Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113829, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421871

RESUMEN

The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.


Asunto(s)
Núcleos Parabraquiales , Médula Espinal , Ratones , Animales , Médula Espinal/fisiología , Tálamo/fisiología , Sustancia Gris Periacueductal/fisiología , Vías Nerviosas/fisiología
2.
Behav Brain Res ; 461: 114832, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38142860

RESUMEN

Popular medicine has been using oleoresin from several species of copaíba tree for the treatment of various diseases and its clinical administration potentially causes antinociception. Electrical stimulation of ventrolateral (vlPAG) and dorsolateral (dlPAG) columns of the periaqueductal gray matter also causes antinociception. The aim this study was to verify the antinociceptive effect of oleoresin extracted from Copaifera langsdorffii tree and to test the hypothesis that oleoresin-induced antinociception is mediated by µ1- and κ-opioid receptors in the vlPAG and dlPAG. Nociceptive thresholds were determined by the tail-flick test in Wistar rats. The copaíba tree oleoresin was administered at different doses (50, 100 and 200 mg/kg) through the gavage technique. After the specification of the most effective dose of copaíba tree oleoresin (200 mg/kg), rats were pretreated with either the µ1-opioid receptor selective antagonist naloxonazine (at 0.05, 0.5 and 5 µg/ 0.2 µl in vlPAG, and 5 µg/ 0.2 µl in dlPAG) or the κ-opioid receptor selective antagonist nor-binaltorphimine (at 1, 3 and 9 nmol/ 0.2 µl in vlPAG, and 9 nmol/ 0.2 µl in dlPAG). The blockade of µ1 and κ opioid receptors of vlPAG decreased the antinociception produced by copaíba tree oleoresin. However, the blockade of these receptors in dlPAG did not alter copaíba tree oleoresin-induced antinociception. These data suggest that vlPAG µ1 and κ opioid receptors are critically recruited in the antinociceptive effect produced by oleoresin extracted from Copaifera langsdorffii.


Asunto(s)
Sustancia Gris Periacueductal , Extractos Vegetales , Receptores Opioides kappa , Ratas , Animales , Ratas Wistar , Árboles , Antagonistas de Narcóticos/farmacología , Analgésicos/farmacología , Receptores Opioides mu
3.
Ann N Y Acad Sci ; 1530(1): 138-151, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37818796

RESUMEN

Previous studies showed that the dorsal premammillary nucleus of the hypothalamus (PMD) is involved in social passive defensive behaviors likely to be meditated by descending projections to the periaqueductal gray (PAG). We focused on the rostral dorsomedial PAG (rPAGdm) to reveal its putative neural mechanisms involved in mediating social defensive responses. By combining retrograde tracing and FOS expression analysis, we showed that in addition to the PMD, the rPAGdm is influenced by several brain sites active during social defeat. Next, we found that cytotoxic lesions of the rPAGdm drastically reduced passive defense and did not affect active defensive responses. We then examined the rPAGdm's projection pattern and found that the PAGdm projections are mostly restricted to midbrain sites, including the precommissural nucleus, different columns of the PAG, and the cuneiform nucleus (CUN). Also, we found decreased FOS expression in the caudal PAGdm, CUN, and PMD after the rPAGdm was lesioned. The results support that the rPAGdm mediates passive social defensive responses through ascending paths to prosencephalic circuits likely mediated by the CUN. This study provides further support for the role of the PAG in the modulation of behavioral responses by working as a unique hub for influencing prosencephalic sites during the mediation of aversive responses.


Asunto(s)
Sustancia Gris Periacueductal , Derrota Social , Ratas , Animales , Sustancia Gris Periacueductal/fisiología , Hipotálamo/fisiología
4.
Brain Res Bull ; 201: 110700, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37414302

RESUMEN

Electroacupuncture (EA) has been shown to enhance the recovery of symptoms in rheumatoid arthritis (RA); however, the underlying mechanism remains unclear. Both the pathogenesis of RA and the therapeutic effects of EA are closely associated with the metabolic activity of the brain. In this study, we investigated the effect of EA at the "Zusanli" acupoint (ST36) on a rat model of collagen-induced rheumatoid arthritis (CIA). The results demonstrated that EA effectively alleviated joint swelling, synovial hyperplasia, cartilage erosion, and bone destruction in CIA rats. Additionally, the metabolic kinetics study revealed a significant increase in the 13C enrichment of GABA2 and Glu4 in the midbrain of CIA rats treated with EA. Correlation network analysis showed that changes in Gln4 levels in the hippocampus were strongly associated with the severity of rheumatoid arthritis. Immunofluorescence staining of c-Fos in the midbrain's periaqueductal gray matter (PAG) and hippocampus demonstrated increased c-Fos expression in these regions following EA treatment. These findings suggest that GABAergic and glutamatergic neurons in the midbrain, along with astrocytes in the hippocampus, may play vital roles in the beneficial effects of EA on RA. Furthermore, the PAG and hippocampus brain regions hold potential as critical targets for future RA treatments. Overall, this study provides valuable insights into the specific mechanism of EA in treating RA by elucidating the perspective of cerebral metabolism.


Asunto(s)
Artritis Reumatoide , Electroacupuntura , Ratas , Animales , Ratas Sprague-Dawley , Cinética , Artritis Reumatoide/terapia , Artritis Reumatoide/inducido químicamente , Sustancia Gris Periacueductal
5.
CNS Neurosci Ther ; 29(12): 4147-4159, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37424163

RESUMEN

OBJECTIVE: The lateral periaqueductal gray (LPAG), which mainly contains glutamatergic neurons, plays an important role in social responses, pain, and offensive and defensive behaviors. Currently, the whole-brain monosynaptic inputs to LPAG glutamatergic neurons are unknown. This study aims to explore the structural framework of the underlying neural mechanisms of LPAG glutamatergic neurons. METHODS: This study used retrograde tracing systems based on the rabies virus, Cre-LoxP technology, and immunofluorescence analysis. RESULTS: We found that 59 nuclei projected monosynaptic inputs to the LPAG glutamatergic neurons. In addition, seven hypothalamic nuclei, namely the lateral hypothalamic area (LH), lateral preoptic area (LPO), substantia innominata (SI), medial preoptic area, ventral pallidum, posterior hypothalamic area, and lateral globus pallidus, projected most densely to the LPAG glutamatergic neurons. Notably, we discovered through further immunofluorescence analysis that the inputs to the LPAG glutamatergic neurons were colocalized with several markers related to important neurological functions associated with physiological behaviors. CONCLUSION: The LPAG glutamatergic neurons received dense projections from the hypothalamus, especially nuclei such as LH, LPO, and SI. The input neurons were colocalized with several markers of physiological behaviors, which show the pivotal role of glutamatergic neurons in the physiological behaviors regulation by LPAG.


Asunto(s)
Encéfalo , Sustancia Gris Periacueductal , Ratones , Animales , Encéfalo/fisiología , Neuronas/fisiología , Hipotálamo , Área Preóptica
6.
J Neurophysiol ; 129(5): 1237-1248, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37073984

RESUMEN

The ventrolateral periaqueductal gray (vlPAG) is a key brain area within the descending pain modulatory pathway and an important target for opioid-induced analgesia. The vlPAG contains heterogeneous neurons with respect to neurotransmitter content, receptor and channel expression, and in vivo response to noxious stimuli. This study characterizes intrinsic membrane properties of vlPAG neurons to identify neuron types that respond to inflammation and determine whether the pain-responsive neurons are inhibited by opioids. Surveying 382 neurons identified four neuron types with distinct intrinsic firing patterns: Phasic (48%), Tonic (33%), Onset (10%), and Random (9%). Mu-opioid receptor (MOR) expression was determined by the ability of a selective MOR agonist (DAMGO) to activate G protein-coupled inwardly rectifying potassium channel (GIRK) currents. Opioid-sensitive neurons were observed within each neuron type. Opioid sensitivity did not correlate with other intrinsic firing features, including low-threshold spiking that has been previously proposed to identify opioid-sensitive GABAergic neurons in the vlPAG of mice. Complete Freund's adjuvant (CFA)-induced acute inflammation (2 h) had no effect on vlPAG neuron firing patterns. However, persistent inflammation (5-7 days) selectively activated Phasic neurons through a significant reduction in their firing threshold. Opioid-sensitive neurons were strongly activated compared with the opioid-insensitive Phasic neurons. Overall, this study provides a framework to further identify neurons activated by persistent inflammation so that they may be targeted for future pain therapies.NEW & NOTEWORTHY Intrinsic firing properties define four distinct vlPAG neuron populations, and a subset of each population expresses MORs coupled to GIRK channels. Persistent, but not acute, inflammation selectively activates opioid-sensitive Phasic vlPAG neurons. Although the vlPAG is known to contribute to the descending inhibition of pain, the activation of a single physiologically defined neuron type in the presence of persistent inflammation represents a mechanism by which the vlPAG participates in descending facilitation of pain.


Asunto(s)
Analgésicos Opioides , Sustancia Gris Periacueductal , Ratones , Animales , Analgésicos Opioides/farmacología , Dolor/inducido químicamente , Dolor/metabolismo , Neuronas GABAérgicas , Inflamación/inducido químicamente , Inflamación/metabolismo
7.
CNS Neurosci Ther ; 29(7): 1965-1980, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36890655

RESUMEN

BACKGROUND: The analgesic effect of acupuncture is widely recognized, but the mechanical characteristics of acupuncture for pain relief, compared to non-steroidal anti-inflammatory (NSAIDs) and placebo medication, remain unknown. AIMS: To compare the modulation effects of acupuncture treatment with NSAIDs and placebo medication on descending pain modulation system (DPMS) in knee osteoarthritis (KOA) patients. METHODS: This study recruited 180 KOA patients with knee pain and 41 healthy controls (HCs). Individuals with KOA knee pain were divided randomly into groups of verum acupuncture (VA), sham acupuncture (SA), celecoxib (SC), placebo (PB), and waiting list (WT), with 36 patients in each group. VA and SA groups included ten sessions of puncturing acupoints or puncturing non-acupoints acupuncture treatment for two successive weeks. Celecoxib capsules were continuously given orally to patients in the SC group at a dosage of 200 mg daily for 2 weeks. In the PB group, patients received a placebo capsule once a day for 2 weeks at the same dosage as celecoxib capsules. In the WL group, patients did not receive any treatment. Patients underwent a resting-state BOLD-fMRI scan pre- and post-receiving the therapy, whereas HCs only underwent a baseline scan. Seed (ventrolateral periaqueductal gray, vlPAG, a key node in DPMS) based resting-state functional connectivity (rs-FC) was applied in the data analysis. RESULTS: All groups demonstrated improved knee pain scores relative to the initial state. There was no statistical difference between the VA and SA groups in all clinical outcomes, and vlPAG rs-FC alterations. KOA knee pain individuals reported higher vlPAG rs-FC in the bilateral thalamus than HCs. KOA knee pain patients in the acupuncture group (verum + sham, AG) exhibited increased vlPAG rs-FC with the right dorsolateral prefrontal cortex (DLPFC) and the right angular, which is associated with knee pain improvement. In contrast with the SC and PB group, the AG exhibited significantly increased vlPAG rs-FC with the right DLPFC and angular. Contrary to the WT group, the AG showed greater vlPAG rs-FC with the right DLPFC and precuneus. CONCLUSIONS: Acupuncture treatment, celecoxib, and placebo medication have different modulation effects on vlPAG DPMS in KOA knee pain patients. Acupuncture could modulate vlPAG rs-FC with brain regions associated with cognitive control, attention, and reappraisal for knee pain relief in KOA patients, compared with celecoxib and placebo medication.


Asunto(s)
Terapia por Acupuntura , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/tratamiento farmacológico , Sustancia Gris Periacueductal/diagnóstico por imagen , Celecoxib/farmacología , Celecoxib/uso terapéutico , Cápsulas , Dolor/complicaciones , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Imagen por Resonancia Magnética
8.
Zhen Ci Yan Jiu ; 47(12): 1054-9, 2022 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-36571219

RESUMEN

OBJECTIVE: To observe the effects of electroacupuncture(EA) at "Fengchi"(GB20) on the ethology, microglia activation and P2X7 receptor(P2X7R) expression in the periaqueductal gray(PAG) in recurrent migraine rat model, so as to explore the underlying mechanism of EA reducing central sensitization of migraine. METHODS: Thirty-six male SD rats were randomly divided into control, model and EA groups, with 12 rats in each group. Recurrent migraine model was induced using repea-ted dural electrical stimulation once another day(the 1st, 3rd, 5th, 7th and 9th days), for a total of 5 times; rats in the EA group received EA treatment(2 Hz/15 Hz, 0.8-1 mA) at GB20 after dural electrical stimulation, for 10 min every time, once a day for 9 days; rats in the control group only received electrode placement. The facial and hindpaw mechanical withdrawal threshold was detected by using an electronic von-Frey on the 0th(baseline), 2nd, 4th, 6th, and 8th days. Microglia activation in the PAG was evaluated by using immunofluorescence staining to detect the number of ionized calcium binding adaptor molecule-1(Iba-1)-labeled microglia. Expression levels of microglia marker Iba-1, inflammatory factor interleukin(IL)-1ß and P2X7R were detected by Western blot. RESULTS: Compared with the control group, the facial and hindpaw mechanical withdrawal threshold of rats were significantly reduced on the 2nd, 4th, 6th, and 8th days(P<0.01,P<0.001); the microglia in the PAG area were significantly activated, with the number of Iba-1-positive microglia, and the expression levels of Iba-1, IL-1ß and P2X7R proteins significant increased(P<0.001, P<0.05) in the model group. Compared with the model group, the facial and hindpaw mechanical withdrawal threshold of rats were significantly increased on the 4th, 6th, and 8th days(P<0.05,P<0.001,P<0.01), and the above indicators were significantly reversed (P<0.05) in the EA group. CONCLUSION: EA at GB20 can significantly improve facial and hindpaw mechanical withdrawal threshold of migraine rats, and its possible mechanism may be related to inhibiting microglia activation mediated by P2X7R in the PAG.


Asunto(s)
Electroacupuntura , Trastornos Migrañosos , Ratas , Masculino , Animales , Sustancia Gris Periacueductal , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7/genética , Microglía , Etología , Trastornos Migrañosos/genética , Trastornos Migrañosos/terapia
9.
Science ; 378(6626): 1336-1343, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36548429

RESUMEN

The primary motor cortex (M1) is involved in the control of voluntary movements and is extensively mapped in this capacity. Although the M1 is implicated in modulation of pain, the underlying circuitry and causal underpinnings remain elusive. We unexpectedly unraveled a connection from the M1 to the nucleus accumbens reward circuitry through a M1 layer 6-mediodorsal thalamus pathway, which specifically suppresses negative emotional valence and associated coping behaviors in neuropathic pain. By contrast, layer 5 M1 neurons connect with specific cell populations in zona incerta and periaqueductal gray to suppress sensory hypersensitivity without altering pain affect. Thus, the M1 employs distinct, layer-specific pathways to attune sensory and aversive-emotional components of neuropathic pain, which can be exploited for purposes of pain relief.


Asunto(s)
Corteza Motora , Vías Nerviosas , Neuralgia , Corteza Motora/citología , Corteza Motora/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuralgia/fisiopatología , Neuronas/fisiología , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/fisiología , Tálamo/citología , Tálamo/fisiología , Animales , Ratones
10.
Neurosurg Clin N Am ; 33(3): 311-321, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35718401

RESUMEN

Deep brain stimulation (DBS) is a neurosurgical intervention well known for the treatment of movement disorders as well as epilepsy, Tourette syndrome, and obsessive-compulsive disorders. DBS was pioneered in the 1950s, however, as a tool for treating facial pain, phantom limb pain, post-stroke pain, and brachial plexus pain among other disease states. Various anatomic targets exist, including the sensory thalamus (ventral posterior lateral and ventral posterior medial), the periaqueductal gray and periventricular gray matter, and the anterior cingulate cortex.


Asunto(s)
Dolor Crónico , Estimulación Encefálica Profunda , Dolor Crónico/terapia , Humanos , Procedimientos Neuroquirúrgicos , Sustancia Gris Periacueductal/fisiología , Tálamo/cirugía
11.
Neuroimage ; 259: 119408, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35752415

RESUMEN

Over the past two decades, magnetic resonance imaging (MRI) studies have explored brain activation patterns during acute noxious stimuli. Whilst these human investigations have detailed changes in primarily cortical regions, they have generally not explored discrete changes within small brain areas that are critical in driving behavioural, autonomic, and endocrine responses to pain, such as within subregions of the hypothalamus, amygdala, and midbrain periaqueductal gray matter (PAG). Ultra-high field (7-Tesla) MRI provides enough signal-to-noise at high spatial resolutions to investigate activation patterns within these small brain regions during acute noxious stimulation in awake humans. In this study we used 7T functional MRI to concentrate on hypothalamic, amygdala, and PAG signal changes during acute noxious orofacial stimuli. Noxious heat stimuli were applied in three separate fMRI scans to three adjacent sites on the face in 16 healthy control participants (7 females). Images were processed using SPM12 and custom software, and blood oxygen level dependent signal changes within the hypothalamus, amygdala, and PAG assessed. We identified altered activity within eight unique subregions of the hypothalamus, four unique subregions of the amygdala, and a single region in the lateral PAG. Specifically, within the hypothalamus and amygdala, signal intensity largely decreased during noxious stimulation, and increased in the lateral PAG. Furthermore, we found sex-related differences in discrete regions of the hypothalamus and amygdala. This study reveals that the activity of discrete nuclei during acute noxious thermal stimulation in awake humans.


Asunto(s)
Dolor Agudo , Sustancia Gris Periacueductal , Amígdala del Cerebelo/diagnóstico por imagen , Femenino , Humanos , Hipotálamo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sustancia Gris Periacueductal/diagnóstico por imagen , Sustancia Gris Periacueductal/fisiología , Vigilia
12.
Curr Opin Neurobiol ; 73: 102545, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35483308

RESUMEN

For decades, a central question in neuroscience has been: How does the brain support navigation? Recent research on navigation has explored how brain regions support the capacity to adapt to changes in the environment and track the distance and direction to goal locations. Here, we provide a brief review of this literature and speculate how these neural systems may be involved in another, parallel behavior-hunting. Hunting shares many of the same challenges as navigation. Like navigation, hunting requires the hunter to orient towards a goal while minimizing their distance from it while traveling. Likewise, hunting may require the accommodation of detours to locate prey or the exploitation of shortcuts for a quicker capture. Recent research suggests that neurons in the periaqueductal gray, hypothalamus, and dorsal anterior cingulate play key roles in such hunting behavior. In this review, we speculate on how these regions may operate functionally with other key brain regions involved in navigation, such as the hippocampus, to support hunting. Additionally, we posit that hunting in a group presents an additional set of challenges, where success relies on multicentric tracking and prediction of prey position as well as the position of co-hunters.


Asunto(s)
Neuronas , Conducta Predatoria , Animales , Hipotálamo/fisiología , Neuronas/fisiología , Sustancia Gris Periacueductal/fisiología , Conducta Predatoria/fisiología , Giro del Cíngulo/fisiología
13.
Brain Res Bull ; 182: 12-25, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35131337

RESUMEN

The midbrain periaqueductal gray (PAG) is a key structure involved in the supraspinal modulation of pain. Previous studies have reported the association of gut inflammation-triggered chronic abdominal pain with structural and neuronal alterations within the PAG. However, whether PAG-executed visceral nociception processing and descending modulation are altered in gut pathology is not known. We used c-Fos immunohistochemistry and extracellular microelectrode recording in urethane-anesthetized male Wistar rats to evaluate the colitis-induced changes in visceral pain-related neuronal properties of the PAG and its descending outflow to visceral nociceptive neurons of the caudal ventrolateral medulla (CVLM). Analysis of c-Fos protein expression in inflamed animals has shown diminished activation of the lateral and ventrolateral PAG columns by noxious colorectal distension (CRD), although the nonstimulated c-Fos labeling in these PAG subdivisions was enhanced compared with that in controls. Microelectrode recording in the ventrolateral PAG revealed a colitis-elicited decrease in the proportion of CRD-excited neurons accompanied by an increase in the number of unresponsive cells and weakened reactions to the stimulation of CRD-inhibited PAG units. Colonic inflammation has also been found to cause a shift in the effects of ventrolateral PAG electrostimulation on CRD-excited CVLM neurons from being mostly inhibitory under normal conditions to excitatory in colitis. These findings identify impaired PAG functioning in ascending and descending visceral nociception control that may contribute to gut injury-associated visceral hyperalgesia. The data obtained can benefit a better understanding of the supraspinal mechanisms involved in the pathogenesis of postinflammatory chronic abdominal pain.


Asunto(s)
Colitis , Dolor Visceral , Dolor Abdominal , Animales , Inflamación , Masculino , Sustancia Gris Periacueductal , Proteínas Proto-Oncogénicas c-fos , Ratas , Ratas Wistar
14.
CNS Neurosci Ther ; 28(5): 714-723, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35048524

RESUMEN

AIMS: Chronic neck and shoulder pain (CNSP) is a common neurological disorder, which females are more likely to suffer from. The periaqueductal gray (PAG) plays a key role in the descending modulation of pain. This study aimed to investigate altered PAG-based functional connectivity (FC) in female patients with CNSP related to healthy controls (HCs) and the effect of acupuncture for female patients with CNSP using PAG-based FC biomarkers. METHODS: PAG-based FC value was calculated based on resting-state functional images and then compared between patients with CNSP at pre-acupuncture, post-acupuncture, and HCs. Then, correlational analyses were performed to examine the relationships between increased PAG-based FC strength and improved clinical parameters in patients after acupuncture treatment. RESULTS: Before acupuncture treatment, compared to HCs, patients with CSNP showed altered PAG-based FC with widely distributed brain regions, including the left medial superior frontal gyrus, bilateral posterior insula (pIns), and cingulate gyrus. After treatment, patients with CNSP exhibited specially improved PAG-pIns FC compared to that before treatment, and no significant difference was observed in the increased PAG-pIns FC strength between HCs and patients with CNSP after treatment. Furthermore, pain catastrophizing reduction was significantly correlated with the increased PAG-pIns FC strength in patients after treatment. CONCLUSION: The effect of acupuncture treatment may relate to the increased PAG-pIns FC, which significantly correlated with pain catastrophizing reduction after treatment. These findings shed important mechanistic information on the role of therapeutic approaches in treating chronic neck and shoulder pain.


Asunto(s)
Terapia por Acupuntura , Sustancia Gris Periacueductal , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Sustancia Gris Periacueductal/diagnóstico por imagen , Dolor de Hombro/diagnóstico por imagen , Dolor de Hombro/terapia
15.
Mol Brain ; 14(1): 136, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496926

RESUMEN

Innately aversive experiences produce rapid defensive responses and powerful emotional memories. The midbrain periaqueductal gray (PAG) drives defensive behaviors through projections to brainstem motor control centers, but the PAG has also been implicated in aversive learning, receives information from aversive-signaling sensory systems and sends ascending projections to the thalamus as well as other forebrain structures which could control learning and memory. Here we sought to identify PAG subregions and cell types which instruct memory formation in response to aversive events. We found that optogenetic inhibition of neurons in the dorsolateral subregion of the PAG (dlPAG), but not the ventrolateral PAG (vlPAG), during an aversive event reduced memory formation. Furthermore, inhibition of a specific population of thalamus projecting dlPAG neurons projecting to the anterior paraventricular thalamus (aPVT) reduced aversive learning, but had no effect on the expression of previously learned defensive behaviors. By contrast, inactivation of dlPAG neurons which project to the posterior PVT (pPVT) or centromedial intralaminar thalamic nucleus (CM) had no effect on learning. These results reveal specific subregions and cell types within PAG responsible for its learning related functions.


Asunto(s)
Reacción de Prevención/fisiología , Estimulación Acústica , Animales , Mapeo Encefálico , Condicionamiento Clásico/fisiología , Señales (Psicología) , Electrochoque , Miedo/fisiología , Reacción Cataléptica de Congelación/fisiología , Masculino , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética , Sustancia Gris Periacueductal/fisiología , Ratas , Ratas Sprague-Dawley , Tálamo/fisiología
16.
ACS Chem Neurosci ; 12(18): 3323-3334, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34460214

RESUMEN

Electroacupuncture (EA) is effective in various chronic pains. NF-κB and CXCL12 modulate the formation of chronic pain. Herein, we hypothesized that EA alleviates cancer-induced bone pain (CIBP) through NF-κB/CXCL12 axis in midbrain periaqueductal gray (PAG), which participates in "top-down" pain modulatory circuits. In order to filter the optimum EA frequency for CIBP treatment, 2, 100, or 2/100 Hz EA was set up. In addition, ipsilateral, contralateral, and bilateral EA groups were established to affirm the optimal EA scheme. Bilateral 2/100 Hz EA was considered as the optimal therapeutic scheme and was applied in a subsequent experiment. Western blotting along with immunofluorescence illustrated that CIBP induces a rapid and substantial increase in CXCL12 protein level and NF-κB phosphorylation in vlPAG from day 6 to day 12. Anti-CXCL12 neutralizing antibody and pAAV-U6-shRNA(CXCL12)-CMV-EGFP-WPRE in vlPAG remarkably improved the mechanical pain threshold of the hind paw in CIBP model relative to the control. EA inhibited the upregulation of pNF-κB and CXCL12 in vlPAG of CIBP. The recombinant CXCL12 and pAAV-CMV-CXCL12-EF1a-EGFP-3Xflag-WPRE reversed the abirritation of EA in the CIBP rat model. NF-κB phosphorylation mediated-CXCL12 expression contributed to CIBP allodynia, whereas EA suppressed NF-κB phosphorylation in CIBP. According to the above evidence, we conclude that bilateral 2/100 Hz EA is an optimal therapeutic scheme for CIBP. The abirritation mechanism of EA might reduce the expression of CXCL12 by inhibiting the activation of NF-κB, which might lead to the restraint of descending facilitation of CIBP.


Asunto(s)
Electroacupuntura , Neoplasias , Animales , FN-kappa B/metabolismo , Umbral del Dolor , Sustancia Gris Periacueductal/metabolismo , Ratas , Ratas Sprague-Dawley
17.
J Transl Med ; 19(1): 354, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404427

RESUMEN

BACKGROUND: A growing body of evidence suggests that transcutaneous auricular vagus nerve stimulation (taVNS) may relieve symptoms of migraineurs. Frequency is one of the key stimulation parameters. The aim of this study is to investigate the modulation effect of taVNS frequency on the descending pain modulation system (DPMS) in patients with migraine. METHODS: Twenty-four episodic migraineurs without aura (21 females) were recruited for the single-blind, crossover, functional magnetic resonance imaging (fMRI) study. Each participant attended two separate fMRI scan sessions, one for 1 Hz and another for 20 Hz taVNS, in a random order. Seed-based functional connectivity analysis was applied using the ventrolateral periaqueductal gray (PAG) as the region of interest. RESULTS: Compared with the pre-taVNS resting state, continuous 1 Hz taVNS (during) produced a significant increase in functional connectivity between the PAG and the bilateral middle cingulate cortex (MCC), right precuneus, left middle frontal gyrus (MFG), and left cuneus. Compared with 20 Hz taVNS, 1 Hz taVNS produced greater PAG connectivity increases with the MCC, right precuneus/posterior cingulate cortex, left insula, and anterior cingulate cortex (ACC). A significant negative correlation was observed between the number of migraine attacks in the previous 4 weeks and the PAG-MCC functional connectivity in the pre-taVNS resting-state before 1 Hz taVNS. CONCLUSIONS: Our findings suggest that taVNS with different frequencies may produce different modulation effects on the descending pain modulation system, demonstrating the important role of stimulation frequency in taVNS treatment.


Asunto(s)
Trastornos Migrañosos , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Femenino , Humanos , Imagen por Resonancia Magnética , Trastornos Migrañosos/terapia , Sustancia Gris Periacueductal , Método Simple Ciego
18.
Psychosom Med ; 83(8): 870-879, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34292206

RESUMEN

OBJECTIVE: Both acupuncture and guided imagery hold promise for treating pain. The mechanisms underlying these alternative interventions remain unclear. The reported study aimed to comparatively investigate the modulation effect of actual and imagined acupuncture on the functional connectivity of descending pain modulation system and reward network. METHODS: Twenty-four healthy participants (mean [standard error], 25.21 [0.77] years of age; 66.67% female) completed a crossover study that included five sessions, a training session and four intervention sessions administered in randomized order. We investigated the modulation effect of real acupuncture, sham acupuncture, video-guided acupuncture imagery treatment (VGAIT) and VGAIT control on the resting-state functional connectivity (rsFC) of periaqueductal gray (PAG) and ventral tegmental area (VTA). These are key regions of the descending pain modulatory system and dopaminergic reward system, respectively. RESULTS: Compared with sham acupuncture, real acupuncture produced decreased PAG-precuneus (Pcu) rsFC and increased VTA-amygdala/hippocampus rsFC. Heat pain threshold changes applied on the contralateral forearm were significantly associated with the decreased PAG-Pcu (r = 0.49, p = .016) and increased VTA-hippocampus rsFC (r = -0.77, p < .001). Compared with VGAIT control, VGAIT produced decreased PAG-paracentral lobule/posterior cingulate cortex/Pcu, middle cingulate cortex (MCC), and medial prefrontal cortex rsFC, and decreased VTA-caudate and MCC rsFC. Direct comparison between real acupuncture and VGAIT showed that VGAIT decreased rsFC in PAG-paracentral lobule/MCC, VTA-caudate/anterior cingulate cortex/nucleus accumbens, and VTA-MCC. CONCLUSIONS: Results suggest that both actual and imagined acupuncture can modulate key regions in the descending pain modulatory system and reward networks, but through different pathways. Identification of different pain relief mechanisms may facilitate the development of new pain management methods.


Asunto(s)
Terapia por Acupuntura , Sustancia Gris Periacueductal , Anciano , Estudios Cruzados , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Área Tegmental Ventral
19.
J Headache Pain ; 22(1): 47, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34044756

RESUMEN

BACKGROUND: Preceding studies have reported the association of chronic neuropathic orofacial pain with altered ongoing function in the ventrolateral periaqueductal gray (vlPAG). However, its role in trigeminal neuralgia (TN) lacks attention. We here reported the aspect that vlPAG neurons play in TN nociceptive processing by employing excitatory neuron-specific optogenetic approaches. METHODS: TN was generated via unilateral infraorbital nerve chronic constriction in Sprague Dawley rats which induced mechanical and thermal pain sensitivity in air puff and acetone test, respectively. Channelrhodopsin conjugated virus with CamKIIα promoter was used to specifically activate the excitatory vlPAG neuronal population by optogenetic stimulation and in vivo microdialysis was done to determine its effect on the excitatory-inhibitory balance. In vivo extracellular recordings from ventral posteromedial (VPM) thalamus were assessed in response to vlPAG optogenetic stimulation. Depending on the experimental terms, unpaired student's t test and two-way analysis of variance (ANOVA) were used for statistical analysis. RESULTS: We observed that optogenetic activation of vlPAG subgroup neurons markedly improved pain hypersensitivity in reflexive behavior tests which was also evident on microdialysis analysis with increase glutamate concentration during stimulation period. Decreased mean firing and burst rates were evident in VPM thalamic electrophysiological recordings during the stimulation period. Overall, our results suggest the optogenetic activation of vlPAG excitatory neurons in a TN rat model has pain ameliorating effect. CONCLUSIONS: This article presents the prospect of pain modulation in trigeminal pain pathway via optogenetic activation of vlPAG excitatory neurons in rat model. This outlook could potentially assist vlPAG insight and its optogenetic approach in trigeminal neuropathic pain which aid clinicians endeavoring towards enhanced pain relief therapy in trigeminal neuralgia patients.


Asunto(s)
Sustancia Gris Periacueductal , Neuralgia del Trigémino , Animales , Humanos , Neuronas , Ratas , Ratas Sprague-Dawley , Tálamo , Neuralgia del Trigémino/terapia
20.
Neuron ; 109(11): 1848-1860.e8, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33861942

RESUMEN

Naturalistic escape requires versatile context-specific flight with rapid evaluation of local geometry to identify and use efficient escape routes. It is unknown how spatial navigation and escape circuits are recruited to produce context-specific flight. Using mice, we show that activity in cholecystokinin-expressing hypothalamic dorsal premammillary nucleus (PMd-cck) cells is sufficient and necessary for context-specific escape that adapts to each environment's layout. In contrast, numerous other nuclei implicated in flight only induced stereotyped panic-related escape. We reasoned the dorsal premammillary nucleus (PMd) can induce context-specific escape because it projects to escape and spatial navigation nuclei. Indeed, activity in PMd-cck projections to thalamic spatial navigation circuits is necessary for context-specific escape induced by moderate threats but not panic-related stereotyped escape caused by perceived asphyxiation. Conversely, the PMd projection to the escape-inducing dorsal periaqueductal gray projection is necessary for all tested escapes. Thus, PMd-cck cells control versatile flight, engaging spatial navigation and escape circuits.


Asunto(s)
Reacción de Fuga , Hipotálamo Posterior/fisiología , Sustancia Gris Periacueductal/fisiología , Navegación Espacial , Tálamo/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Ratas , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA