Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Des Devel Ther ; 18: 781-799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500692

RESUMEN

Purpose: This study aimed to elucidate the protective mechanism of Traditional Chinese Medicine (TCM) Qifu Yixin formula (QFYXF) to improve heart failure (HF) by promoting ß-arrestin2 (ß-arr2)-mediated SERCA2a SUMOylation. Materials and Methods: The transverse aortic constriction (TAC)-induced HF mice were treated with QFYXF or carvedilol for 8 weeks. ß-arr2-KO mice and their littermate wild-type (WT) mice were used as controls. Neonatal rat cardiomyocytes (NRCMs) were used in vitro. Cardiac function was evaluated by echocardiography and serum NT-proBNP. Myocardial hypertrophy and myocardial fibrosis were assessed by histological staining. ß-arr2, SERCA2a, SUMO1, PLB and p-PLB expressions were detected by Western blotting, immunofluorescence and immunohistochemistry. SERCA2a SUMOylation was detected by Co-IP. The molecular docking method was used to predict the binding ability of the main active components of QFYXF to ß-arr2, SERCA2a, and SUMO1, and the binding degree of SERCA2a to SUMO1 protein. Results: The HF model was constructed 8 weeks after TAC. QFYXF ameliorated cardiac function, inhibiting myocardial hypertrophy and fibrosis. QFYXF promoted SERCA2a expression and SERCA2a SUMOylation. Further investigation showed that QFYXF promoted ß-arr2 expression, whereas Barbadin (ß-arr2 inhibitor) or ß-arr2-KO reduced SERCA2a SUMOylation and attenuated the protective effect of QFYXF improved HF. Molecular docking showed that the main active components of QFYXF had good binding activities with ß-arr2, SERCA2a, and SUMO1, and SERCA2a had a high binding degree with SUMO1 protein. Conclusion: QFYXF improves HF by promoting ß-arr2 mediated SERCA2a SUMOylation and increasing SERCA2a expression.


Asunto(s)
Insuficiencia Cardíaca , Sumoilación , Ratas , Ratones , Animales , Simulación del Acoplamiento Molecular , Miocitos Cardíacos , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo
2.
Phytother Res ; 37(9): 3898-3912, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37132081

RESUMEN

Liver fibrosis is a key global health care burden. Sclareol, isolated from Salvia sclarea, possesses various biological activities. Its effect on liver fibrosis remains unknown. This study was proposed to evaluate the antifibrotic activity of sclareol (SCL) and explore its underlying mechanisms. Stimulated hepatic stellate cells served as an in vitro liver fibrosis model. The expression of fibrotic markers was assessed by western blot and real-time PCR. Two classical animal models, bile duct-ligated rats and carbon tetrachloride-treated mice, were utilized for the in vivo experiments. The liver function and fibrosis degree were determined by serum biochemical and histopathological analyses. VEGFR2 SUMOylation was analyzed using coimmunoprecipitation assay. Our results indicated that SCL treatment restricted the profibrotic propensity of activated HSCs. In fibrotic rodents, SCL administration alleviated hepatic injury and reduced collagen accumulation. Mechanistic studies indicated that SCL downregulated the protein level of SENP1 and enhanced VEGFR2 SUMOylation in LX-2 cells, which affected its intracellular trafficking. Blockade of the interaction between VEGFR2 and STAT3 was observed, resulting in the suppression of downstream STAT3 phosphorylation. Our findings demonstrated that SCL has therapeutic efficacy against liver fibrosis through mediating VEGFR2 SUMOylation, suggesting that SCL may be a potential candidate compound for its treatment.


Asunto(s)
Cirrosis Hepática , Sumoilación , Ratas , Ratones , Animales , Cirrosis Hepática/tratamiento farmacológico , Hígado , Transducción de Señal , Fibrosis , Células Estrelladas Hepáticas
3.
Oxid Med Cell Longev ; 2022: 8923615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35941902

RESUMEN

Retinal degeneration is the major and principal cause behind many incurable blindness diseases. Several studies indicated the neuroprotective effect of Curcuma longa in eye pathologies, specifically retinopathy. However, the molecular mechanism behind its effect has not been completely elucidated. Using an ex vivo model of retinal degeneration obtained from an ex vivo optic nerve cut (ONC), we demonstrated that Curcuma extract (Cur) exerted a neuroprotective effect. Importantly, Cur was able to modulate apoptosis and MAPK signaling pathway activation and prevent retinal ganglion cell (RGC) loss. Other well-known neuroprotective pharmacological tools, including memantine (Mem), citicoline (Cit), and ginkgolic acid (GA), were used to compare the potential mechanisms of Cur. The antioxidant activity of retinas treated with Cur following optic nerve cut was significantly higher than control, but Cur failed to change the retina glutamate content. Considering the antioxidant effect of Cur and taking advantage of our recent findings on the crosstalk between oxidative stress and post-translational protein modifiers, in particular, small ubiquitin-related modifier (SUMO), we were interested in exploring the effect of Cur on SUMOylation. We found that Cur significantly prevented the increase of protein SUMOylation, confirming our previous in vitro data indicating the cytoprotective effect of curcumin through modulating the oxidative stress and SUMO-JNK axis. Altogether, these results suggest that Curcuma protects the retina from degeneration via antioxidant activity and targets SUMOylation. Therefore, it might be considered for the combination therapy with other neuroprotective agents with different mechanisms in preclinical studies on retinal degeneration.


Asunto(s)
Curcumina , Fármacos Neuroprotectores , Degeneración Retiniana , Antioxidantes/farmacología , Curcuma , Curcumina/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Sumoilación
4.
Pharmacol Res ; 172: 105843, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428586

RESUMEN

SUMOylation of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) has been shown to play a critical role in the abnormal Ca2+ cycle of heart failure. Ginsenoside Rg3 (Rg3), the main active constituent of Panax ginseng, exerts a wide range of pharmacological effects in cardiovascular diseases. However, the effect of Rg3 on abnormal Ca2+ homeostasis in heart failure has not been reported. In this study, we showed a novel role of Rg3 in the abnormal Ca2+ cycle in cardiomyocytes of mice with heart failure. Among mice undergoing transverse aortic constriction, animals that received Rg3 showed improvements in cardiac function and Ca2+ homeostasis, accompanied by increases in the SUMOylation level and SERCA2a activity. In an isoproterenol (ISO)-induced cell hypertrophy model, Rg3 reduced the ISO-induced Ca2+ overload in HL-1 cells. Gene knockout of SUMO1 in mice inhibited the cardioprotective effect of Rg3, and SUMO1 knockout mice that received Rg3 did not exhibit improved Ca2+ homeostasis in cardiomyocytes. Additionally, mutation of the SUMOylation sites of SERCA2a blocked the positive effect of Rg3 on the ISO-induced abnormal Ca2+ cycle in HL-1 cells, and was accompanied by an abnormal endoplasmic reticulum stress response and generation of ROS. Our data demonstrated that Rg3 has a positive effect on the abnormal Ca2+ cycle in the cardiomyocytes of mice with heart failure. SUMO1 is an important factor that mediates the protective effect of Rg3. Our findings suggest that drug intervention by regulating the SUMOylation of SERCA2a can provide a novel therapeutic strategy for the treatment of heart failure.


Asunto(s)
Cardiotónicos/uso terapéutico , Ginsenósidos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sumoilación/efectos de los fármacos , Animales , Calcio/metabolismo , Cardiotónicos/farmacología , Línea Celular , Ginsenósidos/farmacología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
5.
Plant Signal Behav ; 16(5): 1899487, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33715572

RESUMEN

The zinc finger transcription factor STOP1 plays a crucial role in aluminum (Al) resistance and low phosphate (Pi) response. Al stress and low Pi availability do not affect STOP1 mRNA expression but are able to induce STOP1 protein accumulation by post-transcriptional regulatory mechanisms. We recently reported that STOP1 can be mono-SUMOylated at K40, K212, or K395 sites, and deSUMOylated by the SUMO protease ESD4. SUMOylation of STOP1 is important for the regulation of STOP1 protein function and Al resistance. In the present study, we further characterized the role of the SUMO E3 ligase SIZ1 in STOP1 SUMOylation, Al resistance and low Pi response. We found that mutation of SIZ1 reduced but not eliminated STOP1 SUMOylation, suggesting that SIZ1-dependent and -independent pathways are involved in the regulation of STOP1 SUMOylation. The STOP1 protein levels were decreased in siz1 mutants. Nevertheless, the expression of STOP1-target gene AtALMT1 was increased instead of reduced in siz1 mutants. The mutants showed enhanced Al resistance and low Pi response. Our results suggest that SIZ1 regulates Al resistance and low Pi response likely through the modulation of AtALMT1 expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ligasas/metabolismo , Sumoilación , Factores de Transcripción/metabolismo , Aluminio/toxicidad , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ligasas/genética , Mutación/genética , Fósforo/farmacología , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Sumoilación/efectos de los fármacos
6.
Cell Death Differ ; 28(4): 1174-1192, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33110216

RESUMEN

Hepatic ischemic reperfusion injury (IRI) is a common complication of liver surgery. Although an imbalance between mitochondrial fission and fusion has been identified as the cause of IRI, the detailed mechanism remains unclear. Augmenter of liver regeneration (ALR) was reported to prevent mitochondrial fission by inhibiting dynamin-related protein 1 (Drp1) phosphorylation, contributing partially to its liver protection. Apart from phosphorylation, Drp1 activity is also regulated by small ubiquitin-like modification (SUMOylation), which accelerates mitochondrial fission. This study aimed to investigate whether ALR-mediated protection from hepatic IRI might be associated with an effect on Drp1 SUMOylation. Liver tissues were harvested from both humans and from heterozygous ALR knockout mice, which underwent IRI. The SUMOylation and phosphorylation of Drp1 and their modulation by ALR were investigated. Hepatic Drp1 SUMOylation was significantly increased in human transplanted livers and IRI-livers of mice. ALR-transfection significantly decreased Drp1 SUMOylation, attenuated the IRI-induced mitochondrial fission and preserved mitochondrial stability and function. This study showed that the binding of transcription factor Yin Yang-1 (YY1) to its downstream target gene UBA2, a subunit of SUMO-E1 enzyme heterodimer, was critical to control Drp1 SUMOylation. By interacting with YY1, ALR inhibits its nuclear import and dramatically decreases the transcriptional level of UBA2. Consequently, mitochondrial fission was significantly reduced, and mitochondrial function was maintained. This study showed that the regulation of Drp1 SUMOylation by ALR protects mitochondria from fission, rescuing hepatocytes from IRI-induced apoptosis. These new findings provide a potential target for clinical intervention to reduce the effects of IRI during hepatic surgery.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Dinaminas/genética , Mitocondrias Hepáticas/metabolismo , Proteínas de Neoplasias/biosíntesis , Daño por Reperfusión/prevención & control , Sumoilación , Animales , Apoptosis , Línea Celular , Proteínas de Unión al ADN/genética , Dinaminas/metabolismo , Humanos , Hígado/metabolismo , Hígado/patología , Regeneración Hepática , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/patología , Dinámicas Mitocondriales , Proteínas de Neoplasias/genética , Fosforilación , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
7.
Mol Neurobiol ; 58(4): 1504-1516, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33205365

RESUMEN

PPAR-γ anti-inflammatory functions have received significant attention since its agonists have been shown to exert a wide range of protective effects in many experimental models of neurologic diseases. Rice bran is very rich in polyunsaturated fatty acids, which are reported to act as PPAR-γ partial agonists. Herein, the anti-inflammatory effect of rice bran extract (RBE) through PPAR-γ activation was evaluated in LPS-induced neuroinflammatory mouse model in comparison to pioglitazone (PG) using 80 Swiss albino mice. RBE (100 mg/kg) and PG (30 mg/kg) were given orally for 21 days and LPS (0.25 mg/kg) was injected intraperitoneally for the last 7 days. TNF-α and COX-2 brain contents were evaluated by real-time PCR and immunohistochemical analysis. In addition, NFκB binding to its response element was evaluated alongside with the effect of treatments on IκB gene expression. Furthermore, PPAR-γ sumoylation was also studied. Finally, histopathological examination was performed for different brain areas. RBE administration was found to protect against the LPS-induced inflammatory effects by decreasing the inflammatory mediator expression in mice brains. It also decreased PPAR-γ sumoylation without significant effect on IκB expression or NFκB binding to its response element. The majority of the effects were attenuated in presence of PPAR-γ antagonist (GW9662). Level of significance was set to P < 0.05. Such findings highlight the agonistic effect of RBE component(s) on PPAR-γ and support the hypothesis of involvement of PPAR-γ activation in its neuroprotective effect.


Asunto(s)
Encéfalo/patología , Inflamación/patología , Fármacos Neuroprotectores/farmacología , Oryza/química , PPAR gamma/metabolismo , Extractos Vegetales/farmacología , Anilidas/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ciclooxigenasa 2/metabolismo , Ésteres/análisis , Ácidos Grasos/análisis , Regulación de la Expresión Génica/efectos de los fármacos , Lipopolisacáridos , Masculino , Ratones , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , PPAR gamma/antagonistas & inhibidores , Pioglitazona/farmacología , Unión Proteica/efectos de los fármacos , Elementos de Respuesta/genética , Sumoilación/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
8.
Eur J Pain ; 24(8): 1517-1536, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32446289

RESUMEN

BACKGROUND: Unilateral injection of Complete Freund's Adjuvant (CFA) into the intra-plantar surface of the rodent hindpaw elicits chronic inflammation and hyperalgesia in the ipsilateral hindlimb. Mechanisms contributing to this hyperalgesia may act over multiple time courses and can include changes in ion channel expression and post-translational SUMOylation. Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels mediate the hyperpolarization-activated current, Ih . An HCN2-mediated increase in C-nociceptor Ih contributes to mechanical hyperalgesia in the CFA model of inflammatory pain. Changes in HCN2 post-translational SUMOylation and protein expression have not been systematically documented for a given dorsal root ganglia (DRG) throughout the time course of inflammation. METHODS: This study examined HCN2 protein expression and post-translational SUMOylation in a rat model of CFA-induced hindpaw inflammation. L5 DRG cryosections were used in immunohistochemistry experiments and proximity ligation assays to investigate HCN2 expression and SUMOylation, respectively, on days 1 and 3 post-CFA. RESULTS: Unilateral CFA injection elicited a significant bilateral increase in HCN2 staining intensity in small diameter DRG neurons on day 1 post-CFA, and a significant bilateral increase in the number of small neurons expressing HCN2 but not staining intensity on day 3 post-CFA. HCN2 channels were hyper-SUMOylated in small diameter neurons of ipsilateral relative to contralateral DRG on days 1 and 3 post-CFA. CONCLUSIONS: Unilateral CFA injection elicits unilateral mechanical hyperalgesia, a bilateral increase in HCN2 expression and a unilateral increase in post-translational SUMOylation. This suggests that enhanced HCN2 expression in L5 DRG is not sufficient for mechanical hyperalgesia in the early stages of inflammation and that hyper-SUMOylation of HCN2 channels may also be necessary. SIGNIFICANCE: Nociceptor HCN2 channels mediate an increase in Ih that is necessary for mechanical hyperalgesia in a CFA model of chronic pain, but the mechanisms producing the increase in nociceptor Ih have not been resolved. The data presented here suggest that the increase in Ih during the early stages of inflammation may be mediated by an increase in HCN2 protein expression and post-translational SUMOylation.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos , Sumoilación , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/inducido químicamente , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Inflamación/inducido químicamente , Nucleótidos Cíclicos , Ratas
9.
Biomolecules ; 10(4)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244364

RESUMEN

Existing therapeutic strategies for breast cancer are limited by tumor recurrence and drug-resistance. Antioxidant plant-derived compounds such as flavonoids reduce adverse outcomes and have been identified as a potential source of antineoplastic agent with less undesirable side effects. Here, we describe the novel regulation of fatty-acid synthase (FASN), the key enzyme in de novo fatty-acid synthesis, whereby Vitis vinifera L. cv Vermentino leaf hydroalcoholic extract lowers its protein stability that is regulated by small ubiquitin-like modifier (SUMO)ylation. The phenolic compounds characterization was performed by liquid chromatography-mass spectrometry (LC-MS), whereas mass spectrometry (LC-MS/MS), Western blotting/co-immunoprecipitation (Co-IP) and RT-PCR, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenicity assays, and FACS analysis were used to measure the expression of targets and tumorigenicity. Vermentino extract exhibits antitumorigenic effects, and we went on to determine that FASN and ubiquitin-conjugating enzyme 9 (UBC9), the sole E2 enzyme required for SUMOylation, were significantly reduced. Moreover, FASN was found SUMOylated in human breast cancer tissues and cell lines, and lack of SUMOylation caused by SUMO2 silencing reduced FASN protein stability. These results suggest that SUMOylation protects FASN against proteasomal degradation and may exert oncogenic activity through alteration of lipid metabolism, whereas Vermentino extract inhibits these effects which supports the additional validation of the therapeutic value of this compound in breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Acido Graso Sintasa Tipo I/metabolismo , Extractos Vegetales/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Sumoilación/efectos de los fármacos , Vitis/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Necrosis/inducido químicamente , Hojas de la Planta/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
10.
ACS Chem Biol ; 14(11): 2389-2395, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31361113

RESUMEN

SUMOylation is a reversible and highly dynamic post-translational modification of target proteins by small ubiquitin-like modifiers (SUMO). It is orchestrated by SUMO-activating, -conjugating, and -ligating enzymes in a sequential manner and is important in regulating a myriad of predominantly nuclear processes. DeSUMOylation is achieved by SUMO-specific proteases (SENPs). Deregulation of SUMOylation and deSUMOylation results in cellular dysfunction and is linked to various diseases, including cancer. In recent years, SENPs have emerged as potential therapeutic targets. In this review, we will describe the inhibitors and activity-based probes of SENPs. Furthermore, we will summarize the biochemical assays available for evaluating the activity of SENPs to identify inhibitors.


Asunto(s)
Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Secuencia de Aminoácidos , Animales , Bioensayo/métodos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Estructura Molecular , Neoplasias/metabolismo , Neoplasias/terapia , Inhibidores de Proteasas/farmacología , Procesamiento Proteico-Postraduccional , Transducción de Señal , Relación Estructura-Actividad , Sumoilación
11.
Plant Signal Behav ; 13(4): e1179417, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-27136402

RESUMEN

SUMO is a modifying peptide that regulates protein activity and is essential to eukaryotes. In plants, SUMO plays an important role in both development and the response to environmental stimuli. The best described sumoylation pathway component is the SUMO E3 ligase SIZ1. Its mutant displays inefficient responses to nutrient imbalance in phosphate, nitrate and copper. Recently, we reported that siz1 also displays altered responses to exogenous sugar supplementation. The siz1 mutant is a salicylic acid (SA) accumulator, and SA may interfere with sugar-dependent responses and signaling events. Here, we extended our previous studies to determine the importance of SA in the SIZ1 response to sugars, by introducing the bacterial salicylate hydroxylase NahG into the siz1 background. Results demonstrate that siz1 phenotypes involving delayed germination are partially dependent of SA levels, whereas the sugar-signaling effect of sugars is independent of SA.


Asunto(s)
Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Azúcares/metabolismo , Sumoilación
12.
Mol Plant Microbe Interact ; 30(11): 855-865, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28726589

RESUMEN

Invasive plant pathogens have developed the ability to modify the metabolism of their host, promoting metabolic processes that facilitate the growth of the pathogen at the general expense of the host. The particular enzymatic process SUMOylation, which performs posttranslational modification of target proteins, leading to changes in many aspects of protein activity and, hence, metabolism, has been demonstrated to be active in many eukaryotic organisms, both animals and plants. Here, we provide experimental evidence that indicates that, in leaves of Solanum tuberosum that have been infected by Phytophthora infestans, the SUMO (small ubiquitin-like modifier) pathway enzymes of the host are partially under transcriptional control exerted by the oomycete. Using a recently developed approach that employs three-dimensional gels, we show that, during the infection process, the abundances of most of the known SUMO conjugates of S. tuberosum change significantly, some decreasing, but many increasing in abundance. The new proteomic approach has the potential to greatly facilitate investigation of the molecular events that take place during the invasion by a pathogen of its host plant.


Asunto(s)
Interacciones Huésped-Patógeno , Phytophthora infestans/fisiología , Proteómica/métodos , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología , Sumoilación , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Solanum tuberosum/genética , Factores de Tiempo
13.
J Proteomics ; 150: 268-280, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27671789

RESUMEN

SUMOylation is a post-translational modification which regulates a number of critical biological processes in, for example mammals, yeast and plants. In order to fully understand the functional effects of SUMOylation an essential first step is the identification of endogenous targets for SUMOylation. Here we report the results of using a recently developed proteomic approach based on the use of 3D gels to identify the endogenous SUMO targets in leaves of Solanum tuberosum. By using 3D gels we avoid the problem of co-migration of proteins, which is a major limitation of 2D gels, and we enable the use of the highly sensitive CyDye DIGE fluor saturation dyes. Using this new method we have identified 39 individual proteins as probable SUMO targets in leaves of Solanum tuberosum. The advantages of this method compared with other approaches are discussed, and possible future developments are outlined. SIGNIFICANCE: The authors have no conflicts of interest to declare. All authors have approved the manuscript and agree with submission to Journal of Proteomics.


Asunto(s)
Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Solanum tuberosum/metabolismo , Sumoilación , Electroforesis/métodos , Proteínas de Plantas/análisis , Solanum tuberosum/química , Espectrometría de Masas en Tándem
14.
Methods Mol Biol ; 1475: 161-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27631805

RESUMEN

Posttranslational regulation of proteins by conjugation of ubiquitin- and ubiquitin-like molecules is a common theme in almost every known biological pathway. SUMO (small ubiquitin-related modifier) is dynamically added and deleted from many cellular substrates to control activity, localization, and recruitment of other SUMO-recognizing protein complexes. The dynamic nature of this modification and its low abundance in resting cells make it challenging to study, with susceptibility to deSUMOylases further complicating its analysis. Here we describe bioSUMO, a general method to isolate and analyze SUMOylated proteins from cultured cells, using Drosophila as a highlighted example. The method also has been validated in transgenic flies, as well as human cells. SUMOylated substrates are labeled by in vivo biotinylation, which facilitates their subsequent purification using streptavidin-based affinity chromatography under stringent conditions and with very low background. The bioSUMO approach can be used to validate whether a specific protein is modified, or used to analyze an entire SUMO subproteome. If coupled to quantitative proteomics methods, it may reveal how the SUMO landscape changes with different stimuli, or in diverse cell or tissue types. This technique offers a complementary approach to study SUMO biology and we expect that the strategy can be extended to other ubiquitin-like proteins.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Escherichia coli/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Animales , Biotina/química , Biotinilación , Ligasas de Carbono-Nitrógeno/genética , Clonación Molecular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Escherichia coli/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Larva/genética , Larva/metabolismo , Macrófagos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación , Factores de Transcripción/genética
15.
Bioinformatics ; 32(20): 3133-3141, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27354696

RESUMEN

MOTIVATION: Sumoylation is a post-translational modification (PTM) process, in which small ubiquitin-related modifier (SUMO) is attaching by covalent bonds to substrate protein. It is critical to many different biological processes such as replicating genome, expressing gene, localizing and stabilizing proteins; unfortunately, it is also involved with many major disorders including Alzheimer's and Parkinson's diseases. Therefore, for both basic research and drug development, it is important to identify the sumoylation sites in proteins. RESULTS: To address such a problem, we developed a predictor called pSumo-CD by incorporating the sequence-coupled information into the general pseudo-amino acid composition (PseAAC) and introducing the covariance discriminant (CD) algorithm, in which a bias-adjustment term, which has the function to automatically adjust the errors caused by the bias due to the imbalance of training data, had been incorporated. Rigorous cross-validations indicated that the new predictor remarkably outperformed the existing state-of-the-art prediction method for the same purpose. AVAILABILITY AND IMPLEMENTATION: For the convenience of most experimental scientists, a user-friendly web-server for pSumo-CD has been established at http://www.jci-bioinfo.cn/pSumo-CD, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. CONTACT: jjia@gordonlifescience.org, xxiao@gordonlifescience.org or kcchou@gordonlifescience.orgSupplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Proteínas/genética , Sumoilación , Aminoácidos , Análisis de Secuencia de Proteína , Programas Informáticos
17.
Elife ; 42015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26653140

RESUMEN

SUMO-modification of nuclear proteins has profound effects on gene expression. However, non-toxic chemical tools that modulate sumoylation in cells are lacking. Here, to identify small molecule sumoylation inhibitors we developed a cell-based screen that focused on the well-sumoylated substrate, human Liver Receptor Homolog-1 (hLRH-1, NR5A2). Our primary gene-expression screen assayed two SUMO-sensitive transcripts, APOC3 and MUC1, that are upregulated by SUMO-less hLRH-1 or by siUBC9 knockdown, respectively. A polyphenol, tannic acid (TA) emerged as a potent sumoylation inhibitor in vitro (IC50 = 12.8 µM) and in cells. TA also increased hLRH-1 occupancy on SUMO-sensitive transcripts. Most significantly, when tested in humanized mouse primary hepatocytes, TA inhibits hLRH-1 sumoylation and induces SUMO-sensitive genes, thereby recapitulating the effects of expressing SUMO-less hLRH-1 in mouse liver. Our findings underscore the benefits of phenotypic screening for targeting post-translational modifications, and illustrate the potential utility of TA for probing the cellular consequences of sumoylation.


Asunto(s)
Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/metabolismo , Hepatocitos/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Sumoilación/efectos de los fármacos , Taninos/aislamiento & purificación , Taninos/metabolismo , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Perfilación de la Expresión Génica , Hepatocitos/enzimología , Humanos , Concentración 50 Inhibidora , Ratones , Ratones SCID
18.
Neuroendocrinology ; 100(2-3): 228-39, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25402859

RESUMEN

Hyperactivity of the hypothalamic-pituitary-adrenal axis is a consistent biological characteristic of depression, and response normalization coincides with clinical responsiveness to antidepressant medications. Desensitization of serotonin 1A receptor (5-HT1AR) signaling in the hypothalamic paraventricular nucleus of the hypothalamus (PVN) follows selective serotonin reuptake inhibitor (SSRI) antidepressant treatment and contributes to the antidepressant response. Estradiol alone produces a partial desensitization of 5-HT1AR signaling and synergizes with SSRIs to result in a complete and more rapid desensitization than with SSRIs alone as measured by a decrease in the oxytocin and adrenocorticotrophic hormone (ACTH) responses to 5-HT1AR stimulation. G protein-coupled estrogen receptor 1 (GPER1) is necessary for estradiol-induced desensitization of 5-HT1AR signaling, although the underlying mechanisms are still unclear. We now find that stimulation of GPER1 with the selective agonist G-1 and nonselective stimulation of estrogen receptors dramatically alter isoform expression of a key component of the 5-HT1AR signaling pathway, RGSz1, a GTPase-activating protein selective for Gαz, the Gα subunit necessary for 5-HT1AR-mediated hormone release. RGSz1 isoforms are differentially glycosylated, SUMOylated, and phosphorylated, and differentially distributed in subcellular organelles. High-molecular-weight RGSz1 is SUMOylated and glycosylated, localized to the detergent-resistant microdomain (DRM) of the cell membrane, and increased by estradiol and G-1 treatment. Because activated Gαz also localizes to the DRM, increased DRM-localized RGSz1 by estradiol and G-1 could reduce Gαz activity, functionally uncoupling 5-HT1AR signaling. Peripheral G-1 treatment produced a partial reduction in oxytocin and ACTH responses to 5-HT1AR stimulation similar to direct injections into the PVN. Together, these results identify GPER1 and RGSz1 as novel targets for the treatment of depression.


Asunto(s)
Hipotálamo/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas RGS/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Membrana Celular/metabolismo , Fármacos del Sistema Nervioso Central/farmacología , Ciclopentanos/farmacología , Estradiol/farmacología , Estrógenos/farmacología , Femenino , Glicosilación , Hipotálamo/efectos de los fármacos , Orgánulos/metabolismo , Fosforilación , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Quinolinas/farmacología , Distribución Aleatoria , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal , Sumoilación
19.
Proc Natl Acad Sci U S A ; 111(45): 16166-71, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25344531

RESUMEN

Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48A(NPL4) complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Cromosomas de las Plantas/metabolismo , Heterocromatina/metabolismo , Chaperonas Moleculares/metabolismo , ARN de Planta/biosíntesis , ARN Ribosómico/biosíntesis , Sumoilación/fisiología , ATPasas Asociadas con Actividades Celulares Diversas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Centrómero/genética , Cromosomas de las Plantas/genética , ADN de Plantas/genética , ADN de Plantas/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Sitios Genéticos/fisiología , Heterocromatina/genética , Humanos , Chaperonas Moleculares/genética , Polen/genética , Polen/metabolismo , ARN de Planta/genética , ARN Ribosómico/genética , Ribosomas/genética , Ribosomas/metabolismo
20.
Biochim Biophys Acta ; 1839(7): 579-91, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24852358

RESUMEN

Aberrant expression levels of transcriptional regulators result in alterations in transcriptional control. STAF65γ is a structural subunit of the GCN5 transcriptional co-activator complex. Reports showed that STAF65γ is highly expressed in several human cancer cells, but the consequences of this aberrant expression pattern remain elusive. Here, we show that the STAF65γ protein is highly expressed in lung adenocarcinoma patients and high levels of STAF65γ correlate with poor prognosis. High levels of STAF65γ cause repression of the c-Myc oncogene through physical association with transcription factor YY1 and co-repressors HDACs. Physical interactions between STAF65γ and class IIa HDACs facilitate nuclear enrichment and regulate the assembly of HDAC complexes. Moreover, SUMOylation of STAF65γ is necessary for maintaining the co-repressor complex containing YY1 and class IIa HDACs at the promoter. Our findings reveal a distinct role of STAF65γ in nuclear import, transcriptional repression, and cell cycle regulation at high levels of expression, which is associated with poor clinical outcomes of lung adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Histona Desacetilasas/genética , Neoplasias Pulmonares/genética , Regiones Promotoras Genéticas , Transactivadores/genética , Transcripción Genética , Transporte Activo de Núcleo Celular/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adulto , Anciano , Ciclo Celular/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , Proteínas Represoras/genética , Sumoilación , Factor de Transcripción YY1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA