Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.212
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Toxicon ; 243: 107715, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38636613

RESUMEN

OBJECTIVES: Contamination of surface waters is a major health threat for all living creatures. Some types of blue-green algae that naturally occur in fresh water, are able to produce various toxins, like Microcystins (MCs). Microcystin-leucine arginine (MC-LR) produced by Microcystis aeruginosa is the most toxic and abundant isoforms of MCs, and it causes hepatotoxicity. The present article reviews preclinical experiments examined different treatments, including herbal derivatives, dietary supplements and drugs against MC-LR hepatotoxicity. METHODS: We searched scientific databases Web of Science, Embase, Medline (PubMed), Scopus, and Google Scholar using relevant keywords to find suitable studies until November 2023. RESULTS: MC-LR through Organic anion transporting polypeptide superfamily transporters (OATPs) penetrates and accumulates in hepatocytes, and it inhibits protein phosphatases (PP1 and PP2A). Consequently, MC-LR disturbs many signaling pathways and induces oxidative stress thus damages cellular macromolecules. Some protective agents, especially plants rich in flavonoids, and natural supplements, as well as chemoprotectants were shown to diminish MC-LR hepatotoxicity. CONCLUSION: The reviewed agents through blocking the OATP transporters (nontoxic nostocyclopeptide-M1, captopril, and naringin), then inhibition of MC-LR uptake (naringin, rifampin, cyclosporin-A, silymarin and captopril), and finally at restoration of PPAse activity (silybin, quercetin, morin, naringin, rifampin, captopril, azo dyes) exert hepatoprotective effect against MC-LR.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Microcistinas , Microcistinas/toxicidad , Humanos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Toxinas Marinas/toxicidad , Animales , Hígado/efectos de los fármacos , Hígado/metabolismo , Suplementos Dietéticos , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico
2.
Naunyn Schmiedebergs Arch Pharmacol ; 395(11): 1297-1329, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35676380

RESUMEN

Scutellaria baicalensis (SB), also known as the Chinese skullcap, has a long history of being used in Chinese medicine to treat a variety of conditions ranging from microbial infections to metabolic syndrome and malignancies. Numerous studies have reported that treatment with total SB extract or two main flavonoids found in its root and leaves, baicalin (BA) and baicalein (BE), can prevent or alleviate the detrimental toxic effects of exposure to various chemical compounds. It has been shown that BA and BE are generally behind the protective effects of SB against toxicants. This paper aimed to review the protective and therapeutic effects of SB and its main components BA and BE against chemical compounds that can cause intoxication after acute or chronic exposure and seriously affect different vital organs including the brain, heart, liver, and kidneys. In this review paper, we had a look into a total of 221 in vitro and in vivo studies from 1995 to 2021 from the scientific databases PubMed, Scopus, and Web of Science which reported protective or therapeutic effects of BA, BE, or SB against drugs and chemicals that one might be exposed to on a professional or accidental basis and compounds that are primarily used to simulate disease models. In conclusion, the protective effects of SB and its flavonoids can be mainly attributed to increase in antioxidants enzymes, inhibition of lipid peroxidation, reduction of inflammatory cytokines, and suppression of apoptosis pathway.


Asunto(s)
Antídotos , Scutellaria baicalensis , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Citocinas , Flavanonas , Flavonoides/química , Flavonoides/farmacología , Flavonoides/uso terapéutico , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Scutellaria baicalensis/química
3.
Chin J Integr Med ; 28(7): 603-611, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35391592

RESUMEN

OBJECTIVE: To investigate the protective effects of Schisandra chinensis oil (SCEO) against aristolochic acid I (AA I)-induced nephrotoxicity in vivo and in vitro and elucidate the underlying mechanism. METHODS: C57BL/6 mice were randomly divided into 5 groups according to a random number table, including control group, AA I group, and AA I +SCEO (0.25, 0.5 and 1 g/kg) groups (n=5 per group). Pretreatment with SCEO was done for 2 days by oral administration, while the control and AA I groups were treated with sodium carboxymethyl cellulose. Mice of all groups except for the control group were injected intraperitoneally with AA I (5 mg/kg) from day 3 until day 7. Histopathological examination and apoptosis of kidney tissue were observed by hematoxylin and eosin and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatinine (SCr), as well as renal malondialdehyde (MDA), glutathione, r-glutamyl cysteingl+glycine (GSH), and superoxide dismutase (SOD) were analyzed using enzyme-linked immunosorbent assay (ELISA). Expressions of hepatic cytochrome P450 1A1 (CYP1A1), CYP1A2, and nad(p)hquinonedehydrogenase1 (NQO1) were analyzed using ELISA, quantitative real-time polymerase chain reaction (qPCR) and Western blot, respectively. In vitro, SCEO (40 µ g/mL) was added 12 h before treatment with AA I (40 µ mol/mL for 48 h) in human renal proximal tubule cell line (HK-2), then apoptosis and reactive oxygen species (ROS) were analyzed by flow cytometry. RESULTS: SCEO 0.5 and 1 g/kg ameliorated histopathological changes and TUNEL+ staining in the kidney tissues of mice with AA I-induced nephrotoxicity, and reduced serum levels of ALT, AST, BUN and SCr (P<0.01 or P<0.05). SCEO 0.5 and 1 g/kg alleviated the ROS generation in kidney, containing MDA, GSH and SOD (P<0.01 or P<0.05). SCEO 1 g/kg increased the expressions of CYP1A1 and CYP1A2 and decreased NQO1 level in the liver tissues (P<0.01 or P<0.05). Besides, in vitro studies also demonstrated that SCEO 40 µ g/mL inhibited apoptosis and ROS generation (P<0.05 or P<0.01). CONCLUSIONS: SCEO can alleviate AA I-induced kidney damage both in vivo and in vitro. The protective mechanism may be closely related to the regulation of metabolic enzymes, thereby inhibiting apoptosis and ROS production.


Asunto(s)
Ácidos Aristolóquicos , Enfermedades Renales , Aceites de Plantas , Sustancias Protectoras , Schisandra , Animales , Apoptosis , Ácidos Aristolóquicos/toxicidad , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Glutatión/metabolismo , Riñón/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Sustancias Protectoras/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
4.
Food Funct ; 13(5): 2791-2804, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35174375

RESUMEN

Sea cucumber is widely consumed as food and folk medicine in Asia, and its phospholipids are rich sources of dietary eicosapentaenoic acid enriched ether-phospholipids (ether-PLs). Emerging evidence suggests that ether-PLs are associated with neurodegenerative disease and steatohepatitis. However, the function and mechanism of ether-PLs in alcoholic liver disease (ALD) are not well understood. To this end, the present study sought to investigate the hepatoprotective effects of sea cucumber ether-PLs, including plasmenyl phosphatidylethanolamine (PlsEtn) and plasmanyl phosphatidylcholine (PlsCho), and their underlying mechanisms. Our results showed that compared with EtOH-induced mice, ether-PL treated mice showed improved liver histology, decreased serum ALT and AST levels, and reduced alcohol metabolic enzyme (ALDH2 and ADH1) expressions. Mechanistic studies showed that ether-PLs attenuated "first-hit" hepatic steatosis and lipid accumulation evoked by alcohol administration. Moreover, PlsEtn more effectively restored endogenous plasmalogen levels than PlsCho, thereby enhancing hepatic antioxidation against "second-hit" reactive oxygen species (ROS) due to the damaged mitochondria and abnormal ethanol metabolism. Taken together, sea cucumber ether-PLs show great potential to become a natural functional food against chronic alcohol-induced hepatic steatosis and lipid metabolic dysregulation.


Asunto(s)
Alimentos Funcionales , Éteres Fosfolípidos/farmacología , Sustancias Protectoras/farmacología , Pepinos de Mar , Animales , Modelos Animales de Enfermedad , Hepatopatías Alcohólicas/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Éteres Fosfolípidos/química , Éteres Fosfolípidos/uso terapéutico , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico
5.
Food Funct ; 13(4): 2184-2199, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35119062

RESUMEN

Kidney Disease Improving Global Outcomes (KDIGO) 2017 Clinical Practice Guideline has recommended treatment decisions for patients with chronic kidney disease (CKD) with osteoporosis and/or high risk of fracture. Bisphosphonates, the first-line anti-osteoporosis drugs have the concern of worsening kidney functions. Moreover, despite impaired bone formation in CKD patients, teriparatide, the formation-stimulating drug is not recommended. Thus, there is an urgent need for safe and effective treatment of osteoporosis in CKD patients. Here, in CKD rats, we tested the osteoprotective effect of diosmin, a citrus-derived bioflavonoid used as a phlebotonic in chronic venous insufficiency and has a renoprotective effect. CKD was developed by 5/6th nephrectomy and diosmin at the human equivalent dose (100 mg kg-1) did not advance renal failure but reduced blood pressure to the level of sham control. Fibroblast growth factor-23 and parathyroid hormone were increased in CKD and diosmin suppressed both. CKD reduced bone mass and deteriorated the microarchitecture of trabecular bones, and diosmin maintained both to control levels. Bone formation and strength were impaired in the CKD and diosmin maintained these levels to control levels. Nanoindentation of bone showed that diosmin significantly increased tissue hardness over the control. Diosmetin, the metabolic surrogate of diosmin had comparable pharmacokinetic profiles between the control and CKD groups. Furthermore, diosmetin (50 mg kg-1) protected against CKD-induced bone loss. These data suggest that diosmin and its metabolic surrogate, diosmetin protect against CKD-induced osteopenia. Since diosmin has no renal adverse effect and protected bone mass and strength in CKD rats, we propose assessing its anti-osteoporosis effect in CKD patients.


Asunto(s)
Citrus , Diosmina/uso terapéutico , Flavonoides/uso terapéutico , Osteoporosis/prevención & control , Sustancias Protectoras/uso terapéutico , Insuficiencia Renal Crónica/complicaciones , Animales , Densidad Ósea/efectos de los fármacos , Hueso Esponjoso/efectos de los fármacos , Diosmina/farmacología , Modelos Animales de Enfermedad , Femenino , Flavonoides/farmacología , Osteoporosis/complicaciones , Fitoterapia , Sustancias Protectoras/farmacología , Ratas
6.
Mol Med Rep ; 25(4)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35169865

RESUMEN

There is an increasing incidence of destructive bone disease caused by osteoclast proliferation. This is characterized by reduced bone mass and imbalance of bone homeostasis. Icariin (ICA), a flavonoid compound isolated from Epimedium, has anti­osteoporosis activity and inhibits the formation of osteoclasts and bone resorption. The purpose of the present study was to investigate the protective effect of ICA on osteoclastic differentiation induced by thioacetamide (TAA) and its possible mechanism in Sprague Dawley (SD) rats. In the present study, SD rats were intraperitoneally injected with TAA (300 mg/kg) for the bone loss model, treated with ICA (600 mg/kg, intragastric gavage) in the ICA group and TAA+ICA group for treatment of bone loss for 6 weeks. Indexes associated with bone metabolism, such as alkaline phosphatase, N­terminal telopeptide of type­I collagen (NTX­I), calcium (Ca), phosphorus (P) and magnesium (Mg) in the serum, were detected. Osteoclast differentiation of femoral tissues was detected by hematoxylin and eosin and tartrate­resistant acid phosphatase staining. The femoral bone mass was evaluated using a three­point bending test and micro computed tomography. Western blotting was used to detect the expression levels of osteoclast­related proteins in each group. In the rats treated with TAA, the serum concentrations of Ca, P and Mg were decreased, the serum concentration of NTX­I was increased, osteoclast differentiation of the femur was increased, femur bone stress and bone mass were decreased and the bone loss and osteoclast formation were reduced after ICA treatment. In addition, ICA inhibited the protein expression of receptor activator of nuclear factor κ­Β ligand (RANKL), receptor activator of nuclear factor κ­B (RANK), p38, ERK, c­Fos and nuclear factor of activated T cells 1 (NFATc1) in the femur of rats treated with TAA. The results suggested that ICA may inhibit osteoclast differentiation by downregulating the RANKL­p38/ERK­NFAT signaling pathway and prevent TAA­induced bone loss. The results are helpful to understand the mechanism of osteoclast differentiation induced by TAA, as well as the antiresorptive activity and molecular mechanism of ICA, and to provide new ideas for the treatment of osteolytic diseases.


Asunto(s)
Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Flavonoides/farmacología , Sustancias Protectoras/farmacología , Ligando RANK/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosfatasa Alcalina/sangre , Animales , Peso Corporal/efectos de los fármacos , Resorción Ósea/inducido químicamente , Calcio/sangre , Diferenciación Celular/efectos de los fármacos , Colágeno Tipo I/sangre , Modelos Animales de Enfermedad , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Fémur/metabolismo , Flavonoides/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Magnesio/sangre , Masculino , Osteoclastos/efectos de los fármacos , Péptidos/sangre , Fósforo/sangre , Sustancias Protectoras/uso terapéutico , Ratas Sprague-Dawley , Tioacetamida/toxicidad , Microtomografía por Rayos X
7.
Molecules ; 27(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35056867

RESUMEN

The indigenous purplish red fruit, Cleistocalyx nervosum var. paniala (CN), is grown in northern Thailand. The aqueous extract of CN pulp is known to exhibit antioxidant and anticarcinogenic properties. To search for an antioxidant fraction separated from CN, various hydroalcoholic extractions were performed. The acidified ethanolic extract of CN obtained from 0.5% (v/v) citric acid in 80% (v/v) ethanol yielded greater polyphenol content and DPPH radical scavenging activity when compared with other hydroethanolic extracts. Cyanidin-3-glucoside is a major anthocyanin present in the acidified ethanolic extract of CN (AECN). At a dose of 5000 mg/kg bw, an anthocyanin-rich extract was found to be safe when given to rats without any acute toxicity. To examine the hepatoprotective properties of AECN, an overdose of acetaminophen (APAP) was induced in a rat model, while silymarin was used as a standard reference. The administration of AECN at a dose of 300 mg/kg bw for 28 days improved hepatocyte architecture and modulated serum alanine aminotransferase levels in APAP-induced rats. Furthermore, it significantly decreased serum and hepatic malondialdehyde levels but increased hepatic glutathione content, as well as glutathione peroxidase and UDP-glucuronosyltransferase activities. In conclusion, AECN may effectively reduce oxidative stress induced acute hepatotoxicity in overdose APAP-treated rats through the suppression of oxidative stress and the enhancement of the antioxidant system in rat livers.


Asunto(s)
Acetaminofén/efectos adversos , Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Syzygium/química , Alanina Transaminasa/sangre , Animales , Antocianinas , Antioxidantes/uso terapéutico , Antioxidantes/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Enzimas/efectos de los fármacos , Enzimas/metabolismo , Etanol/química , Femenino , Frutas/química , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Extractos Vegetales/toxicidad , Polifenoles/análisis , Polifenoles/farmacología , Polifenoles/uso terapéutico , Sustancias Protectoras/uso terapéutico , Sustancias Protectoras/toxicidad , Ratas Wistar , Silimarina/farmacología , Silimarina/uso terapéutico , Tailandia
8.
Int J Immunopathol Pharmacol ; 36: 20587384211073397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35088608

RESUMEN

Baicalin (BA) is a kind of flavonoid that is isolated from Scutellaria baicalensis Georgi, which has been verified to have hepatoprotective effects in some diseases. However, the role of BA in acute hepatic injury induced by arsenic trioxide (ATO) remains unclear. The aim of this study was to investigate the protective action of BA on acute hepatic injury induced by ATO and to probe its possible mechanism. Mice were pretreated with BA (50, 100 mg/kg) by gavage. After 7 h, ATO (7.5 mg/kg) was injected intraperitoneally to induce liver injury. After 7 days of treatment, serum and hepatic specimens were collected and assayed to evaluate the hepatoprotective effect of BA. Pathological sections and the liver function index indicated that ATO caused significant liver injury. The fluorescence of reactive oxygen species and oxidative stress indicators showed that ATO also increased oxidative stress. The inflammatory markers in ATO-induced mice also increased significantly. Staining of the terminal deoxynucleotidyl transferase dUTP nick end labeling and apoptotic factor assay showed that apoptosis increased. However, with BA pretreatment, these changes were significantly weakened. In addition, BA treatment promoted the expression of proteins related to the JAK2/STAT3 signaling pathway. The results suggest that BA can ameliorate acute ATO-induced hepatic injury in mice, which is related to the inhibition of oxidative stress, thereby reducing inflammation and apoptosis. The mechanism of this protection is potentially related to the JAK2/STAT3 signaling pathway.


Asunto(s)
Trióxido de Arsénico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Flavonoides/uso terapéutico , Janus Quinasa 2/metabolismo , Sustancias Protectoras/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Flavonoides/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Biomed Pharmacother ; 146: 112242, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34953630

RESUMEN

Myocarditis is an inflammatory disease of the myocardium that mostly affects young adults. The disease is commonly caused by viral infection, medications, autoimmune disorders, and inflammatory conditions. Nearly 50% of the cases of myocarditis are due to post-viral immune response in a setting of an identifiable or non-identifiable infection. The clinical manifestation is nonspecific ranging from asymptomatic courses to sudden death in infants and young patients. This review describes the properties of phytochemicals as plant-derived active ingredients which can be used in the prevention and treatment of myocarditis and its associated risk factors. Meanwhile, it has illustrated epidemiological analyses, mechanism of action, and the metabolism of phytochemicals in animal and human clinical trials. We also mentioned the precise mechanism of action by which phytochemicals elicit their anti-viral, anti-inflammatory, antioxidant, and immunomodulatory effects and how they regulate signal transduction pathways. Nevertheless, comprehensive clinical trials are required to study the properties of phytochemicals in vivo, in vitro, and in silico for a proper management of myocarditis. Our findings indicate that phytochemicals function as potent adjunctive therapeutic drugs in myocarditis and its related complications.


Asunto(s)
Suplementos Dietéticos , Miocarditis/prevención & control , Fitoquímicos/uso terapéutico , Sustancias Protectoras/uso terapéutico , Animales , Suplementos Dietéticos/efectos adversos , Humanos , Fitoquímicos/efectos adversos , Fitoquímicos/clasificación , Sustancias Protectoras/efectos adversos
10.
Artículo en Inglés | WPRIM | ID: wpr-939787

RESUMEN

OBJECTIVE@#To investigate the protective effects of Schisandra chinensis oil (SCEO) against aristolochic acid I (AA I)-induced nephrotoxicity in vivo and in vitro and elucidate the underlying mechanism.@*METHODS@#C57BL/6 mice were randomly divided into 5 groups according to a random number table, including control group, AA I group, and AA I +SCEO (0.25, 0.5 and 1 g/kg) groups (n=5 per group). Pretreatment with SCEO was done for 2 days by oral administration, while the control and AA I groups were treated with sodium carboxymethyl cellulose. Mice of all groups except for the control group were injected intraperitoneally with AA I (5 mg/kg) from day 3 until day 7. Histopathological examination and apoptosis of kidney tissue were observed by hematoxylin and eosin and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatinine (SCr), as well as renal malondialdehyde (MDA), glutathione, r-glutamyl cysteingl+glycine (GSH), and superoxide dismutase (SOD) were analyzed using enzyme-linked immunosorbent assay (ELISA). Expressions of hepatic cytochrome P450 1A1 (CYP1A1), CYP1A2, and nad(p)hquinonedehydrogenase1 (NQO1) were analyzed using ELISA, quantitative real-time polymerase chain reaction (qPCR) and Western blot, respectively. In vitro, SCEO (40 µ g/mL) was added 12 h before treatment with AA I (40 µ mol/mL for 48 h) in human renal proximal tubule cell line (HK-2), then apoptosis and reactive oxygen species (ROS) were analyzed by flow cytometry.@*RESULTS@#SCEO 0.5 and 1 g/kg ameliorated histopathological changes and TUNEL+ staining in the kidney tissues of mice with AA I-induced nephrotoxicity, and reduced serum levels of ALT, AST, BUN and SCr (P<0.01 or P<0.05). SCEO 0.5 and 1 g/kg alleviated the ROS generation in kidney, containing MDA, GSH and SOD (P<0.01 or P<0.05). SCEO 1 g/kg increased the expressions of CYP1A1 and CYP1A2 and decreased NQO1 level in the liver tissues (P<0.01 or P<0.05). Besides, in vitro studies also demonstrated that SCEO 40 µ g/mL inhibited apoptosis and ROS generation (P<0.05 or P<0.01).@*CONCLUSIONS@#SCEO can alleviate AA I-induced kidney damage both in vivo and in vitro. The protective mechanism may be closely related to the regulation of metabolic enzymes, thereby inhibiting apoptosis and ROS production.


Asunto(s)
Animales , Ratones , Apoptosis , Ácidos Aristolóquicos/toxicidad , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Glutatión/metabolismo , Riñón/efectos de los fármacos , Enfermedades Renales/tratamiento farmacológico , Ratones Endogámicos C57BL , Estrés Oxidativo , Aceites de Plantas/uso terapéutico , Sustancias Protectoras/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Schisandra , Superóxido Dismutasa/metabolismo
11.
Bioengineered ; 12(2): 12702-12721, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34949157

RESUMEN

The overuse of cisplatin (>50 mg/m2) is limited to nephrotoxicity, ototoxicity, gastrotoxicity, myelosuppression, and allergic reactions. The objective of this study was to investigate the nephroprotective effects of Daucus carota and Eclipta prostrata extracts on cisplatin-induced nephrotoxicity in Wistar albino rats. The study involved male Wistar albino rats of 8 weeks weighing 220-270 g. A single injection of 5 mg/kg was injected into the rats for nephrotoxicity. Rats were divided into four groups based on dose conentrations. Blood and urine samples of rats were collected on the 0, 7th, 14th, and 21st days for nephrological analysis. The results showed that Cis + DC/Cis + EP (600 mg/kg) significantly (p < 0.001) increased the body weight and reduced the kidney weight of cisplatin-induced nephrotoxicity in rats (p < 0.001) as compared to Cis group. The results showed that 600 mg/kg administration of Cis + DC/Cis +EP successfully (p < 0.005) improved the urine and plasmin creatinine, Na, and K level compared to the Cis group. Histopathological results confirmed that Cis + EP/Cis + DC effectively improved the renal abnormalities. It is concluded that the co-administration of Cis + EP extract showed exceptional nephroprotective effects at a dose rate of 600 mg/kg.


Asunto(s)
Cisplatino/efectos adversos , Daucus carota/química , Eclipta/química , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Sustancias Protectoras/uso terapéutico , Animales , Peso Corporal/efectos de los fármacos , Creatinina/sangre , Riñón/efectos de los fármacos , Riñón/patología , Enfermedades Renales/sangre , Enfermedades Renales/orina , Masculino , Tamaño de los Órganos/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Potasio/orina , Sustancias Protectoras/farmacología , Ratas Wistar , Sodio/orina , Micción/efectos de los fármacos
12.
Bioengineered ; 12(2): 11041-11056, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34802380

RESUMEN

Cisplatin-induced acute kidney injury (CP-AKI) is a severe complication in patients receiving CP chemotherapy. However, effective therapies for CP-AKI are currently lacking. Curcumin (CUR), a natural polyphenol, is extracted from the rhizome of turmeric and has been reported to have nephroprotective activity. However, the role of CUR in CP-AKI remains unclear. This study aimed to explore the mechanism of CUR in CP-AKI by combining a network pharmacology approach with experimental validations. The analysis revealed 176 potential targets of CUR based on the HERB database and 1,286 related targets of CP-AKI from the GeneCards, DrugBank, and OMIM databases. Further, 106 common targets of CUR against CP-AKI were obtained, and these common targets constructed a protein-protein interaction (PPI) network. In addition, the core targets were screened from the PPI network using Cytoscape. Molecular docking revealed that CUR displayed the best binding to AKT1. Gene Ontology (GO) analysis indicated that the primary biological processes of CUR against CP-AKI included cellular response to chemical stress and apoptotic regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the PI3K-Akt signaling pathway was most significantly enriched in CUR against CP-AKI. Western blotting and flow cytometry showed that CUR inhibited apoptosis induced by CP by activating the Akt signaling pathway in human kidney tubular epithelial cells (HK-2). Altogether, our findings demonstrated that CUR alleviated apoptosis by activating the Akt signaling pathway in CP-AKI in vitro. These data provide a scientific basis for future investigations into the clinical application of CUR against CP-AKI.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Cisplatino/efectos adversos , Curcumina/uso terapéutico , Farmacología en Red , Sustancias Protectoras/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular , Curcumina/química , Curcumina/farmacología , Ontología de Genes , Humanos , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/metabolismo , Sustancias Protectoras/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Eur J Pharmacol ; 913: 174624, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774496

RESUMEN

Trimetazidine (TMZ) is a well-known anti-ischemic agent used for the treatment of angina pectoris. In the past decades, the efficacy of this drug has been tested in a wide range of kidney injuries, including drug-induced nephrotoxicity (DIN), radio-contrast agent-induced nephropathy, and surgically induced renal ischemic injury. TMZhas renoprotective effects by attenuating oxidative stress, inflammatory cytokine release, maintaining oxygen and energy balance. Moreover, TMZ administration prevented kidney graft rejection in the porcine model by suppressing the infiltration of mononuclear cells, preserving mitochondrial functions, and maintaining Ca+ homeostasis. In DIN and diabetic kidney diseases,TMZ treatment prevents renal injury by inactivating immune cells, attenuating renal fibrosis, inflammation, apoptosis, and histological abnormalities. Interestingly, the clinical therapeutic efficacy of TMZ has also been documented in pre-existing kidney disease patients undergoing contrast exposure for diagnostic intervention. However, the mechanistic insights into the TMZ mediated renoprotective effects in other forms of renal injuries, including type-2 diabetes, drug-induced nephrotoxicity, and hypertension-induced chronic kidney diseases, remain uninvestigated and incomplete. Moreover, the clinical utility of TMZ as a renoprotective agent in radio-contrast-induced nephrotoxicity needs to be tested in a large patient population. Nevertheless, the available pieces of evidence suggest that TMZ is a promising and emerging renal therapy for the treatment and management of kidney diseases of variable etiologies. This review discusses the various pre-clinical and clinical findings and provides mechanistic insights into the TMZ mediated beneficial effects in various kidney diseases.


Asunto(s)
Enfermedades Renales/tratamiento farmacológico , Riñón/efectos de los fármacos , Sustancias Protectoras/farmacología , Trimetazidina/farmacología , Vasodilatadores/farmacología , Animales , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Riñón/irrigación sanguínea , Riñón/fisiopatología , Enfermedades Renales/fisiopatología , Estrés Oxidativo , Sustancias Protectoras/uso terapéutico , Resultado del Tratamiento , Trimetazidina/uso terapéutico , Vasodilatadores/uso terapéutico
14.
Molecules ; 26(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34770868

RESUMEN

Polyphenols are bioactive compounds found naturally in fruits and vegetables; they are widely used in disease prevention and health maintenance. Polyphenol-rich blackcurrant extract (BCE) exerts beneficial effects on vascular health in menopausal model animals. However, the vasculoprotective effects in diabetes mellitus (DM) and atherosclerotic vascular disease secondary to DM are unknown. Therefore, we investigated whether BCE is effective in preventing atherosclerosis using KK-Ay mice as a diabetes model. The mice were divided into three groups and fed a high-fat diet supplemented with 1% BCE (BCE1), 3% BCE (BCE2), or Control for 9 weeks. The mice in the BCE2 group showed a considerable reduction in the disturbance of elastic lamina, foam cell formation, and vascular remodeling compared to those in the BCE1 and Control groups. Immunohistochemical staining indicated that the score of endothelial nitric oxide synthase staining intensity was significantly higher in both BCE2 (2.9) and BCE1 (1.9) compared to that in the Control (1.1). Furthermore, the score for the percentage of alpha-smooth muscle actin was significantly lower in the BCE2 (2.9%) than in the Control (2.1%). Our results suggest that the intake of anthocyanin-rich BCE could have beneficial effects on the blood vessels of diabetic patients.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Extractos Vegetales/uso terapéutico , Polifenoles/uso terapéutico , Sustancias Protectoras/uso terapéutico , Ribes/química , Animales , Diabetes Mellitus Experimental/inducido químicamente , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Ratones , Ratones Mutantes , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Polifenoles/química , Polifenoles/aislamiento & purificación , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación
15.
Oxid Med Cell Longev ; 2021: 5876841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603599

RESUMEN

Myocardial fibrosis represents the primary pathological change associated with diabetic cardiomyopathy and heart failure, and it leads to decreased myocardial compliance with impaired cardiac diastolic and systolic function. Quercetin, an active ingredient in various medicinal plants, exerts therapeutic effects against cardiovascular diseases. Here, we investigate whether SIRT5- and IDH2-related desuccinylation is involved in the underlying mechanism of myocardial fibrosis in heart failure while exploring related therapeutic drugs for mitochondrial quality surveillance. Mouse models of myocardial fibrosis and heart failure, established by transverse aortic constriction (TAC), were administered with quercetin (50 mg/kg) daily for 4 weeks. HL-1 cells were pretreated with quercetin and treated with high glucose (30 mM) in vitro. Cardiac function, western blotting, quantitative PCR, enzyme-linked immunosorbent assay, and immunofluorescence analysis were employed to analyze mitochondrial quality surveillance, oxidative stress, and inflammatory response in myocardial cells, whereas IDH2 succinylation levels were detected using immunoprecipitation. Myocardial fibrosis and heart failure incidence increased after TAC, with abnormal cardiac ejection function. Following high-glucose treatment, HL-1 cell activity was inhibited, causing excess production of reactive oxygen species and inhibition of mitochondrial respiratory complex I/III activity and mitochondrial antioxidant enzyme activity, as well as increased oxidative stress and inflammatory response, imbalanced mitochondrial quality surveillance and homeostasis, and increased apoptosis. Quercetin inhibited myocardial fibrosis and improved cardiac function by increasing mitochondrial energy metabolism and regulating mitochondrial fusion/fission and mitochondrial biosynthesis while inhibiting the inflammatory response and oxidative stress injury. Additionally, TAC inhibited SIRT5 expression at the mitochondrial level and increased IDH2 succinylation. However, quercetin promoted the desuccinylation of IDH2 by increasing SIRT5 expression. Moreover, treatment with si-SIRT5 abolished the protective effect of quercetin on cell viability. Hence, quercetin may promote the desuccinylation of IDH2 through SIRT5, maintain mitochondrial homeostasis, protect mouse cardiomyocytes under inflammatory conditions, and improve myocardial fibrosis, thereby reducing the incidence of heart failure.


Asunto(s)
Glucosa/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Sustancias Protectoras/farmacología , Quercetina/farmacología , Sirtuinas/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Quercetina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
16.
Mar Drugs ; 19(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34677442

RESUMEN

Osteoarthritis belongs to the most common joint diseases in humans and animals and shows increased incidence in older patients. The bioactivities of collagen hydrolysates, sulfated glucosamine and a special fatty acid enriched dog-food were tested in a dog patient study of 52 dogs as potential therapeutic treatment options in early osteoarthritis. Biophysical, biochemical, cell biological and molecular modeling methods support that these well-defined substances may act as effective nutraceuticals. Importantly, the applied collagen hydrolysates as well as sulfated glucosamine residues from marine organisms were strongly supported by both an animal model and molecular modeling of intermolecular interactions. Molecular modeling of predicted interaction dynamics was evaluated for the receptor proteins MMP-3 and ADAMTS-5. These proteins play a prominent role in the maintenance of cartilage health as well as innate and adapted immunity. Nutraceutical data were generated in a veterinary clinical study focusing on mobility and agility. Specifically, key clinical parameter (MMP-3 and TIMP-1) were obtained from blood probes of German shepherd dogs with early osteoarthritis symptoms fed with collagen hydrolysates. Collagen hydrolysate, a chondroprotective food supplement was examined by high resolution NMR experiments. Molecular modeling simulations were used to further characterize the interaction potency of collagen fragments and glucosamines with protein receptor structures. Potential beneficial effects of collagen hydrolysates, sulfated glycans (i.e., sulfated glucosamine from crabs and mussels) and lipids, especially, eicosapentaenoic acid (extracted from fish oil) on biochemical and physiological processes are discussed here in the context of human and veterinary medicine.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Colágeno/farmacología , Dieta/veterinaria , Suplementos Dietéticos , Enfermedades de los Perros/dietoterapia , Osteoartritis/veterinaria , Sustancias Protectoras/farmacología , Animales , Organismos Acuáticos , Colágeno/química , Colágeno/uso terapéutico , Perros , Osteoartritis/dietoterapia , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico
17.
Molecules ; 26(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34641495

RESUMEN

Data obtained from several intensive care units around the world have provided substantial evidence of the strong association between impairment of the renal function and in-hospital deaths of critically ill COVID-19 patients, especially those with comorbidities and requiring renal replacement therapy (RRT). Acute kidney injury (AKI) is a common renal disorder of various etiologies characterized by a sudden and sustained decrease of renal function. Studies have shown that 5-46% of COVID-19 patients develop AKI during hospital stay, and the mortality of those patients may reach up to 100% depending on various factors, such as organ failures and RRT requirement. Catechins are natural products that have multiple pharmacological activities, including anti-coronavirus and reno-protective activities against kidney injury induced by nephrotoxic agents, obstructive nephropathies and AKI accompanying metabolic and cardiovascular disorders. Therefore, in this review, we discuss the anti-SARS-CoV-2 and reno-protective effects of catechins from a mechanistic perspective. We believe that catechins may serve as promising therapeutics in COVID-19-associated AKI due to their well-recognized anti-SARS-CoV-2, and antioxidant and anti-inflammatory properties that mediate their reno-protective activities.


Asunto(s)
Lesión Renal Aguda/etiología , Antivirales/farmacología , COVID-19/complicaciones , Catequina/farmacología , Sustancias Protectoras/farmacología , Lesión Renal Aguda/tratamiento farmacológico , Animales , Antivirales/química , Antivirales/uso terapéutico , Catequina/química , Catequina/uso terapéutico , Humanos , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
18.
Eur J Pharmacol ; 910: 174442, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34492285

RESUMEN

The aim of this study was to analyze the active components of Schisandra chinensis on liver injury and its mechanism in mice by network pharmacology. The active components of S. chinensis were found through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and their corresponding targets were predicted. The targets of liver injury were searched through Therapeutic Targets Database (TTD), DisGeNET and drugbank databases, and the Venn diagram was constructed to obtain the action targets. The "drug-active component-target" network and protein-protein interaction network (PPI) were constructed by using STRING database and Cytoscape software, and the key targets were further screened by the enrichment analysis of relevant KEGG pathways. Finally, a CCl4-induced mouse liver injury model was established to verify the efficacy and related targets of S. chinensis and clarify its mechanism. Eight active components and 56 related targets of S. chinensis were screened out based on their oral bioavailability (OB) and drug likeness (DL). Five targets of S. chinensis related to liver injury were found by using the Venn diagram. The key targets, namely Ptgs2 and Nos2 genes, were further screened out by constructing a PPI network, and Schisandrol B (SCB) was considered the key component most closely related to the liver injury in S. chinensis. The results indicate that SCB may play a role in the treatment of the CCl4-induced liver injury by down-regulating the expression of iNOS and COX-2, and regulating the expression of NF-κB and IL-17 signaling pathway to inhibit the expression of proinflammatory factors.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos/farmacología , Hígado/lesiones , Farmacología en Red/métodos , Sustancias Protectoras/farmacología , Schisandra/química , Animales , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Interleucina-17/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Medicina Tradicional China , Ratones Endogámicos ICR , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico , Mapas de Interacción de Proteínas , Transducción de Señal/efectos de los fármacos , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor de Transcripción ReIA/metabolismo
19.
Oxid Med Cell Longev ; 2021: 6492346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531939

RESUMEN

Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.


Asunto(s)
Cumarinas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Bacterias/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Cumarinas/química , Cumarinas/farmacología , Cumarinas/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/patología , Humanos , Sustancias Protectoras/química , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico
20.
Mar Drugs ; 19(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34564161

RESUMEN

Prevention of acute kidney injury caused by drugs is still a clinical problem to be solved urgently. Astaxanthin (AST) and docosahexaenoic acid (DHA) are important marine-derived active ingredients, and they are reported to exhibit renal protective activity. It is noteworthy that the existing forms of AST in nature are mainly fatty acid-acylated AST monoesters and diesters, as well as unesterified AST, in which DHA is an esterified fatty acid. However, no reports focus on the different bioactivities of unesterified AST, monoesters and diesters, as well as the recombination of DHA and unesterified AST on nephrotoxicity. In the present study, vancomycin-treated mice were used to evaluate the effects of DHA-acylated AST monoesters, DHA-acylated AST diesters, unesterified AST, and the recombination of AST and DHA in alleviating nephrotoxicity by determining serum biochemical index, histopathological changes, and the enzyme activity related to oxidative stress. Results found that the intervention of DHA-acylated AST diesters significantly ameliorated kidney dysfunction by decreasing the levels of urea nitrogen and creatinine, alleviating pathological damage and oxidative stress compared to AST monoester, unesterified AST, and the recombination of AST and DHA. Further studies revealed that dietary DHA-acylated AST esters could inhibit the activation of the caspase cascade and MAPKs signaling pathway, and reduce the levels of pro-inflammatory cytokines. These findings indicated that the administration of DHA-acylated AST esters could alleviate vancomycin-induced nephrotoxicity, which represented a potentially novel candidate or therapeutic adjuvant for alleviating acute kidney injury.


Asunto(s)
Lesión Renal Aguda/prevención & control , Ácidos Docosahexaenoicos/farmacología , Sustancias Protectoras/farmacología , Animales , Apoptosis/efectos de los fármacos , Organismos Acuáticos , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/uso terapéutico , Ésteres , Masculino , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Vancomicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA