Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 251(Pt 2): 118770, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518913

RESUMEN

Multifunctional nanoparticles (NPs) production from phytochemicals is a sustainable process and an eco-friendly method, and this technique has a variety of uses. To accomplish this, we developed zinc oxide nanoparticles (ZnONPs) using the medicinal plant Tinospora cordifolia (TC). Instruments such as UV-Vis, XRD, FTIR, FE-SEM with EDX, and high-resolution TEM were applied to characterize the biosynthesized TC-ZnONPs. According to the UV-vis spectra, the synthesized TC-ZnONPs absorb at a wavelength centered at 374 nm, which corresponds to a 3.2 eV band gap. HRTEM was used to observe the morphology of the particle surface and the actual size of the nanostructures. TC-ZnONPs mostly exhibit the shapes of rectangles and triangles with a median size of 21 nm. The XRD data of the synthesized ZnONPs exhibited a number of peaks in the 2θ range, implying their crystalline nature. TC-ZnONPs proved remarkable free radical scavenging capacity on DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), and NO (Nitric Oxide). TC-ZnONPs exhibited dynamic anti-bacterial activity through the formation of inhibition zones against Pseudomonas aeruginosa (18 ± 1.5 mm), Escherichia coli (18 ± 1.0 mm), Bacillus cereus (19 ± 0.5 mm), and Staphylococcus aureus (13 ± 1.1 mm). Additionally, when exposed to sunlight, TC-ZnONPs show excellent photocatalytic ability towards the degradation of methylene blue (MB) dye. These findings suggest that TC-ZnONPs are potential antioxidant, antibacterial, and photocatalytic agents.


Asunto(s)
Antibacterianos , Antioxidantes , Tecnología Química Verde , Óxido de Zinc , Antibacterianos/farmacología , Antibacterianos/química , Óxido de Zinc/química , Antioxidantes/química , Antioxidantes/farmacología , Tecnología Química Verde/métodos , Catálisis , Nanopartículas del Metal/química , Nanopartículas/química
2.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396953

RESUMEN

Biosynthetic gold nanoparticles (bAuNPs) present a promising avenue for enhancing bio-compatibility and offering an economically and environmentally responsible alternative to traditional production methods, achieved through a reduction in the use of hazardous chemicals. While the potential of bAuNPs as anticancer agents has been explored, there is a limited body of research focusing on the crucial physicochemical conditions influencing bAuNP production. In this study, we aim to identify the optimal growth phase of Pseudomonas aeruginosa cultures that maximizes the redox potential and coordinates the formation of bAuNPs with increased efficiency. The investigation employs 2,6-dichlorophenolindophenol (DCIP) as a redox indicator. Simultaneously, we explore the impact of temperature, pH, and incubation duration on the biosynthesis of bAuNPs, with a specific emphasis on their potential application as antitumor agents. Characterization of the resulting bAuNPs is conducted using ATR-FT-IR, TEM, and UV-Vis spectroscopy. To gain insights into the anticancer potential of bAuNPs, an experimental model is employed, utilizing both non-neoplastic (HPEpiC) and neoplastic (PC3) epithelial cell lines. Notably, P. aeruginosa cultures at 9 h/OD600 = 1, combined with biosynthesis at pH 9.0 for 24 h at 58 °C, produce bAuNPs that exhibit smaller, more spherical, and less aggregated characteristics. Crucially, these nanoparticles demonstrate negligible effects on HPEpiC cells while significantly impacting PC3 cells, resulting in reduced viability, migration, and lower IL-6 levels. This research lays the groundwork for the development of more specialized, economical, and ecologically friendly treatment modalities.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias de la Próstata , Humanos , Masculino , Antibacterianos/química , Oro/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Tecnología Química Verde/métodos , Extractos Vegetales/química
3.
Adv Colloid Interface Sci ; 323: 103053, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056226

RESUMEN

Present review emphatically introduces the synthesis, biocompatibility, and applications of silver nanoparticles (AgNPs), including their antibacterial, antimicrobial, and antifungal properties. A comprehensive discussion of various synthesis methods for AgNPs, with a particular focus on green chemistry mediated by plant extracts has been made. Recent research has revealed that the optical properties of AgNPs, including surface plasmon resonance (SPR), depend on the particle size, as well as the synthesis methods, preparation synthesis parameters, and used reducing agents. The significant emphasis on the use of synthesized AgNPs as antibacterial, antimicrobial, and antifungal agents in various applications has been reviewed. Furthermore, the application areas have been thoroughly examined, providing a detailed discussion of the underlying mechanisms, which aids in determining the optimal control parameters during the synthesis process of AgNPs. Furthermore, the challenges encountered while utilizing AgNPs and the corresponding advancements to overcome them have also been addressed. This review not only summarizes the achievements and current status of plant-mediated green synthesis of AgNPs but also explores the future prospects of these materials and technology in diverse areas, including bioactive applications.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antifúngicos/farmacología , Antifúngicos/química , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Antibacterianos/química , Antiinfecciosos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana
4.
Biol Trace Elem Res ; 202(1): 360-386, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37046039

RESUMEN

Green nanotechnology is an emerging field of science that focuses on the production of nanoparticles by living cells through biological pathways. This topic plays an extremely imperative responsibility in various fields, including pharmaceuticals, nuclear energy, fuel and energy, electronics, and bioengineering. Biological processes by green synthesis tools are more suitable to develop nanoparticles ranging from 1 to 100 nm compared to other related methods, owing to their safety, eco-friendliness, non-toxicity, and cost-effectiveness. In particular, the metal nanoparticles are synthesized by top-down and bottom-up approaches through various techniques like physical, chemical, and biological methods. Their characterization is very vital and the confirmation of nanoparticle traits is done by various instrumentation analyses such as UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), annular dark-field imaging (HAADF), and intracranial pressure (ICP). In this review, we provide especially information on green synthesized metal nanoparticles, which are helpful to improve biomedical and environmental applications. In particular, the methods and conditions of plant-based synthesis, characterization techniques, and applications of green silver, gold, iron, selenium, and copper nanoparticles are overviewed.


Asunto(s)
Nanopartículas del Metal , Extractos Vegetales , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química , Plata/química , Nanotecnología , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Difracción de Rayos X , Antibacterianos
5.
Curr Drug Discov Technol ; 21(4): e271223224899, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38151833

RESUMEN

BACKGROUND: Dracocephalum kotschyi Boiss. is known as a native medicinal plant of Iran. OBJECTIVE: In this study, aqueous extract of D. kotschyi was used to synthesize ZnO-NPs. To produce ZnO-NPs, aerial parts of D. kotschyi were powdered and then macerated for obtaining aqueous extract, after that, aqueous extract was used to reduse zinc nitrate to ZnO-NPs. METHODS: To confirm nanoparticles synthesis, SEM, TEM, UV-Vis, FTIR, and XRD were used. The synthesized ZnO-NPs were studied for antimicrobial activities by microdilution method for calculating MIC and MBC. Analysis of ZnO-NPs confirmed successful synthesis by extract of D. kotschyi. RESULTS: The sizes of ZnO-NPs were estimated 50-200 nm in diameter. Antibacterial and antifungal experiments showed potent activities against Staphylococos aureus, Pseudomonas aeruginosa and Candida albicans. The results of the studies showed that the nanoparticles synthesized with the aqueous extract of D. kotschyi have a much greater antimicrobial effect than the aqueous extract of D. kotschyi and zinc nanoparticles, each alone (MIC values 3.7 to 7.5 mg/ml). CONCLUSION: The noteworthy point is that the inhibitory rate of synthesized zinc oxide nanoparticles is higher compared to broad-spectrum antibiotics, such as chloramphenicol (MIC values 15 mg/ml). Determining the therapeutic and toxic dose of this product for humans requires further investigation and clinical trials.


Asunto(s)
Antibacterianos , Antifúngicos , Candida albicans , Tecnología Química Verde , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Tecnología Química Verde/métodos , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Lamiaceae/química , Pseudomonas aeruginosa/efectos de los fármacos , Nanopartículas del Metal/química , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Antiinfecciosos/farmacología , Antiinfecciosos/química
6.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067495

RESUMEN

Increasing antimicrobial resistance to the action of existing antibiotics has prompted researchers to identify new natural molecules with antimicrobial potential. In this study, a green system was developed for biosynthesizing gold nanoparticles (BAuNPs) using sage (Salvia officinalis L.) leaf extract bioconjugated with non-toxic, eco-friendly, and biodegradable chitosan, forming chitosan/gold bioconjugates (Chi/BAuNPs). Characterization of the BAuNPs and Chi/BAuNPs conjugates takes place using transmission electron microscopy (TEM), X-ray spectra, Fourier transform infrared (FT-IR) spectroscopy, and zeta potential (Z-potential). The chemical composition of S. officinalis extract was evaluated via gas chromatography/mass spectrometry (GC/MS). This study evaluated the antioxidant and antimicrobial activities of human pathogenic multidrug-resistant (MDR) and multisensitive (MS) bacterial isolates using the agar diffusion method. Chi/BAuNPs showed inhibition of the MDR strains more effectively than BAuNPs alone as compared with a positive standard antibiotic. The cytotoxicity assay revealed that the human breast adenocarcinoma cancer cells (MCF7) were more sensitive toward the toxicity of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs composites compared to non-malignant human fibroblast cells (HFs). The study shows that BAuNPs and Chi/BAuNPs, combined with 5-FU NPs, can effectively treat cancer at concentrations where the free chemical drug (5-Fu) is ineffective, with a noted reduction in the required dosage for noticeable antitumor action.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Quitosano , Nanopartículas del Metal , Salvia officinalis , Humanos , Oro/química , Quitosano/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Fluorouracilo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Tecnología Química Verde/métodos
7.
Biomolecules ; 13(12)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38136655

RESUMEN

Green-synthesized gold nanoparticles demonstrate several therapeutic benefits due to their safety, non-toxicity, accessibility, and ecological acceptance. In our study, gold nanoparticles (AuNPs) were created using an extracellular extract from the fungus Schizophyllum commune (S. commune). The reaction color was observed to be a reddish pink after a 24 h reaction, demonstrating the synthesis of the nanoparticles. The myco-produced nanoparticles were investigated using transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV-visible spectroscopy. The TEM pictures depicted sphere-like shapes with sizes ranging from 60 and 120 nm, with an average diameter of 90 nm, which is in agreement with the DLS results. Furthermore, the efficiency of the AuNPs' antifungal and cytotoxic properties, as well as their production of intracellular ROS, was evaluated. Our findings showed that the AuNPs have strong antifungal effects against Trichoderma sp. and Aspergillus flavus at increasing doses. Additionally, the AuNPs established a dose-dependent activity against human alveolar basal epithelial cells with adenocarcinoma (A549), demonstrating the potency of synthesized AuNPs as a cytotoxic agent. After 4 h of incubation with AuNPs, a significant increase in intracellular ROS was observed in cancer cells. Therefore, these metallic AuNPs produced by fungus (S. commune) can be used as an effective antifungal, anticancer, and non-toxic immunomodulatory delivery agent.


Asunto(s)
Nanopartículas del Metal , Schizophyllum , Humanos , Antibacterianos/química , Oro/farmacología , Oro/química , Nanopartículas del Metal/química , Antifúngicos/farmacología , Especies Reactivas de Oxígeno , Extractos Vegetales/química , Tecnología Química Verde/métodos
8.
Sci Rep ; 13(1): 22638, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114615

RESUMEN

The use of green methods for ruthenium oxide nanoparticles (RuONPs) synthesis is gaining attention due to their eco-friendliness, cost-effectiveness, and availability. However, reports on the green synthesis and characterization of RuONPs are limited compared to other metal nanoparticles. The green synthesis and characterization of RuONPs using water extracts of Gunnera perpensa leaves as a reducing agent is reported in this study. The RuONPs were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Ultraviolet spectroscopy (UV-VIS). MTT assay was used to assess the cytotoxicity of the RuONPs against MCF7 and Vero cell lines. X-ray diffraction analysis results revealed the presence of crystalline and amorphous forms of RuONPs, while IR spectroscopy revealed the presence of functional groups associated with G. perpensa leaves. SEM showed that the RuONPs consisted predominantly of hexagonal and cuboid-like structures with a considerable degree of agglomeration being observed. The cell culture results indicated a low anticancer efficacy of RuONPs against MCF7 and Vero cell lines, suggesting that RuONPs may not be a good lead for anti-cancer drugs. This study highlights the potential of using green synthesis methods to produce RuONPs and their characterization, as well as their cytotoxicity against cancer cells.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Rutenio , Humanos , Óxidos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células MCF-7 , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Antibacterianos/química , Tecnología Química Verde/métodos , Pruebas de Sensibilidad Microbiana
9.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003704

RESUMEN

Much attention has been gained on green silver nanoparticles (green-AgNPs) in the medical field due to their remarkable effects against multi-drug resistant (MDR) microorganisms and targeted cancer treatment. In the current study, we demonstrated a simple and environment-friendly (i.e., green) AgNP synthesis utilizing Jacobaea maritima aqueous leaf extract. This leaf is well-known for its medicinal properties and acts as a reducing and stabilizing agent. Nanoparticle preparation with the desired size and shape was controlled by distinct parameters; for instance, temperature, extract concentration of salt, and pH. The characterization of biosynthesized AgNPs was performed by the UV-spectroscopy technique, dynamic light scattering, scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared. The successful formation of AgNPs was confirmed by a surface plasmon resonance at 422 nm using UV-visible spectroscopy and color change observation with a particle size of 37± 10 nm and a zeta potential of -10.9 ± 2.3 mV. SEM further confirmed the spherical size and shape of AgNPs with a size varying from 28 to 52 nm. Antibacterial activity of the AgNPs was confirmed against all Gram-negative and Gram-positive bacterial reference and MDR strains that were used in different inhibitory rates, and the highest effect was on the E-coli reference strain (MIC = 25 µg/mL). The anticancer study of AgNPs exhibited an IC50 of 1.37 µg/mL and 1.98 µg/mL against MCF-7 (breast cancer cells) and A549 (lung cancer cells), respectively. Therefore, this green synthesis of AgNPs could have a potential clinical application, and further in vivo study is required to assess their safety and efficacy.


Asunto(s)
Asteraceae , Nanopartículas del Metal , Plata/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Tecnología Química Verde/métodos
10.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895077

RESUMEN

In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxidos/química , Sustancias Reductoras , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Metales , Extractos Vegetales/química , Solventes , Tecnología Química Verde/métodos
11.
Int J Biol Macromol ; 253(Pt 4): 127017, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742902

RESUMEN

Green synthesis of iron nanoparticles is a highly fascinating research area and has gained importance due to reliable, sustainable and ecofriendly protocol for synthesizing nanoparticles, along with the easy availability of plant materials and their pharmacological significance. As an alternate to physical and chemical synthesis, the biological materials, like microorganisms and plants are considered to be less costly and environment-friendly. Iron nanoparticles with diverse morphology and size have been synthesized using biological extracts. Microbial (bacteria, fungi, algae etc.) and plant extracts have been employed in green synthesis of iron nanoparticles due to the presence of various metabolites and biomolecules. Physical and biochemical properties of biologically synthesized iron nanoparticles are superior to that are synthesized using physical and chemical agents. Iron nanoparticles have magnetic property with thermal and electrical conductivity. Iron nanoparticles below a certain size (generally 10-20 nm), can exhibit a unique form of magnetism called superparamagnetism. They are non-toxic and highly dispersible with targeted delivery, which are suitable for efficient drug delivery to the target. Green synthesized iron nanoparticles have been explored for multifarious biotechnological applications. These iron nanoparticles exhibited antimicrobial and anticancerous properties. Iron nanoparticles adversely affect the cell viability, division and metabolic activity. Iron nanoparticles have been used in the purification and immobilization of various enzymes/proteins. Iron nanoparticles have shown potential in bioremediation of various organic and inorganic pollutants. This review describes various biological sources used in the green synthesis of iron nanoparticles and their potential applications in biotechnology, diagnostics and mitigation of environmental pollutants.


Asunto(s)
Hierro , Nanopartículas del Metal , Hierro/química , Nanopartículas del Metal/química , Bacterias/metabolismo , Sistemas de Liberación de Medicamentos , Biotecnología/métodos , Extractos Vegetales/química , Plantas/química , Tecnología Química Verde/métodos
12.
Int J Biol Macromol ; 252: 126215, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572806

RESUMEN

Hereunder, for the first time, we reported phytocompounds in the methanolic extract of Acacia modesta (AM) gum through Gas chromatography-mass spectrometry (GS-MS). Further, the AM gum aqueous solution was used for gold nanoparticles (AuNPs) synthesis through a simple, swift, eco-friendly, and less costly green synthesis approach. A total of 108 phytocompounds (63 with nonpolar, 45 with polar column) were identified in the gum extract, which includes fatty acids, alcohols, sterols, aldehyde/ketones, furans, aromatic compounds, esters, phenols, terpenes, sugar derivatives, alkaloids, and flavones. From three used concentrations (5, 10, and 15 mg/mL) of the AM gum aqueous solution, the 15 mg/mL gum solution resulted in more successful AuNP synthesis with a smaller size, which was visualized by a rusty red color appearance. UV-Visible absorption spectroscopy revealed the characteristic surface plasmon resonance (SPR) of AuNPs in aqueous solution at 540 nm. Dynamic light scattering (DLS) measurement of NPs solution revealed a hydrodynamic diameter of 162 ± 02 nm with the highest gum concentration where core AuNPs diameter was 22 ± 03 nm, recorded by Transmission electron microscopy. Zeta potential revealed fair stability of AuNPs that was not decreased with time. Catalytic activity experiments revealed that AM gum-based AuNPs can increase the rate of the reduction of methylene blue 10 times in comparison with AM gum extract alone. Results from this study showed that a diverse array of phytocompounds in AM gum can successfully reduce gold ions into gold nanoparticles, which can be used further in different pharmaceutical and industrial applications.


Asunto(s)
Acacia , Nanopartículas del Metal , Oro , Metanol , Cromatografía de Gases y Espectrometría de Masas , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Extractos Vegetales/química
13.
Int J Nanomedicine ; 18: 4229-4251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37534055

RESUMEN

Nickel oxide nanoparticles have gained tremendous attention recently in a variety of scientific domains thanks to their characteristic chemical, physical, optical, and biological properties. Due to the diversity of applications in various fields, different physicochemical methods have been used to synthesize nickel oxide nanoparticles. However, most conventional methods use hazardous chemicals during synthesis and become liable for potential health risks, while others are expensive and require a lot of energy to synthesize nanoparticles. As a result, the nanoparticles become less biocompatible and biologically inefficient. Biogenic synthesis of nanoparticles is currently proposed as a valuable alternative to the physical and chemical methods, as it is a simple, non-toxic, cheap, green and facile approach. This synthetic method uses biological substrates such as plant extracts, microorganisms, and other biological products to synthesize nickel oxide nanoparticles. The various phytochemicals from plant extracts, enzymes or proteins from microorganisms, and other biological derivatives play as reducing, stabilizing, and capping agents to provide bioactive and biocompatible nickel oxide nanoscale material. This review discusses current findings and trends in the biogenic synthesis of nickel oxide nanoparticles and their biological activities such as antibacterial, antifungal, antileishmanial, and anticancer, with an emphasis on antimicrobial and anticancer activity along with their mechanistic elucidation. Overall, this thorough study provides insight into the possibilities for the future development of green nickel oxide nanoparticles as therapeutic agents for a variety of ailments.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Extractos Vegetales/química , Materiales Biocompatibles
14.
PLoS One ; 18(8): e0282485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37549158

RESUMEN

The current study is designed to synthesize gold nanoparticles using Ajuga bracteosa extract, which is a highly known medicinal herb found in the northern Himalayas. The synthesized gold nanoparticles were initially characterized by UV-Vis spectrophotometer, SEM, FTIR, pXRD, and, GC-MS. Antibacterial efficacy of A. bracteosa extract, AuNps, and AuNps-free supernatant activity was checked against highly pathogenic clinical isolates of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa via agar well diffusion method, assuming that supernatant might have active compounds. The Nps-free supernatant showed the maximum antibacterial activity against E. coli (20.8±0.3 mm), Staphylococcus aureus (16.5±0.5), and Pseudomonas aeruginosa (13±0.6). While green synthesized AuNps showed effective antibacterial activity (Escherichia coli (16.4±0.3mm), Staphylococcus aureus (15.05±0.5mm), and Pseudomonas aeruginosa (11.07±0.6mm)) which was high compared to A. bracteosa extract. Anticancer activity was assessed by MTT assay on U87 and HEK293 cell lines. Aj-AuNps have an antigrowth effect on both the cell lines however Aj-AuNps-free supernatant which was also evaluated along with the Aj-AuNps, showed high toxicity toward HEK293 cell line compared to U87. Further, the GC-MS analysis of supernatant showed the presence of resultant toxic compounds after the reduction of gold salt, which include Trichloromethane, Propanoic acid, 2-methyl-, methyl ester, Methyl isovalerate, Pentanoic acid, 2-hydroxy-4-methyl-, Benzene-propanoic acid, and alpha-hydroxy. Based on the observation small molecular weight ligands of Ajuga bracteosa were analyzed in-silico for their binding efficacy towards selected membrane proteins of our target pathogens. RMSD is also calculated for the best docked protein ligand pose. The results revealed that among all listed ligands, Ergosterol and Decacetylajugrin IV have high virtuous binding affinities towards the membrane proteins of targeted pathogens. The current findings revealed that the Aj-AuNps are good antibacterial as well as anticancerous agents while the Nps-free supernatant is also exceedingly effective against resistant pathogens and cancer cell lines.


Asunto(s)
Ajuga , Nanopartículas del Metal , Humanos , Ajuga/química , Propionatos , Oro/química , Escherichia coli , Ligandos , Células HEK293 , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Tecnología Química Verde/métodos
15.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298231

RESUMEN

Synthesis of silver nanoparticles using extracts from plants is an advantageous technological alternative to the traditional colloidal synthesis due to its simplicity, low cost, and the inclusion of environmentally friendly processes to obtain a new generation of antimicrobial compounds. The work describes the production of silver and iron nanoparticles using sphagnum extract as well as traditional synthesis. Dynamic light scattering (DLS) and laser doppler velocimetry methods, UV-visible spectroscopy, transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), dark-field hyperspectral microscopy, and Fourier-transform infrared spectroscopy (FT-IR) were used to study the structure and properties of synthesized nanoparticles. Our studies demonstrated a high antibacterial activity of the obtained nanoparticles, including the formation of biofilms. Nanoparticles synthesized using sphagnum moss extracts likely have high potential for further research.


Asunto(s)
Nanopartículas del Metal , Extractos Vegetales , Antibacterianos/química , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Extractos Vegetales/química , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier , Hierro
16.
World J Microbiol Biotechnol ; 39(8): 223, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37291407

RESUMEN

Microbial synthesis of gold nanoparticles (AuNPs), which are used in various forms with different properties in medicine, as a renewable bioresource has become increasingly important in recent years. In this study, statistical optimization of stable and monodispersed AuNPs synthesis was performed using a cell-free fermentation broth of Streptomyces sp. M137-2 and AuNPs were characterized, and their cytotoxicity was determined. The three factors determined as pH, gold salt (HAuCl4) concentration, and incubation time, which are effective in the extracellular synthesis of biogenic AuNPs, were optimized by Central Composite Design (CCD) and then UV-Vis Spectroscopy, Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Scanning Transmission Electron Microscope (STEM), size distribution, Fourier-Transform Infrared (FT-IR) Spectroscopy, X-Ray Photoelectron Spectrophotometer (XPS) and stability analyzes of AuNPs were carried out. Optimum values of the factors were determined as pH 8, 10- 3 M HAuCl4, and 72 h incubation using Response Surface Methodology (RSM). Almost spherical AuNPs with 20-25 nm protein corona on the surface, 40-50 nm in size, monodisperse, and highly stable form were synthesized. Biogenic AuNPs were confirmed from characteristic diffraction peaks in the XRD pattern, UV-vis peak centred at 541 nm. The FT-IR results confirmed the role of Streptomyces sp. M137-2 metabolites in the reduction and stabilization of AuNPs. The cytotoxicity results also showed that AuNPs obtained using Streptomyces sp. can be used safely in medicine. This is the first report to perform statistical optimization of size-dependent biogenic AuNPs synthesis using a microorganism.


Asunto(s)
Nanopartículas del Metal , Streptomyces , Oro/química , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Streptomyces/metabolismo , Difracción de Rayos X , Extractos Vegetales/química , Tecnología Química Verde/métodos
17.
Environ Sci Pollut Res Int ; 30(27): 69796-69823, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37171732

RESUMEN

Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Extractos Vegetales/química , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Plantas/química , Sustancias Peligrosas
18.
Sci Rep ; 13(1): 7230, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142621

RESUMEN

Green synthesis of bioactive nanoparticles (NPs) is getting more attractive in various fields of science including the food industry. This study investigates the green synthesizing and characterization of gold NPs (AuNPs) and silver NPs (AgNPs) produced using Mentha spicata L. (M. spicata) essential oil as well as their antibacterial, antioxidant, and in vitro cytotoxic effects. The essential oil was mixed with both Chloroauric acid (HAuCl4) and aqueous silver nitrate (AgNO3) solutions separately and incubated at room temperature for 24 h. The chemical composition of the essential oil was identified by gas chromatography coupled with a mass spectrometer detector (GC-MS). Au and Ag nanoparticles were characterized using UV-Vis spectroscopy, transmission electron microscopy, scanning electron microscopy, dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR). The cytotoxicity of both types of nanoparticles was evaluated using MTT assay on cancerous HEPG-2cell line by exposing them to various concentrations of both NPs for 24 h. The antimicrobial effect was evaluated by the well-diffusion technique. The antioxidant effect was determined by DPPH and ABTS tests. According to the results of GC-MS analysis, 18 components were identified, including carvone (78.76%) and limonene (11.50%). UV-visible spectroscopy showed a strong absorption peak of 563 nm and 485 nm, indicating the formation of Au NPs and Ag NPs, respectively. TEM and DLS demonstrated that AuNPs and AgNPs were predominantly spherical shaped with average sizes of 19.61 nm and 24 nm, respectively. FTIR analysis showed that biologically active compounds such as monoterpenes could assist in the formation and stabilization of both types of NPs. Additionally, XRD provided more accurate results, revealing a nano-metal structure. Silver nanoparticles exhibited better antimicrobial activity against the bacteria than AuNPs. Zones of inhibition ranging 9.0-16.0 mm were recorded for the AgNPs, while zones of 8.0-10.33 mm were observed AuNPs. In the ABTS assay, the AuNPs and AgNPs showed a dose-dependent activity and synthesized nanoparticles exhibited higher antioxidant activity than MSEO in both assays. Mentha spicata essential oil can be successfully used for the green production of Au NPs and Ag NPs. Both green synthesized NPs show antibacterial, antioxidant, and in vitro cytotoxic activity.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Mentha spicata , Nanopartículas del Metal , Aceites Volátiles , Nanopartículas del Metal/química , Oro/farmacología , Oro/química , Antioxidantes/farmacología , Plata/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antineoplásicos/farmacología , Aceites Volátiles/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Tecnología Química Verde/métodos
19.
Sci Rep ; 13(1): 7415, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150767

RESUMEN

Over the past few decades, the green synthesis of nanoparticles has gained importance for their therapeutic efficacy and eco-friendly nature. Integrating green chemistry principles into multidisciplinary nanoscience research has paved the way for developing environmentally benign and sustainable methods for synthesizing gold and silver nanoparticles. In the present study, the flowers obtained from Clerodendrum infortunatum (L.), belonging to the family Verbenaceae, have been used for biosynthesizing silver nanoparticles (AgNPs) to evaluate the anthelmintic potential. UV-Vis spectroscopy, XRD, FTIR, SEM and TEM analyses were performed to ascertain the formation of AgNPs. Clerodendrum-derived AgNP (CLE-AgNP) has significantly affected the normal physiological functions of the poultry parasite Raillietina spp., a menace to the livestock industry. Our study manifests that CLE-AgNPs cause considerable distortion of the surface tegument of this cestode parasite leading to changes in the host-parasite interface. The histochemical localization studies of the tegument-associated enzymes viz. AcPase, AlkPase, ATPase and 5'-Nu, exposed to the drug, showed a substantial activity decline, thus establishing the anthelmintic potential of the CLE-AgNPs.


Asunto(s)
Antihelmínticos , Antiinfecciosos , Clerodendrum , Nanopartículas del Metal , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Antihelmínticos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/química , Tecnología Química Verde/métodos
20.
Chemosphere ; 334: 138638, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37100254

RESUMEN

The synthesis of metal nanoparticles using green chemistry methods has gained significant attention in the field of landscape enhancement. Researchers have paid close attention to the development of very effective green chemistry approaches for the production of metal nanoparticles (NPs). The primary goal is to create an environmentally sustainable technique for generating NPs. At the nanoscale, ferro- and ferrimagnetic minerals such as magnetite exhibit superparamagnetic properties (Fe3O4). Magnetic nanoparticles (NPs) have received increased interest in nanoscience and nanotechnology due to their physiochemical properties, small particle size (1-100 nm), and low toxicity. Biological resources such as bacteria, algae, fungus, and plants have been used to manufacture affordable, energy-efficient, non-toxic, and ecologically acceptable metallic NPs. Despite the growing demand for Fe3O4 nanoparticles in a variety of applications, typical chemical production processes can produce hazardous byproducts and trash, resulting in significant environmental implications. The purpose of this study is to look at the ability of Allium sativum, a member of the Alliaceae family recognized for its culinary and medicinal benefits, to synthesize Fe3O4 NPs. Extracts of Allium sativum seeds and cloves include reducing sugars like glucose, which may be used as decreasing factors in the production of Fe3O4 NPs to reduce the requirement for hazardous chemicals and increase sustainability. The analytic procedures were carried out utilizing machine learning as support vector regression (SVR). Furthermore, because Allium sativum is widely accessible and biocompatible, it is a safe and cost-effective material for the manufacture of Fe3O4 NPs. Using the regression indices metrics of root mean square error (RMSE) and coefficient of determination (R2), the X-ray diffraction (XRD) study revealed the lighter, smoother spherical forms of NPs in the presence of aqueous garlic extract and 70.223 nm in its absence. The antifungal activity of Fe3O4 NPs against Candida albicans was investigated using a disc diffusion technique but exhibited no impact at doses of 200, 400, and 600 ppm. This characterization of the nanoparticles helps in understanding their physical properties and provides insights into their potential applications in landscape enhancement.


Asunto(s)
Ajo , Nanopartículas del Metal , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Óxido Ferrosoférrico , Antioxidantes/química , Antifúngicos , Tecnología Química Verde/métodos , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA