Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.086
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631280

RESUMEN

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Imagen por Resonancia Magnética , Compuestos de Manganeso , Óxidos , Fotoquimioterapia , Microambiente Tumoral , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Microambiente Tumoral/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Óxidos/química , Óxidos/farmacología , Humanos , Cobre/química , Cobre/farmacología , Tamaño de la Partícula , Nanoestructuras/química , Antineoplásicos/farmacología , Antineoplásicos/química , Fototerapia , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Propiedades de Superficie , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Animales
2.
J Mater Chem B ; 12(19): 4629-4641, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38666407

RESUMEN

Enlightened by the great success of the drug repurposing strategy in the pharmaceutical industry, in the current study, material repurposing is proposed where the performance of carbonyl iron powder (CIP), a nutritional intervention agent of iron supplement approved by the US FDA for iron deficiency anemia in clinic, was explored in anti-cancer treatment. Besides the abnormal iron metabolic characteristics of tumors, serving as potential targets for CIP-based cancer therapy under the repurposing paradigm, the efficacy of CIP as a catalyst in the Fenton reaction, activator for dihydroartemisinin (DHA), thus increasing the chemo-sensitivity of tumors, as well as a potent agent for NIR-II photothermal therapy (PTT) was fully evaluated in an injectable alginate hydrogel form. The CIP-ALG gel caused a rapid temperature rise in the tumor site under NIR-II laser irradiation, leading to complete ablation in the primary tumor. Further, this photothermal-ablation led to the significant release of ATP, and in the bilateral tumor model, both primary tumor ablation and inhibition of secondary tumor were observed simultaneously under the synergistic tumor treatment of nutritional-photothermal therapy (NT/PTT). Thus, material repurposing was confirmed by our pioneering trial and CIP-ALG-meditated NT/PTT/immunotherapy provides a new choice for safe and efficient tumor therapy.


Asunto(s)
Adenosina Trifosfato , Antineoplásicos , Rayos Infrarrojos , Animales , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Inmunoterapia , Reposicionamiento de Medicamentos , Humanos , Rayos Láser , Terapia Fototérmica , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Alginatos/química , Femenino , Hidrogeles/química , Hidrogeles/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Tamaño de la Partícula , Artemisininas/química , Artemisininas/farmacología
3.
Ultrason Sonochem ; 105: 106873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608436

RESUMEN

Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large. After ultrasonic treatment, the droplets of the emulsion were more uniformly dispersed, the particle size was smaller, and the emulsification properties and stability were improved to varying degrees. Especially when the ultrasonic power was 300 W, the mimicking MFG emulsion had the highest encapsulation rate and emulsion activity index and emulsion stability index were increased by 60.88 % and 117.74 %, respectively. From the microstructure, it was observed that the spherical droplets of the mimicking MFG emulsion after appropriate ultrasonic treatment remain well separated without obvious flocculation. This study can provide a reference for the screening of milk fat globules mimicking membrane materials and the further utilization and development of ultrasound in infant formula.


Asunto(s)
Emulsiones , Glucolípidos , Glicoproteínas , Lecitinas , Gotas Lipídicas , Lecitinas/química , Glucolípidos/química , Gotas Lipídicas/química , Glicoproteínas/química , Glicoproteínas/análisis , Humanos , Glycine max/química , Leche Humana/química , Fenómenos Químicos , Tamaño de la Partícula , Ondas Ultrasónicas , Sonicación
4.
J Colloid Interface Sci ; 666: 434-446, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608638

RESUMEN

Bacterial infections are among the most significant causes of death in humans. Chronic misuse or uncontrolled use of antibiotics promotes the emergence of multidrug-resistant superbugs that threaten public health through the food chain and cause environmental pollution. Based on the above considerations, copper selenide nanosheets (CuSe NSs) with photothermal therapy (PTT)- and photodynamic therapy (PDT)-related properties have been fabricated. These CuSe NSs possess enhanced PDT-related properties and can convert O2 into highly toxic reactive oxygen species (ROS), which can cause significant oxidative stress and damage to bacteria. In addition, CuSe NSs can efficiently consume glutathione (GSH) at bacterial infection sites, thus further enhancing their sterilization efficacy. In vitro antibacterial experiments with near-infrared (NIR) irradiation have shown that CuSe NSs have excellent photothermal bactericidal properties. These experiments also showed that CuSe NSs exerted excellent bactericidal effects on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) and significantly promoted the healing of infected wounds. Because of their superior biological safety, CuSe NSs are novel copper-based antimicrobial agents that are expected to enter clinical trials, serving as a modern approach to the major problem of treating bacterially infected wounds.


Asunto(s)
Antibacterianos , Cobre , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Nanoestructuras , Terapia Fototérmica , Cobre/química , Cobre/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Nanoestructuras/química , Ratones , Especies Reactivas de Oxígeno/metabolismo , Humanos , Propiedades de Superficie , Tamaño de la Partícula , Selenio/química , Selenio/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico
5.
Int J Nanomedicine ; 19: 3611-3622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660022

RESUMEN

Background: Mangiferin (MA), a bioactive C-glucosyl xanthone with a wide range of interesting therapeutic properties, has recently attracted considerable attention. However, its application in biomedicine is limited by poor solubility and bioavailability. Carbon dots (CDs), novel nanomaterials, have immense promise as carriers for improving the biopharmaceutical properties of active components because of their outstanding characteristics. Methods: In this study, a novel water-soluble carbon dot (MC-CDs) was prepared for the first time from an aqueous extract of Moutan Cortex Carbonisata, and characterized by various spectroscopies, zeta potential and high-resolution transmission electron microscopy (HRTEM). The toxicity effect was investigated using the CCK-8 assay in vitro. In addition, the potential of MC-CDs as carriers for improving the pharmacokinetic parameters was evaluated in vivo. Results: The results indicated that MC-CDs with a uniform spherical particle size of 1-5 nm were successfully prepared, which significantly increased the solubility of MA in water. The MC-CDs exhibited low toxicity in HT-22 cells. Most importantly, the MC-CDs effectively affected the pharmacokinetic parameters of MA in normal rats. UPLC-MS analysis indicated that the area under the maximum blood concentration of MA from mangiferin-MC-CDs (MA-MC-CDs) was 1.6-fold higher than that from the MA suspension liquid (MA control) after oral administration at a dose of 20 mg/kg. Conclusion: Moutan Cortex-derived novel CDs exhibited superior performance in improving the solubility and bioavailability of MA. This study not only opens new possibilities for the future clinical application of MA but also provides evidence for the development of green biological carbon dots as a drug delivery system to improve the biopharmaceutical properties of insoluble drugs.


Asunto(s)
Disponibilidad Biológica , Carbono , Paeonia , Tamaño de la Partícula , Ratas Sprague-Dawley , Solubilidad , Xantonas , Xantonas/farmacocinética , Xantonas/química , Xantonas/administración & dosificación , Animales , Carbono/química , Carbono/farmacocinética , Masculino , Ratas , Paeonia/química , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/administración & dosificación , Puntos Cuánticos/química , Puntos Cuánticos/toxicidad , Línea Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Supervivencia Celular/efectos de los fármacos
6.
Sci Rep ; 14(1): 9182, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649422

RESUMEN

In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.


Asunto(s)
Citrus , Ácidos Hexurónicos , Pectinas , Pectinas/química , Pectinas/aislamiento & purificación , Citrus/química , Viscosidad , Tamaño de la Partícula , Microondas , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Fraccionamiento Químico/métodos , Fenómenos Químicos , Frutas/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Fenoles/análisis , Fenoles/química , Fenoles/aislamiento & purificación , Esterificación
7.
J Mater Chem B ; 12(16): 4039-4052, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38591157

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a disease with high incidence and poor prognosis. The conventional treatment involves radiotherapy and chemotherapy, but chemotherapeutic agents are often associated with side effects, i.e., cytotoxicity to nontumor cells. Therefore, there is an urgent need for the development of novel therapeutic strategies for ccRCC. We synthesized spherical P/TiO2 nanoparticles (P/TiO2 NPs) by vaporization phosphorization (VP). X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) analyses confirmed that the anatase TiO2 surface was successfully doped with phosphorus and produced a large number of oxygen vacancies (OV). Serving as a photosensitizer, P/TiO2 NPs not only extended the photoresponse range to the near-infrared II region (NIR II) but also introduced a donor energy level lower than the TiO2 conduction band, narrowing the band gap, which could facilitate the migration of photogenerated charges and trigger the synergistic treatment of photodynamic therapy (PDT) and photothermal therapy (PTT). During NIR irradiation in vitro, the P/TiO2 NPs generated local heat and various oxygen radicals, including 1O2, ˙O2-, H2O2, and ˙OH, which damaged the ccRCC cells. In vivo, administration of the P/TiO2 NPs + NIR reduced the tumor volume by 80%, and had the potential to inhibit tumor metastasis by suppressing intratumor neoangiogenesis. The P/TiO2 NPs showed superior safety and efficacy relative to the conventional chemotherapeutic agent used in ccRCC treatment. This study introduced an innovative paradigm for renal cancer treatment, highlighting the potential of P/TiO2 NPs as safe and effective nanomaterials and presenting a compelling new option for clinical applications in anticancer therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Nanocompuestos , Fósforo , Fotoquimioterapia , Terapia Fototérmica , Titanio , Titanio/química , Titanio/farmacología , Fósforo/química , Humanos , Animales , Nanocompuestos/química , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Neoplasias Renales/terapia , Ratones , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/terapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Ensayos de Selección de Medicamentos Antitumorales , Tamaño de la Partícula , Línea Celular Tumoral
8.
J Mater Chem B ; 12(16): 3970-3983, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563351

RESUMEN

Lipoic acid (LA), which has good safety and oral absorption, is obtained from various plant-based food sources and needs to be supplemented through human diet. Moreover, substances with a disulfide structure can enter cells through dynamic covalent disulfide exchange with thiol groups on the cell membrane surface. Based on these factors, we constructed LA-modified nanoparticles (LA NPs). Our results showed that LA NPs can be internalized into intestinal epithelial cells through surface thiols, followed by intracellular transcytosis via the endoplasmic reticulum-Golgi pathway. Further mechanistic studies indicated that disulfide bonds within the structure of LA play a critical role in this transport process. In a type I diabetes rat model, the oral administration of insulin-loaded LA NPs exhibited a more potent hypoglycemic effect, with a pharmacokinetic bioavailability of 5.42 ± 0.53%, representing a 1.6 fold enhancement compared to unmodified PEG NPs. Furthermore, a significant upregulation of surface thiols in inflammatory macrophages was reported. Thus, we turned our direction to investigate the uptake behavior of inflammatory macrophages with increased surface thiols towards LA NPs. Inflammatory macrophages showed a 2.6 fold increased uptake of LA NPs compared to non-inflammatory macrophages. Surprisingly, we also discovered that the antioxidant resveratrol facilitates the uptake of LA NPs in a concentration-dependent manner. This is mainly attributed to an increase in glutathione, which is involved in thiol uptake. Consequently, we employed LA NPs loaded with resveratrol for the treatment of colitis and observed a significant alleviation of colitis symptoms. These results suggest that leveraging the variations of thiol expression levels on cell surfaces under both healthy and diseased states through an oral drug delivery system mediated by the small-molecule nutrient LA can be employed for the treatment of diabetes and certain inflammatory diseases.


Asunto(s)
Compuestos de Sulfhidrilo , Ácido Tióctico , Ácido Tióctico/química , Animales , Compuestos de Sulfhidrilo/química , Administración Oral , Ratas , Humanos , Nanopartículas/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/administración & dosificación , Sistemas de Liberación de Medicamentos , Masculino , Inflamación/tratamiento farmacológico , Ratones , Propiedades de Superficie , Portadores de Fármacos/química , Insulina/metabolismo , Ratas Sprague-Dawley , Tamaño de la Partícula , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células RAW 264.7
9.
Biochem Biophys Res Commun ; 709: 149852, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38574607

RESUMEN

BACKGROUND: Vitamin D3 (VD3) deficiency among children in Saudi Arabia remains a pressing concern due to its poor bioavailability and the limitations of current pediatric formulations. To address this challenge, we developed a groundbreaking pediatric self-nanoemulsifying drug delivery system (Bio-SNEDDS) for VD3, fortified with black seed oil and moringa seed oil for dual therapeutic benefits. Through meticulous formulation optimization using ternary phase diagrams and comprehensive testing, our Bio-SNEDDS demonstrated exceptional performance. METHODS: Bio-SNEDDS were manufactured by incorporating Black seed oil and moringa seed oil as bioactive nutraceutical excipients along with various cosurfactant and surfactants. Bio-SNEDDS were systematically optimized through ternary phase diagrams, visual tests, droplet size analysis, drug solubilization studies, dispersion assessments, and pharmacokinetic testing in rats compared to Vi-De 3®. RESULTS: Pseudoternary phase diagrams identified oil blends producing large nanoemulsion regions optimal for SNEDDS formation. The optimized F1 Bio-SNEDDS showed a mean droplet diameter of 33.7 nm, solubilized 154.46 mg/g VD3 with no metabolite formation, and maintained >88% VD3 in solution during 24 h dispersion testing. Notably, in vivo pharmacokinetic evaluation at a high VD3 dose demonstrated an approximately two-fold greater relative bioavailability over Vi-De 3®, validating the superb oral delivery performance of Bio-SNEDDS even under challenging high-dose conditions. CONCLUSIONS: The Bio-SNEDDS provides an effective VD3 delivery strategy with established in vivo superiority over marketed products, along with offering additional health benefits from the natural oils.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Ratas , Animales , Niño , Emulsiones , Solubilidad , Tensoactivos , Aceites de Plantas , Tamaño de la Partícula , Administración Oral , Disponibilidad Biológica
10.
J Mater Chem B ; 12(17): 4097-4117, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587869

RESUMEN

Single phototherapy and immunotherapy have individually made great achievements in tumor treatment. However, monotherapy has difficulty in balancing accuracy and efficiency. Combining phototherapy with immunotherapy can realize the growth inhibition of distal metastatic tumors and enable the remote monitoring of tumor treatment. The development of nanomaterials with photo-responsiveness and anti-tumor immunity activation ability is crucial for achieving photo-immunotherapy. As immune adjuvants, photosensitizers and photothermal agents, manganese-based nanoparticles (Mn-based NPs) have become a research hotspot owing to their multiple ways of anti-tumor immunity regulation, photothermal conversion and multimodal imaging. However, systematic studies on the synergistic photo-immunotherapy applications of Mn-based NPs are still limited; especially, the green synthesis and mechanism of Mn-based NPs applied in immunotherapy are rarely comprehensively discussed. In this review, the synthesis strategies and function of Mn-based NPs in immunotherapy are first introduced. Next, the different mechanisms and leading applications of Mn-based NPs in immunotherapy are reviewed. In addition, the advantages of Mn-based NPs in synergistic photo-immunotherapy are highlighted. Finally, the challenges and research focus of Mn-based NPs in combination therapy are discussed, which might provide guidance for future personalized cancer therapy.


Asunto(s)
Inmunoterapia , Manganeso , Humanos , Manganeso/química , Manganeso/farmacología , Inmunoterapia/métodos , Fototerapia/métodos , Tecnología Química Verde , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Animales , Nanoestructuras/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Tamaño de la Partícula
11.
J Mater Chem B ; 12(17): 4148-4161, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591180

RESUMEN

Cyaonoside A (CyA), derived from the natural Chinese medicine, Cyathula officinalis Kuan, which was for a long time used to treat knee injuries and relieve joint pain in traditional Chinese medicine, showed an unclear mechanism for protecting cartilage. In addition, CyA was poorly hydrosoluble and incapable of being injected directly into the joint cavity, which limited its clinical application. This study reveals that CyA resisted IL-1ß-mediated chondrogenic inflammation and apoptosis. Next, transcriptome sequencing is used to explore the potential mechanisms underlying CyA regulation of MSC chondrogenic differentiation. Based on these findings, CyA-loaded composite hydrogel microspheres (HLC) were developed and they possessed satisfactory loading efficiency, a suitable degradation rate and good biocompatibility. HLC increased chondrogenic anabolic gene (Acan, COL2A, and SOX9) expression, while downregulating the expression of the catabolic marker MMP13 in vitro. In the osteoarthritis mouse model, HLC demonstrated promising therapeutic capabilities by protecting the integrity of articular cartilage. In conclusion, this study provides insights into the regulatory mechanisms of CyA for chondrocytes and proposes a composite hydrogel microsphere-based advanced therapeutic strategy for osteoarthritis.


Asunto(s)
Condrocitos , Hidrogeles , Microesferas , Osteoartritis , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Animales , Hidrogeles/química , Hidrogeles/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Ratones , Inflamación/tratamiento farmacológico , Ratones Endogámicos C57BL , Masculino , Tamaño de la Partícula , Células Cultivadas
12.
J Mater Chem B ; 12(17): 4197-4207, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38595311

RESUMEN

Second near-infrared (NIR-II) fluorescence imaging shows huge application prospects in clinical disease diagnosis and surgical navigation, while it is still a big challenge to exploit high performance NIR-II dyes with long-wavelength absorption and high fluorescence quantum yield. Herein, based on planar π-conjugated donor-acceptor-donor systems, three NIR-II dyes (TP-DBBT, TP-TQ1, and TP-TQ2) were synthesized with bulk steric hindrance, and the influence of acceptor engineering on absorption/emission wavelengths, fluorescence efficiency and photothermal properties was systematically investigated. Compared with TP-DBBT and TP-TQ2, the TP-TQ1 based on 6,7-diphenyl-[1,2,5]thiadiazoloquinoxaline can well balance absorption/emission wavelengths, NIR-II fluorescence brightness and photothermal effects. And the TP-TQ1 nanoparticles (NPs) possess high absorption ability at a peak absorption of 877 nm, with a high relative quantum yield of 0.69% for large steric hindrance hampering the close π-π stacking interactions. Furthermore, the TP-TQ1 NPs show a desirable photothermal conversion efficiency of 48% and good compatibility. In vivo experiments demonstrate that the TP-TQ1 NPs can serve as a versatile theranostic agent for NIR-II fluorescence/photoacoustic imaging-guided tumor phototherapy. The molecular planarization strategy provides an approach for designing efficient NIR-II fluorophores with extending absorption/emission wavelength, high fluorescence brightness, and outstanding phototheranostic performance.


Asunto(s)
Colorantes Fluorescentes , Rayos Infrarrojos , Quinoxalinas , Tiadiazoles , Quinoxalinas/química , Quinoxalinas/síntesis química , Quinoxalinas/farmacología , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Animales , Ratones , Humanos , Tiadiazoles/química , Nanomedicina Teranóstica , Estructura Molecular , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Imagen Óptica , Ratones Endogámicos BALB C , Femenino , Fototerapia/métodos , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química , Tamaño de la Partícula
13.
Ultrason Sonochem ; 105: 106856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554530

RESUMEN

The residue remaining after oil extraction from grape seed contain abundant procyanidins. An ultrasonic-assisted enzyme method was performed to achieve a high extraction efficiency of procyanidins when the optimal extraction conditions were 8 U/g of cellulase, ultrasound power of 200 W, ultrasonic temperature of 50 ℃, and ultrasonic reaction time of 40 min. The effects of free procyanidins on both radical scavenging activity and thermal stability at 40, 60, and 80 ℃ of the procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were discussed. The presence of procyanidins at concentrations ranging from 0.02 to 0.10 mg/mL was observed to be effective at inhibiting lipid oxidation by 15.15 % to 69.70 % in a linoleic acid model system during reaction for 168 h, as measured using the ferric thiocyanate method. The procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were characterized by measuring the mean particle size and encapsulation efficiency. Moreover, the holographic plots showed that the effect-response points of procyanidins combined with α-tocopherol in liposomes were lower than the addition line and 95 % confidence interval limits. At the same time, there were significant differences between the theoretical IC50add value and the experimental IC50mix value. The interaction index (γ) of all combinations was observed to be less than 1. These results indicated that there was a synergistic antioxidant effect between procyanidins combined with α-tocopherol, which will show promising prospects in practical applications. In addition, particle size differentiation and morphology agglomeration were observed at different time points of antioxidant activity determination (0, 48, 96 h).


Asunto(s)
Antioxidantes , Liposomas , Proantocianidinas , Proantocianidinas/aislamiento & purificación , Proantocianidinas/química , Liposomas/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Ondas Ultrasónicas , Vitis/química , Extracto de Semillas de Uva/química , Fraccionamiento Químico/métodos , Tamaño de la Partícula , Temperatura , Semillas/química
14.
Microb Pathog ; 190: 106613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484919

RESUMEN

This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.


Asunto(s)
Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Vitis , Plata/farmacología , Plata/química , Plata/metabolismo , Nanopartículas del Metal/química , Animales , Humanos , Vitis/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Tamaño de la Partícula , Tecnología Química Verde , Bacterias Gramnegativas/efectos de los fármacos , Bombyx , Biopelículas/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Larva/efectos de los fármacos , Levaduras/efectos de los fármacos
15.
Int J Biol Macromol ; 265(Pt 1): 130742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492704

RESUMEN

In this work, soybean lecithin (LC) was used to modify ß-cyclodextrin (ß-CD) with hydrophobic fat chains to become amphiphilic (LC-CD), and vitamin E (VE) was encapsulated in former modified ß-CD complexes (LC-CD-VE), the new Pickering emulsions stabilized by LC-CD-VE and LC-CD complexes for the delivery of ß-carotene (BC) were created. The surface tension, contact angle, zeta potential, and particle size were used to assess the changes in complexes nanoparticles at various pH values. Furthermore, LC-CD-VE has more promise as Pickering emulsion stabilizer than LC-CD because of the smaller particle size (271.11 nm), proper contact angle (58.02°), and lower surface tension (42.49 mN/m). The interactions between ß-cyclodextrin, soybean lecithin, and vitamin E were confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The durability of Pickering emulsions was examined at various volume fractions of the oil phase and concentrations of nanoparticles. Compared to the emulsion stabilized by LC-CD, the one stabilized by LC-CD-VE showed superior storage stability. Moreover, for the delivery of BC, Pickering emulsions stabilized by LC-CD and LC-CD-VE can outperform bulk oil and Tween 80 stabilized emulsions in terms of UV light stability, storage stability, and bioaccessibility. This work could offer fresh perspectives on stabilizer alternatives for Pickering emulsion delivery systems.


Asunto(s)
Ciclodextrinas , Nanopartículas , beta-Ciclodextrinas , Vitamina E/química , Lecitinas , beta Caroteno/química , Glycine max , Emulsiones/química , beta-Ciclodextrinas/química , Excipientes , Digestión , Tamaño de la Partícula
16.
Food Chem ; 446: 138286, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428073

RESUMEN

We successfully designed curcumin (Cur)-loaded composite nanoparticles consisting of high-hydrostatic-pressure-treated (HHP-treated) zein and pectin with a pressure of 150 MPa (zein-150 MPa-P-Cur), showing nano-spherical structure with high zeta-potential (-36.72 ± 1.14 mV) and encapsulation efficiency (95.64 ± 1.23 %). We investigated the interaction mechanism of the components in zein-150 MPa-P-Cur using fluorescence spectroscopy, molecular dynamics simulation, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. Compared with zein-P-Cur, the binding sites and binding energy (-53.68 kcal/mol vs. - 44.22 kcal/mol) of HHP-treated zein and Cur were increased. Meanwhile, the interaction force among HHP-treated zein, pectin, and Cur was significantly enhanced, which formed a tighter and more stable particle structure to further improve package performance. Additionally, Cur showed the best chemical stability in zein-150 MPa-P-Cur. And the bioavailability of Cur was increased to 65.53 ± 1.70 %. Collectively, composite nanoparticles based on HHP-treated zein and pectin could be used as a promising Cur delivery system.


Asunto(s)
Curcumina , Nanopartículas , Zeína , Pectinas/química , Curcumina/química , Zeína/química , Nanopartículas/química , Espectrofotometría Infrarroja , Tamaño de la Partícula
17.
Colloids Surf B Biointerfaces ; 237: 113858, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547797

RESUMEN

Herein, lipid-polymer core-shell hybrid nanoparticles composed of poly(D,L-lactic-co-glycolic acid) (PLGA)/lecithin (PLNs) were synthesized through lipid-based surface engineering. Lipids were absorbed onto the surface of the PLGA core to enhance the advantages of polymeric nanoparticles and liposomes. The amounts of lipids and encapsulation of the drug nicardipine hydrochloride (NCH) in the PLNs were studied. NCH-loaded PLNs (NCH-PLNs) were produced in high yield (66%) with a high encapsulation efficiency (92%) and a size of 176 nm. The mass of phosphorus (P) on the NCH-PLN surface was qualitatively and quantitatively investigated using X-ray fluorescence spectroscopy, and lecithin addition increased the P mass percentage due to the phosphate group (PO43-) in its structure. These data confirmed the lipid-based surface engineering of NCH-PLNs. The zeta potential of NCH-PLN exceeded -30 mV, ensuring colloidal stability, and preventing precipitation through electrostatic stabilization. In vitro, NCH was continuously and slowly released from NCH-PLNs over 16 days. Furthermore, PSVK1 cells exhibited high viability after treatment with NCH-PLNs, indicating favorable cytocompatibility. After comparing various mathematical equations of drug release kinetics, the data best fit the Korsmeyer-Peppas model with R2 values of 0.989, 0.990, and 0.982 for 1.0, 3.0, and 5.0 mg/mL lecithin, respectively. The release exponents obtained ranged from 0.480 to 0.505, suggesting anomalous transport release. Thus, NCH-PLNs have potential as a robust drug delivery platform for the controlled administration of NCH, particularly for vasodilation during neurosurgery.


Asunto(s)
Liposomas , Nanopartículas , Polímeros/química , Lecitinas/química , Lípidos/química , Ácido Láctico/química , Liberación de Fármacos , Nanopartículas/química , Portadores de Fármacos/química , Tamaño de la Partícula
18.
Int J Biol Macromol ; 264(Pt 2): 130597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437940

RESUMEN

In this study, potato starch (PS)/naringenin (NAR) complex was prepared, and its properties and emulsification behavior were evaluated. The experimental results demonstrated that NAR successfully formed a complex with PS molecules through hydrogen bonds and other non-covalent interactions. The emulsifying capacity (ROV) of PS/NAR complex with 16 % composite ratio was 0.9999, which was higher than PS (ROV = 0.3329) (p < 0.05). Based on particle property analysis and molecular dynamics simulation, the mechanism of improving the emulsification performance might be the action of the benzene ring of NAR and intermolecular hydrogen bonding. In addition, the stability of the Pickering emulsions with PS/NAR complexes as emulgators was significantly improved. The emulsifying and rheological behavior of starch-based Pickering emulsions could be adjusted by changing the proportion of the complexes. Results demonstrated that the PS/NAR complexes might be a prospective stabilizer of Pickering emulsions based on starch material and might expand the use of PS in edible products.


Asunto(s)
Flavanonas , Solanum tuberosum , Emulsiones/química , Estudios Prospectivos , Almidón/química , Tamaño de la Partícula
19.
Int J Biol Macromol ; 264(Pt 2): 130671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458286

RESUMEN

In this paper we investigate polyelectrolyte complexes of sodium alginate (Alg) and chitin nanocrystals (ChNC). Formation, stability and transport properties of sunflower oil-in-water emulsions stabilized by ChNC-Alg complex were studied using dynamic light scattering (DLS), laser Doppler electrophoresis, optical microscopy, potentiometric titration, rheology and simulated digestion. It has been established that during emulsions formation, the ChNC-Alg complex is rearranged at the interface and the formation of a two-layer coating of the droplet occurs. Stabilized O/W emulsions are stable during storage, in the pH range 2-9 and centrifugal acceleration up to 2000 RCF. Presence of Ca2+ and Na+ ions in the range up to 150 mM has virtually no effect on the droplet size. Inclusion of 5 wt% Alg in the ChNC-based emulsion stabilizer system leads to a drop in Gibbs adsorption >16 times compared to the ChNC-stabilized emulsion, increase in viscosity and rheopexy index of the systems. We found that chemical properties of colloidal phase surface and rheological properties of emulsions stabilized by ChNC-Alg are mostly dependent on the droplet size, not the type of oil as a result of a comparative study of sunflower oil/liquid paraffin oil. Emulsion drops of an optimized composition are stable in the upper parts of the model gastrointestinal tract system and transport vitamin D3 to the small intestine without significant losses. The bioavailability of vitamin D3 in emulsions stabilized with the ChNC-Alg complex is higher than for emulsions stabilized with ChNC alone.


Asunto(s)
Quitina , Nanopartículas , Emulsiones/química , Quitina/química , Disponibilidad Biológica , Colecalciferol , Aceite de Girasol , Reología , Tamaño de la Partícula , Agua/química
20.
Mol Pharm ; 21(5): 2298-2314, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38527915

RESUMEN

Hypertrophic scars (HS) still remain an urgent challenge in the medical community. Traditional Chinese medicine (TCM) has unique advantages in the treatment of HS. However, due to the natural barrier of the skin, it is difficult for the natural active components of TCM to more effectively penetrate the skin and exert therapeutic effects. Therefore, the development of an efficient drug delivery system to facilitate enhanced transdermal absorption of TCM becomes imperative for its clinical application. In this study, we designed a compound Salvia miltiorrhiza-Blumea balsamifera nanoemulsion gel (CSB-NEG) and investigated its therapeutic effects on rabbit HS models. The prescription of CSB-NEG was optimized by single-factor, pseudoternary phase diagram, and central composite design experiments. The results showed that the average particle size and PDI of the optimized CSB-NE were 46.0 ± 0.2 nm and 0.222 ± 0.004, respectively, and the encapsulation efficiency of total phenolic acid was 93.37 ± 2.56%. CSB-NEG demonstrated excellent stability and skin permeation in vitro and displayed a significantly enhanced ability to inhibit scar formation compared to the CSB physical mixture in vivo. After 3 weeks of CSB-NEG treatment, the scar appeared to be flat, pink, and flexible. Furthermore, this treatment also resulted in a decrease in the levels of the collagen I/III ratio and TGF-ß1 and Smad2 proteins while simultaneously promoting the growth and remodeling of microvessels. These findings suggest that CSB-NEG has the potential to effectively address the barrier properties of the skin and provide therapeutic benefits for HS, offering a new perspective for the prevention and treatment of HS.


Asunto(s)
Cicatriz Hipertrófica , Emulsiones , Geles , Salvia miltiorrhiza , Absorción Cutánea , Conejos , Animales , Cicatriz Hipertrófica/tratamiento farmacológico , Salvia miltiorrhiza/química , Absorción Cutánea/efectos de los fármacos , Emulsiones/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Modelos Animales de Enfermedad , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo , Administración Cutánea , Tamaño de la Partícula , Masculino , Nanopartículas/química , Medicina Tradicional China/métodos , Oído/patología , Sistemas de Liberación de Medicamentos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA