Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.812
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 448: 139127, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608399

RESUMEN

To address the food safety issues caused by toxins, we established a fluorescent copper nanocluster biosensor based on magnetic aptamer for the visual and quantitative detection of ZEN. Specifically, we utilized the docking-aided rational tailoring (DART) strategy to analyze intermolecular force and interaction sites between zearalenone (ZEN) and the aptamer, and optimize the long-chain aptamer step by step to enhance the binding affinity by 3.4 times. The magnetic bead-modified aptamer underwent conformational changes when competing with complementary sequences to bind with ZEN. Then, the released complementary sequences will be amplified in template-free mode with the presence of the terminal deoxynucleotidyl transferase (TdT), and generating T-rich sequences as the core sequences for the luminescence of copper nanoclusters. The luminescence could be visualized and quantitatively detected through ultraviolet irradiation. The proposed label-free aptasensor exhibited high sensitivity and specificity, with a low limit of detection (LOD) of 0.1 ng/mL.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cobre , Zearalenona , Zearalenona/análisis , Zearalenona/química , Cobre/química , Técnicas Biosensibles/instrumentación , Aptámeros de Nucleótidos/química , Contaminación de Alimentos/análisis , Límite de Detección , Simulación del Acoplamiento Molecular , Nanopartículas del Metal/química , Fluorescencia
2.
Sci Adv ; 10(16): eadl1856, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640241

RESUMEN

Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus , Humanos , Automonitorización de la Glucosa Sanguínea , Glucemia , Monitoreo Continuo de Glucosa , Reproducibilidad de los Resultados , Glucosa , Diabetes Mellitus/diagnóstico
3.
Biosens Bioelectron ; 257: 116302, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648705

RESUMEN

This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.


Asunto(s)
Técnicas Biosensibles , Prótesis e Implantes , Técnicas Biosensibles/instrumentación , Humanos , Electrónica/instrumentación , Impresión Tridimensional , Diseño de Equipo , Nanoestructuras/química , Atención a la Salud/tendencias
4.
Talanta ; 274: 125944, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537347

RESUMEN

In this study, we present a one-pot, one-step, label-free miRNA detection method through a structural transition of a specially designed dumbbell-shape probe, initiating a rolling circle transition (RCT). In principle, target miRNA binds to right loop of the dumbbell probe (DP), which allows structural change of the DP to circular form, exposing a sequence complementary to the T7 promoter (T7p) previously hidden within the stem. This exposure allows T7 RNA polymerase to initiate RCT, producing a repetitive Mango aptamer sequence. TO1-biotin, fluorescent dye, binds to the aptamer, inducing a detectable enhancement of fluorescence intensity. Without miR-141, the DP stays closed, RCT is prevented, and the fluorescence intensity remains low. By employing this novel strategy, target miRNA was successfully identified with a detection of 73 pM and a dynamic linear range of 0-10 nM. Additionally, the method developed enables one-pot, one-step, and label-free detection of miRNA, demonstrating potential for point-of-care testing (POCT) applications. Furthermore, the practical application of the designed technique was demonstrated by reliably detecting the target miRNA in the human serum sample. We also believe that the conceived approach could be widely used to detect not only miRNAs but also diverse biomolecules by simply replacing the detection probe.


Asunto(s)
Aptámeros de Nucleótidos , MicroARNs , Proteínas Virales , MicroARNs/análisis , MicroARNs/sangre , Humanos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Límite de Detección , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia , ARN Polimerasas Dirigidas por ADN/química
5.
J Agric Food Chem ; 72(11): 5975-5982, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38462975

RESUMEN

Due to the high toxicity of aflatoxin B1 and its risks to human health, we developed a click reaction-mediated automated fluorescent immunosensor (CAFI) for sensitive detection of aflatoxin B1 based on the Cu(I)-catalyzed click reaction. With its large specific surface area, a copper-based metal-organic framework (Cu-MOF) was synthesized to adsorb and enrich the copper ion (Cu(II)) and then load the complete antigen (BSA-AFB1). After the immunoreaction, Cu(II) inside the Cu-MOF-Antigen conjugate would be reduced to Cu(I) in the presence of sodium ascorbate, which triggered the click reaction between the fluorescent donor-modified DNA and the receptor-modified complementary DNA to lead to a fluorescence signal readout. The whole reaction steps were finished by the self-developed automated immunoreaction device. This CAFI method showed a limit of detection (LOD) of 0.48 pg/mL as well as a 670-fold enhancement in sensitivity compared to conventional ELISA, revealing its great potential in practical applications and automated detection.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Cobre , Aflatoxina B1/análisis , Inmunoensayo/métodos , Técnicas Biosensibles/métodos , Colorantes , Límite de Detección
6.
Anal Chem ; 96(10): 4213-4223, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38427460

RESUMEN

The accurate quantification of cancer-derived exosomes, which are emerging as promising noninvasive biomarkers for liquid biopsies in the early diagnosis of cancer, is becoming increasingly imperative. In our work, we developed a magnetically controlled photothermal, colorimetric, and fluorescence trimode aptasensor for human gastric cancer cell (SGC-7901)-derived exosomes. This sensor relied on CP/Mn-PBA DSNBs nanocomposites, created by decorating copper peroxide (CP) nanodots on polyethyleneimine-modified manganese-containing Prussian blue analogues double-shelled nanoboxes (PEI-Mn-PBA DSNBs). Through self-assembly, we attached CD63 aptamer-labeled CP/Mn-PBA DSNBs (Apt-CP/Mn-PBA DSNBs) to complementary DNA-labeled magnetic beads (cDNA-MB). During exosome incubation, these aptamers preferentially formed complexes with exosomes, and we efficiently removed the released CP/Mn-PBA DSNBs by using magnetic separation. The CP/Mn-PBA DSNBs exhibited high photoreactivity and photothermal conversion efficiency under near-infrared (NIR) light, leading to temperature variations under 808 nm irradiation, correlating with different exosome concentrations. Additionally, colorimetric detection was achieved by monitoring the color change in a 3,3',5,5'-tetramethylbenzidine (TMB) system, facilitated by PEI modification, NIR-enhanced peroxidase-like activity of CP/Mn-PBA DSNBs and their capacity to generate Cu2+ and H2O2 under acidic conditions. Moreover, in the presence of Cu2+ and ascorbic acid (AA), DNA sequences could form dsDNA-templated copper nanoparticles (CuNPs), which emitted strong fluorescence at around 575 nm. Increasing exosome concentrations correlated with decreases in temperature, absorbance, and fluorescence intensity. This trimode biosensor demonstrated satisfactory ability in differentiating gastric cancer patients from healthy individuals using human serum samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Exosomas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Cobre , Peróxidos , Peróxido de Hidrógeno , Colorimetría
7.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534249

RESUMEN

Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in semiconductor devices severely reduces their detection sensitivity. In this paper, a three-dimensional stacked silicon nanosheet FET (3D-SiNS-FET) biosensor was studied for the high-sensitivity detection of nucleic acids. Based on the mainstream Gate-All-Around (GAA) fenestration process, a three-dimensional stacked structure with an 8 nm cavity spacing was designed and prepared, allowing modification of probe molecules within the stacked cavities. Furthermore, the advantage of the three-dimensional space can realize the upper and lower complementary detection, which can overcome the Debye shielding effect and realize high-sensitivity Point of Care Testing (POCT) at high ionic strength. The experimental results show that the minimum detection limit for 12-base DNA (4 nM) at 1 × PBS is less than 10 zM, and at a high concentration of 1 µM DNA, the sensitivity of the 3D-SiNS-FET is approximately 10 times higher than that of the planar devices. This indicates that our device provides distinct advantages for detection, showing promise for future biosensor applications in clinical settings.


Asunto(s)
Técnicas Biosensibles , Nanocables , Ácidos Nucleicos , Silicio/química , Transistores Electrónicos , ADN , Técnicas Biosensibles/métodos , Nanocables/química
8.
Anal Chim Acta ; 1300: 342463, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38521572

RESUMEN

BACKGROUND: 5-hydroxymethylcytosine (5hmC) as an epigenetic modification can regulate gene expression, and its abnormal level is related with various tumor invasiveness and poor prognosis. Nevertheless, the current methods for 5hmC assay usually involve expensive instruments/antibodies, radioactive risk, high background, laborious bisulfite treatment procedures, and non-specific/long amplification time. RESULTS: We develop a glycosylation-mediated fluorescent biosensor based on helicase-dependent amplification (HDA) for label-free detection of site-specific 5hmC in cancer cells with zero background signal. The glycosylated 5hmC-DNA (5ghmC) catalyzed by ß-glucosyltransferase (ß-GT) can be cleaved by AbaSI restriction endonuclease to generate two dsDNA fragments with sticky ends. The resultant dsDNA fragments are complementary to the biotinylated probes and ligated by DNA ligases, followed by being captured by magnetic beads. After magnetic separation, the eluted ligation products act as the templates to initiate HDA reaction, generating abundant double-stranded DNA (dsDNA) products within 20 min. The dsDNA products are measured in a label-free manner with SYBR Green I as an indicator. This biosensor can measure 5hmC with a detection limit of 2.75 fM and a wide linear range from 1 × 10-14 to 1 × 10-8 M, and it can discriminate as low as 0.001% 5hmC level in complex mixture. Moreover, this biosensor can measure site-specific 5hmC in cancer cells, and distinguish tumor cells from normal cells. SIGNIFICANCE: This biosensor can achieve a zero-background signal without the need of either 5hmC specific antibody or bisulfite treatment, and it holds potential applications in biological research and disease diagnosis.


Asunto(s)
5-Metilcitosina/análogos & derivados , Técnicas Biosensibles , Neoplasias , Sulfitos , Glicosilación , ADN/genética , 5-Metilcitosina/metabolismo
9.
Biosens Bioelectron ; 252: 116146, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417286

RESUMEN

Staphylococcus aureus contamination in food supplements poses substantial challenges to public health and large-scale production but the sensitive detection in a timely manner remains a bottleneck. Drawing inspiration from the sea hedgehog, gold nanostars (AuNSs) were leveraged to design an ultrasensitive surface-enhanced Raman scattering (SERS) biosensor for the determination of Staphylococcus aureus in food supplements. Besides the surface enhancement furnished by the AuNSs, Raman reporter molecules and specific aptamers sequentially self-assembled onto these AuNSs to construct the "three-in-one" SERS biosensor probe for label-based quantitation of Staphylococcus aureus. Following incubation with contaminated health product samples, the gold nanostars@Raman reporter-aptamer specifically recognize and assemble around Staphylococcus aureus cells, forming a distinctive sea hedgehog structure. This unique configuration results in an amplified Raman signal at 1338 cm-1 and an enhancement factor of up to 6.71 × 107. The entire quantitative detection process can be completed within 30 min, boasting an exceptional limit of detection as low as 1.0 CFU mL-1. The method exhibits a broad working range for the determination of Staphylococcus aureus, with concentrations spanning 2.15 CFU mL-1 to 2.15 × 105 CFU mL-1. Furthermore, it demonstrates outstanding precision, with relative standard deviation values consistently below 5.0%. As a showcase to validate the practicality of the SERS method, we conducted tests on determining Staphylococcus aureus in a herbal food supplement, i.e., Ginkgo Biloba extract (GBE); the results align closely with those obtained through the conventional lysogeny broth agar plate method, pointing to the potential applicability in real-world scenarios.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Animales , Staphylococcus aureus , Nanopartículas del Metal/química , Erizos , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos , Oro/química , Aptámeros de Nucleótidos/química , Suplementos Dietéticos
10.
Anal Chim Acta ; 1295: 342328, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38355226

RESUMEN

Enzyme cascade with high specificity and catalytic efficiency has significant applications for developing efficient bioanalysis methods. In this work, a sensitive and selective aptasensor was constructed based on the DNA-induced assembly of biocatalytic nanocompartments. Different from the conventional co-immobilization in one pot, the cascade enzymes of glucose oxidase (GOX) and horseradish peroxidase (HRP) were separately encapsulated in ZIF-90 nanoparticles. After conjugating complementary DNA or aptermer on enzyme@ZIF-90, DNA hybridization drove enzyme@ZIF-90 connected into clusters or linked on other DNA modified biocatalytic nanocompartment (such as invertase loaded Fe3O4@SiO2). Owing to the shortened distance between enzymes, the catalytic efficiency of connected clusters was significantly enhanced. However, the specifically interaction between the substrate molecule and aptermer sequence would lead to the disassembly of DNA duplexes, resulting in the gradual "switching-off" of cascade reactions. With aflatoxin B1 (AFB1) as the model substrate, the compartmentalized three-enzyme nanoreactors showed good analytical performance in the linear range from 0.01 ng mL-1 to 50 ng mL-1 with a low detection limit (3.3 pg mL-1). In addition, the proposed aptasensor was applied to detect AFB1 in corn oil and wheat powder samples with total recoveries ranging from 94 % to 109 %. As a result, this DNA-induced strategy for enzyme cascade nanoreactors opens new avenues for stimuli-responsive applications in biosensing.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Nanopartículas , Aflatoxina B1/análisis , Dióxido de Silicio/química , ADN/química , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Límite de Detección , Aptámeros de Nucleótidos/química
11.
Anal Chim Acta ; 1293: 342284, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331552

RESUMEN

In the present work, we developed a photoelectrochemical aptasensor to determine omethoate (OMT) based on the dual signal amplification of CeO2@MnO2 photocatalysis for glucose oxidation and exonuclease I-assisted cyclic catalytic hydrolysis. CeO2@MnO2 heterojunction material prepared by hydrothermal method was linked with captured DNA (cDNA) and then assembled on the ITO conductive glass to form ITO/CeO2@MnO2-cDNA, which exhibited significant photocurrent response and good photocatalytic performance for glucose oxidation under visible light irradiation, providing the feasibility for sensitive determining OMT. After binding with the aptamer of OMT (apt), the formation of rigid double stranded cDNA/apt kept CeO2@MnO2 away from ITO surface, which ensured a low photocurrent background for the constructed ITO/CeO2@MnO2-cDNA/apt aptasensor. In the presence of target OMT, the restoration of the cDNA hairpin structure and the exonuclease I-assisted cyclic catalytic hydrolysis led to the generation and amplification of measurement photocurrent signals, and allowed the aptasensor to have an ideal quantitative range of 0.01-10.0 nM and low detection limit of 0.0027 nM. Moreover, the aptasensor has been applied for selective determination of OMT in real samples with good precision of the relative standard deviation less than 6.2 % and good accuracy of the recoveries from 93 % to 108 %. What's more, the aptasensor can be used for other target determination only by replacing the captured DNA and corresponding aptamer.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Dimetoato/análogos & derivados , Glucosa , ADN Complementario , Compuestos de Manganeso , Óxidos , ADN/química , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Límite de Detección
12.
Anal Chim Acta ; 1294: 342282, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336415

RESUMEN

BACKGROUND: Ionic calcium (Ca2+) plays a crucial role in maintaining normal physiological and biochemical functions within the human body. Detecting the concentration of Ca2+ is of utmost significance for various purposes, including disease screening, cellular metabolism research, and evaluating drug effectiveness. However, current detection approaches such as fluorescence and colorimetry face limitations due to complex labeling techniques and the inability to track changes in Ca2+ concentration. In recent years, extensive research has been conducted in this field to explore label-free and efficient approaches. RESULTS: In this study, a novel light-addressed potentiometric sensor (LAPS) using silicon-on-sapphire technology, has been successfully developed for Ca2+ sensing. The Ca2+-sensitive LAPS achieved a wide-range detection of Ca2+, ranging from 10-2 M to 10-7 M, with an impressive detection limit of 100 nM. These advancements are attributed to the ultra-thin silicon layer, silicon dioxide layer, and solid-state silicon rubber sensitive membrane around 6 µm. Furthermore, the sensor demonstrated the ability to dynamically monitor fluctuations in Ca2+ concentration ranging from 10-9 M to 10-2 M within a solution. Its remarkable selectivity, specificity, and long-term stability have facilitated its successful application in the detection of Ca2+ in human serum and urine. SIGNIFICANCE AND NOVELTY: This work presents a Ca2+-sensitive sensor that combines a low detection limit and a wide detection range. The development represents the emergence of a label-free and rapid Ca2+ detection tool with immense prospects in home-based health monitoring, community disease screening, as well as cellular metabolism, and drug screening evaluations.


Asunto(s)
Óxido de Aluminio , Técnicas Biosensibles , Humanos , Calcio , Luz , Técnicas Biosensibles/métodos , Potenciometría/métodos , Iones
13.
Anal Sci ; 40(4): 701-707, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316711

RESUMEN

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.


Asunto(s)
Antioxidantes , Técnicas Biosensibles , Peroxidasa , Peróxido de Hidrógeno/análisis , Circonio , Carbono , Electrodos , Peroxidasas , Oxígeno , , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
14.
Anal Chem ; 96(12): 4825-4834, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38364099

RESUMEN

Immunochromatographic assays (ICAs) have been widely used in the field detection of mycotoxin contaminants. Nevertheless, the lack of multisignal readout capability and the ability of signaling tags to maintain their biological activity while efficiently loading antibodies remain a great challenge in satisfying diverse testing demands. Herein, we proposed a novel three-in-one multifunctional hollow vanadium nanomicrosphere (high brightness-catalytic-photothermal properties)-mediated triple-readout ICA (VHMS-ICA) for sensitive detection of T-2. As the key to this biosensing strategy, vanadium was used as the catalytic-photothermal characterization center, and natural polyphenols were utilized as the bridging ligands for coupling with the antibody while self-assembling with formaldehyde cross-linking into a hollow nanocage-like structure, which offers the possibility of realizing a three-signal readout strategy and improving the coupling efficiency to the antibody while preserving its biological activity. The constructed sensors showed a detection limit (LOD) of 2 pg/mL for T-2, which was about 345-fold higher than that of conventional gold nanoparticle-based ICA (0.596 ng/mL). As anticipated, the detection range of VHMS-ICA was extended about 8-fold compared with the colorimetric signal alone. Ultimately, the proposed immunosensor performed well in maize and oat samples, with satisfactory recoveries. Owing to the synergistic and complementary interactions between distinct signaling modes, the establishment of multimodal immunosensors with multifunctional tags is an efficient strategy to satisfy diversified detection demands.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanopartículas del Metal/química , Inmunoensayo , Colorimetría , Oro/química , Vanadio , Anticuerpos , Límite de Detección
15.
ACS Appl Mater Interfaces ; 16(8): 10580-10589, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38364286

RESUMEN

The identification of Chinese medicinal herbs occupies a crucial part in the development of the food and drug market. Although molecular identification based on real-time PCR offers good versatility and uniform digital standards compared with traditional methods, such as morphology, the dependence on large-scale equipment hinders spot detection and marketable applications. In this study, we developed a DNA nanoclaw for colorimetric detection and visible on-site identification of Chinese medicines. When specific miRNA is present, the DNAzyme is activated and cleaves the substrate strand, triggering the catalytic hairpin assembly (CHA) reaction and forming branched DNA junctions on AuNP-I. This can then capture AuNP-II through hybridization and facilitate their aggregation, resulting in a noticeable color change that is observable to the naked eye. By harnessing the dual amplification of DNAzyme and CHA, this highly sensitive nanoprobe successfully achieved specific identification of Chinese medicines. This offers a new perspective for on-site testing in the herbal market.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , ADN Catalítico/química , Técnicas Biosensibles/métodos , ADN , MicroARNs/análisis , Hibridación de Ácido Nucleico
16.
ACS Appl Mater Interfaces ; 16(9): 11305-11314, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38406866

RESUMEN

A black phosphorus (BP)-based reusable biosensor platform is developed for the repeated and real-time detection of cortisol using antibody-conjugated magnetic particle (MP) structures as a refreshable receptor. Here, we took advantage of the low-noise characteristics of a mechanically exfoliated BP-based field-effect transistor (FET) and hybridized it with anti-cortisol antibody-functionalized MPs to build a highly sensitive cortisol sensor. This strategy allowed us to detect cortisol down to 1 aM in real time and discriminate cortisol from other hormones. In this case, we could easily remove MPs with used antibodies from the surface of a BP-FET and reuse the chip for up to eight repeated sensing operations. Moreover, since our platform could be fabricated using conventional photolithography techniques and the sensor can be reused multiple times, one should be able to significantly reduce operation costs for practical applications. Furthermore, this method could be utilized to detect different hormones with high sensitivity and selectivity in complex environments such as artificial saliva solutions. In this respect, our reusable BP-FET biosensing platform can be a powerful tool for versatile applications such as clinical diagnosis and basic biological analysis by conjugating various antibodies.


Asunto(s)
Técnicas Biosensibles , Hidrocortisona , Hidrocortisona/análisis , Saliva/química , Fósforo , Magnetismo , Anticuerpos
17.
Anal Sci ; 40(4): 581-597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367162

RESUMEN

The domains of cancer therapy, disease prevention, and health care greatly benefit from the use of herbal medicine. Herbal medicine has become the mainstay of developing characteristic agriculture in the planting area increasing year by year. One of the most significant factors in affecting the quality of herbal medicines is the pesticide residue problem caused by pesticide abuse during the cultivation of herbal medicines. It is urgent to solve the problem of detecting pesticide residues in herbal medicines efficiently and rapidly. In this review, we provide a comprehensive description of the various methods used for pesticide residue testing, including optical detection, the enzyme inhibition rate method, molecular detection methods, enzyme immunoassays, lateral immunochromatographic, nanoparticle-based detection methods, colorimetric immunosensor, chemiluminescence immunosensor, smartphone-based immunosensor, etc. On this basis, we systematically analyze the mechanisms and some of the findings of the above detection strategies and discuss the challenges and prospects associated with the development of pesticide residue detection tools.


Asunto(s)
Técnicas Biosensibles , Medicamentos Herbarios Chinos , Residuos de Plaguicidas , Plantas Medicinales , Residuos de Plaguicidas/análisis , Medicina de Hierbas , Medicamentos Herbarios Chinos/análisis , Inmunoensayo , Tecnología
18.
Food Chem ; 442: 138384, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219567

RESUMEN

A nucleic acid aptamer based thermally oxidized porous silicon/zinc oxide microarray chip was constructed for the detection of ochratoxin A. The hybrid chains formed by aptamer and complementary chains labeled with fluorescent groups and fluorescent burst groups were used as recognition molecules, and the detection of toxins was accomplished on the chip by the principle of fluorescence signal burst and recovery. The modified QuEChERS method was used for sample pretreatment and the performance of the method was evaluated. The results showed that the linear range was 0.02 âˆ¼ 200 ng/kg with the detection limit of 0.0196 ng/kg under the optimal detection conditions. The method was applied to different cereals with the recoveries of 90.30 âˆ¼ 111.69 %. The developed microarray chip has the advantages of being cost-effective, easy to prepare, sensitive and specific, and can provide a new method for the detection of other toxins.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Ácidos Nucleicos , Ocratoxinas , Óxido de Zinc , Silicio , Grano Comestible/química , Porosidad , Zinc , Límite de Detección , Aptámeros de Nucleótidos/genética , Ocratoxinas/análisis , Dióxido de Silicio , Compuestos Orgánicos , Técnicas Biosensibles/métodos
19.
Analyst ; 149(4): 1310-1317, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38247383

RESUMEN

RNA modification, particularly pseudouridine (Ψ), has played an important role in the development of the mRNA-based COVID-19 vaccine. This is because Ψ enhances RNA stability against nuclease activity and decreases the anti-RNA immune response. Ψ also provides structural flexibility to RNA by enhancing base stacking compared with canonical nucleobases. In this report, we demonstrate the first application of pseudouridine-modified RNA as a probe (Ψ-RNA) for label-free nucleic acid biosensing. It is known that MoS2 has a differential affinity for nucleic acids, which may be translated into a unique electronic signal. Herein, the Ψ-RNA probe interacts with the pristine MoS2 surface and causes a change in interfacial electrochemical charge transfer in the MoS2 nanosheets. Compared with an unmodified RNA probe, Ψ-RNA exhibited faster adsorption and higher affinity for MoS2. Moreover, Ψ-RNA could bind to complementary RNA and DNA targets with almost equal affinity when engaged with the MoS2 surface. Ψ-RNA maintained robust interactions with the MoS2 surface following the hybridization event, perhaps through its extra amino group. The detection sensitivity of the Ψ-RNA/MoS2 platform was as low as 500 attomoles, while the results also indicate that the probe can distinguish between complementary targets, single mismatches, and non-complementary nucleic acid sequences with statistical significance. This proof-of-concept study shows that the Ψ-RNA probe may solve numerous problems of adsorption-based biosensing platforms due to its stability and structural flexibility.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Humanos , Seudouridina/química , Sondas ARN , Molibdeno/química , Vacunas contra la COVID-19 , ARN/química , Técnicas Biosensibles/métodos
20.
Biosens Bioelectron ; 250: 116056, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271889

RESUMEN

Green tea is popular among consumers because of its high nutritional value and unique flavor. There is often a strong correlation among the type of tea, its quality level and the price. Therefore, the rapid identification of tea types and the judgment of tea quality grades are particularly important. In this work, a novel sensor array based on nanozyme with polyphenol oxidase (PPO) activity is proposed for the identification of tea polyphenols (TPs) and Chinese green tea. The absorption spectra changes of the nanozyme and its substrate in the presence of different TPs were first investigated. The feature spectra were scientifically selected using genetic algorithm (GA), and then a sensor array with 15 sensing units (5 wavelengths × 3 time) was constructed. Combined with the support vector machine (SVM) discriminative model, the discriminative rate of this sensor array was 100% for different concentrations of typical TPs in Chinese green tea with a detection limit of 5 µM. In addition, the identification of different concentrations of the same tea polyphenols and mixed tea polyphenols have also been achieved. Based on the above study, we further developed a facile and efficient new method for the category differentiation and adulteration identification of green tea, and the accuracy of this array was 96.88% and 100% for eight types of green teas and different adulteration ratios of Biluochun, respectively. This work has significance for the rapid discrimination of green tea brands and adulteration.


Asunto(s)
Técnicas Biosensibles , Camellia sinensis , , Polifenoles , Catecol Oxidasa , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA