic acid) on seven CYP isoforms was evaluated using human liver microsomes (HLM). Of these, tumulosic acid and (E)-cinnamic acid exhibited less than 16% inhibition at concentrations of 10 µmol/L against any of the CYP isoforms tested. Alisol A inhibited only CYP3A but showed no inhibitory effect with pre-incubation.These results indicate that goreisan extract has inhibitory activity against P-gp and that alisol A, a goreisan ingredient, exhibits an inhibitory effect on CYP3A. However, these are thought to be minor or negligible in vivo. Overall, these findings will be useful to evaluate possible drug interactions and provide support for the interpretation of future clinical drug-drug interaction studies involving goreisan.


Asunto(s)
Citocromo P-450 CYP3A , Medicamentos Herbarios Chinos , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Células CACO-2 , Sistema Enzimático del Citocromo P-450 , Humanos , Microsomas Hepáticos
20.
Integr Cancer Ther ; 21: 15347354221090221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35426328

RESUMEN

AIM: To investigate the mechanisms employed by PS-T (polysaccharides of Trametes, PS-T), the main active ingredient of Huaier granules, to improve the susceptibility of hepatoma cells to oxaliplatin (OXA). METHODS: Cell proliferation in response to PS-T was determined both in vitro and in vivo. The effects of PS-T on miRNAs were analyzed with the use of a microarray. MiRNAs were screened under specific conditions (P < .05, logFoldChange > ABS [1.5]) and further silenced or overexpressed by liposome transfection. Levels of ABCB1 mRNA and P-gp were detected by qRT-PCR and western blot analysis, respectively. A dual fluorescence assay was performed to determine whether miRNA directly targets ABCB1. RESULTS: PS-T enhanced the inhibitory effect of OXA in human hepatoma cells and xenografts. Among 5 up-regulated miRNAs, overexpression of only miR-224-5p inhibited the expression of ABCB1 mRNA and P-gp, while silencing of miR-224-5p had an opposite effect. Moreover, miR-224-5p can directly target the 3'-UTR of ABCB1. CONCLUSION: PS-T increases the sensitivity of human hepatoma cells to OXA via the miR-224-5p/ABCB1/P-gp axis.


Asunto(s)
Agaricales , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Humanos , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Oxaliplatino/farmacología , Polyporaceae , Polisacáridos/farmacología , ARN Mensajero/genética , Trametes/genética , Trametes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA