Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38138165

RESUMEN

Background and Objectives: Cancer is the second-most-important deadly disease in the world, leading to severe socioeconomic consequences and posing a public threat. Consequently, breast and colorectal cancers are significant cancer types that affect women and men more commonly, respectively. Treatment failure or recurrent diseases frequently occur due to resistance, in addition to the side effects of the currently available anticancer agents. Therefore, in this study, herbal melanin anticancer activity was investigated against human breast adenocarcinoma (MDA-MB-231) and human colorectal (HCT 116) cell proliferation and the expression of downregulated anti-apoptotic proteins and upregulated pro-apoptotic p53. Materials and Methods: MDA-MB-231 and HCT 116 cells were monitored for their real-time proliferation properties using Xcelligence. Herbal melanin of various concentrations significantly inhibited MDA-MB-231 and HCT 116 cell proliferation. Then, the expression of proapoptotic and anti-apoptotic proteins such as p53, Bcl-2 and Bcl-xl was studied using Western blotting. Results: The Bcl-2 and Bcl-xl expressions were downregulated, while the p53 expression was upregulated after treatment with herbal melanin. Similarly, the expression of apoptotic proteins such as Bcl-2, Bcl-xl, XIAP, Survivin, Bid, Bax, p53, Cytochrome C, PARP genes and mRNA was studied after herbal melanin treatment using real-time PCR, which revealed the downregulation of Bcl-2, Bcl-xl, XIAP and Survivin and the upregulation of Bid, Bax, p53, Cytochrome C and PARP apoptotic protein expression. Also, caspase 3 and 9 expressions were monitored after the treatment with herbal melanin, which revealed the upregulation of both the MDA-MB-231 and HCT 116 cell types. Conclusions: Overall, herbal melanin can be used as an alternative anticancer agent against the MDA-MB-231 and HCT 116 cell types.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/farmacología , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Células HCT116 , Proteína p53 Supresora de Tumor/genética , Survivin/metabolismo , Survivin/farmacología , Survivin/uso terapéutico , Melaninas/metabolismo , Melaninas/farmacología , Melaninas/uso terapéutico , Apoptosis , Proteína X Asociada a bcl-2/genética , Citocromos c/metabolismo , Citocromos c/farmacología , Citocromos c/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proliferación Celular , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/genética , Línea Celular Tumoral
2.
Am J Chin Med ; 51(8): 2221-2241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37930332

RESUMEN

The oncoprotein survivin plays a pivotal role in controlling cell division and preventing apoptosis by inhibiting caspase activation. Its significant contribution to tumorigenesis and therapeutic resistance has been well established. Isoliquiritigenin (ISL), a natural compound, has been recognized for its powerful inhibitory effects against various tumors. However, whether ISL exerts regulatory effects on survivin and its underlying mechanism in oral squamous cell carcinoma (OSCC) remains unclear. Here, we found that ISL inhibited the viability and colony formation of OSCC, and promoted their apoptosis. The immunoblotting data showed that ISL treatment significantly decreased survivin expression. Mechanistically, ISL suppressed survivin phosphorylation on Thr34 by deregulating Akt-Wee1-CDK1 signaling, which facilitated survivin for ubiquitination degradation. ISL inhibited CAL27 tumor growth and decreased p-Akt and survivin expression in vivo. Meanwhile, survivin overexpression caused cisplatin resistance of OSCC cells. ISL alone or combined with cisplatin overcame chemoresistance in OSCC cells. Overall, our results revealed that ISL exerted potent inhibitory effects via inducing Akt-dependent survivin ubiquitination in OSCC cells.


Asunto(s)
Carcinoma de Células Escamosas , Chalconas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Survivin/farmacología , Survivin/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos , Apoptosis , Chalconas/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular
3.
Curr Pharm Des ; 28(42): 3456-3468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36415092

RESUMEN

BACKGROUND: The mechanism of Heat Shock Protein 90 (HSP90) in Ulcerative Colitis (UC) has been studied, and mitogenic-activated protein kinases (MAPK) also contribute to the pathogenesis of UC. However, the effect of the HSP90/MAPK pathway in UC is still unclear. Therefore, the mainstay of this research is to explore the mechanism of action of this pathway in UC. Compound sophorae decoction (CSD), as a Chinese herbal decoction, can synergistically affect the above process. OBJECTIVE: This study aimed to uncover the synergistic effects of HSP90 inhibitors regulating the MAPK pathway for treating DSS-induced colitis in mice and the synergistic effects of CSD. METHODS: This experiment used oral administration of standard diets containing 3% dextran sodium sulfate (DSS) to establish an experimental colitis model in mice. The model was treated with HSP90 inhibitor, CSD, or dexamethasone. Mouse feces, mobility, body weight, colon length, and colon histopathology scores were recorded daily to assess the degree of colitis inflammation. Expression levels of HSP90 and MAPK pathway-related genes and proteins were evaluated by Western blot and qPCR. The evaluation of intestinal mucosal permeability was measured by enzyme-linked immunosorbent assay (ELISA), which could detect the protein level of D-Amino Acid Oxidase (DAO) and D-lactic acid (D-LA). The same went for downstream molecules AFT-2, p53, and apoptosis-related proteins BAX, BCL-2, Caspase3, and survivin in the MAPK pathway. Immunohistochemical measured p-38, p-JNK, and p-ERK expressions. JAM-A and claudin-1 connexin were tested by immunofluorescence staining. The TUNEL method was for measuring the apoptosis rate of colonic epithelial cells. CBA kit determined the level of inflammatory factors of colons. RESULTS: HSP90 inhibitor can improve the degree of pathological damage in the colon of mice treated with DSS, increase the mice's weight and the length of the colon, and significantly reduce the disease activity index (DAI) score. Intraperitoneal injection of HSP90 inhibitor can reduce the expression of MAPK pathway markers P38, JNK, ERK, and their phosphorylation and decrease the content of AFT-2 and p53, which is downstream of the MAPK pathway. In addition, treatment of the HSP90 inhibitor up-regulated the expression of anti-apoptotic proteins BCL-2 and survivin, as well as down-regulated apoptotic protein caspase3, BAX in the colon of mice with colitis. Lower levels of inflammatory factors such as IL-6, MCP-1, IFN-γ, TNF, IL-12p70, and increased IL-10 were observed after HSP90 inhibitor therapy. Furthermore, the combination treatment of CSD can enhance the effect of the single HSP90 inhibitor treatment and play a synergistic effect. CONCLUSION: These data suggest that an HSP90 inhibitor is available to treat UC by inhibiting the MAPK signaling pathway. This axis can restore the intestinal mucosa barrier's function by reducing intestinal mucosa's permeability and inhibiting apoptosis of intestinal epithelial cells. The specific mechanism is that HSP90 inhibitor can reduce the pathological damage and inflammation levels of colitis mice, and reduce the apoptosis rate of colonic epithelial cells and the mucosal permeability, thereby restoring the mucosal barrier function. During this process, CSD works synergistically to improve the therapeutic effect of the HSP90 inhibitor.


Asunto(s)
Colitis Ulcerosa , Colitis , Sophora , Animales , Ratones , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , Proteína X Asociada a bcl-2/uso terapéutico , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colon/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sophora/metabolismo , Survivin/metabolismo , Survivin/farmacología , Survivin/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/farmacología , Proteína p53 Supresora de Tumor/uso terapéutico , Proteínas HSP90 de Choque Térmico/metabolismo
4.
Appl Biochem Biotechnol ; 194(10): 4930-4945, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35674922

RESUMEN

The most prevalent malignancy among women is breast cancer. Phytochemicals and their derivatives are rapidly being recognized as possible cancer complementary therapies because they can modify signaling pathways that lead to cell cycle control or directly alter cell cycle regulatory molecules. The phytochemicals' poor bioavailability and short half-life make them unsuitable as anticancer drugs. Applying PLGA-PEG NPs improves their solubility and tolerance while also reducing drug adverse effects. According to the findings, combining anti-tumor phytochemicals can be more effective in regulating several signaling pathways linked to tumor cell development. The point of the study was to compare the anti-proliferative impacts of combined artemisinin and metformin on cell cycle arrest and expression of cyclin D1 and apoptotic genes (bcl-2, Bax, survivin, caspase-7, and caspase-3), and also hTERT genes in breast cancer cells. T-47D breast cancer cells were treated with different concentrations of metformin (MET) and artemisinin (ART) co-loaded in PLGA-PEG NPs and free form. The MTT test was applied to assess drug cytotoxicity in T47D cells. The cell cycle distribution was investigated using flow cytometry and the expression levels of cyclin D1, hTERT, Bax, bcl-2, caspase-3, and caspase-7, and survivin genes were then determined using real-time PCR. The findings of the MTT test and flow cytometry revealed that each state was cytotoxic to T47D cells in a time and dose-dependent pattern. Compared to various state of drugs (free and nano state, pure and combination state) Met-Art-PLGA/PEG NPs demonstrated the strongest anti-proliferative impact and considerably inhibited the development of T-47D cells; also, treatment with nano-formulated forms of Met-Art combination resulted in substantial downregulation of hTERT, Bcl-2, cyclin D1, survivin, and upregulation of caspase-3, caspase-7, and Bax, in the cells, as compared to the free forms, as indicated by real-time PCR findings. The findings suggested that combining an ART/MET-loaded PLGA-PEG NP-based therapy for breast cancer could significantly improve treatment effectiveness.


Asunto(s)
Compuestos de Alquilmercurio , Antineoplásicos , Artemisininas , Neoplasias de la Mama , Carbanilidas , Compuestos de Etilmercurio , Compuestos Heterocíclicos , Metformina , Nanopartículas , Compuestos de Trimetilestaño , Antineoplásicos/química , Apoptosis , Artemisininas/farmacología , Artemisininas/uso terapéutico , Compuestos de Benzalconio/farmacología , Compuestos de Benzalconio/uso terapéutico , Benzoflavonas/farmacología , Benzoflavonas/uso terapéutico , Neoplasias de la Mama/metabolismo , Carbanilidas/farmacología , Carbanilidas/uso terapéutico , Caspasa 3/genética , Caspasa 7 , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclina D1/farmacología , Compuestos de Etilmercurio/farmacología , Compuestos de Etilmercurio/uso terapéutico , Femenino , Compuestos Heterocíclicos/farmacología , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Compuestos de Metacolina , Nanopartículas/química , Oximas/farmacología , Oximas/uso terapéutico , Plasmalógenos/farmacología , Plasmalógenos/uso terapéutico , Compuestos de Sulfonilurea/farmacología , Compuestos de Sulfonilurea/uso terapéutico , Survivin/farmacología , Survivin/uso terapéutico , Compuestos de Trimetilestaño/farmacología , Proteína X Asociada a bcl-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA