Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Med Biol ; 62(13): 5531-5555, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28609301

RESUMEN

Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.


Asunto(s)
Rayos Láser , Aceleradores de Partículas , Terapia de Protones/instrumentación , Humanos , Modelos Teóricos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
2.
Med Phys ; 42(12): 6999-7010, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26632055

RESUMEN

PURPOSE: In the authors' proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. METHODS: The authors prepared four types of patient-specific aperture systems equipped with an energy absorber to irradiate shallow regions less than 4 g/cm(2). The aperture was made of 3-cm-thick brass and the maximum water equivalent penetration to be used with this system was estimated to be 15 g/cm(2). The authors measured in-air lateral profiles at the isocenter plane and integral depth doses with the energy absorber. All input data were obtained by the Monte Carlo calculation, and its parameters were tuned to reproduce measurements. The fluence of single spots in water was modeled as a triple Gaussian function and the dose distribution was calculated using a fluence dose model. The authors compared in-air and in-water lateral profiles and depth doses between calculations and measurements for various apertures of square, half, and U-shaped fields. The absolute doses and dose distributions with the aperture were then validated by patient-specific quality assurance. Measured data were obtained by various chambers and a 2D ion chamber detector array. RESULTS: The patient-specific aperture reduced the penumbra from 30% to 70%, for example, from 34.0 to 23.6 mm and 18.8 to 5.6 mm. The calculated field width for square-shaped apertures agreed with measurements within 1 mm. Regarding patient-specific aperture plans, calculated and measured doses agreed within -0.06% ± 0.63% (mean ± SD) and 97.1% points passed the 2%-dose/2 mm-distance criteria of the γ-index on average. CONCLUSIONS: The patient-specific aperture system improved dose distributions, particularly in shallow-region plans.


Asunto(s)
Medicina de Precisión/instrumentación , Terapia de Protones/instrumentación , Aire , Diseño de Equipo , Humanos , Método de Montecarlo , Medicina de Precisión/métodos , Terapia de Protones/métodos , Radiometría/métodos , Dosificación Radioterapéutica , Agua
3.
Med Phys ; 42(11): 6703-10, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26520760

RESUMEN

PURPOSE: The outcome of radiotherapy can be further improved by combining irradiation with dose enhancers such as high-Z nanoparticles. Since 2004, spectacular results have been obtained when low-energy x-ray irradiations have been combined with nanoparticles. Recently, the same combination has been explored in hadron therapy. In vitro studies have shown a significant amplification of the biological damage in tumor cells charged with nanoparticles and irradiated with fast ions. This has been attributed to the increase in the ionizations and electron emissions induced by the incident ions or the electrons in the secondary tracks on the high-Z atoms, resulting in a local energy deposition enhancement. However, this subject is still a matter of controversy. Within this context, the main goal of the authors' work was to provide new insights into the dose enhancement effects of nanoparticles in proton therapy. METHODS: For this purpose, Monte Carlo calculations (gate/geant4 code) were performed. In particular, the geant4-DNA toolkit, which allows the modeling of early biological damages induced by ionizing radiation at the DNA scale, was used. The nanometric radial energy distributions around the nanoparticle were studied, and the processes (such as Auger deexcitation or dissociative electron attachment) participating in the dose deposition of proton therapy treatments in the presence of nanoparticles were evaluated. It has been reported that the architecture of Monte Carlo calculations plays a crucial role in the assessment of nanoparticle dose enhancement and that it may introduce a bias in the results or amplify the possible final dose enhancement. Thus, a dosimetric study of different cases was performed, considering Au and Gd nanoparticles, several nanoparticle sizes (from 4 to 50 nm), and several beam configurations (source-nanoparticle distances and source sizes). RESULTS: This Monte Carlo study shows the influence of the simulations' parameters on the local dose enhancement and how more realistic configurations lead to a negligible increase of local energy deposition. The obtained dose enhancement factor was up to 1.7 when the source was located at the nanoparticle surface. This dose enhancement was reduced when the source was located at further distances (i.e., in more realistic situations). Additionally, no significant increase in the dissociative electron attachment processes was observed. CONCLUSIONS: The authors' results indicate that physical effects play a minor role in the amplification of damage, as a very low dose enhancement or increase of dissociative electron attachment processes is observed when the authors get closer to more realistic simulations. Thus, other effects, such as biological or chemical processes, may be mainly responsible for the enhanced radiosensibilization observed in biological studies. However, more biological studies are needed to verify this hypothesis.


Asunto(s)
Nanopartículas del Metal/uso terapéutico , Terapia de Protones/métodos , Terapia Combinada/métodos , Simulación por Computador , Gadolinio , Oro , Método de Montecarlo , Tamaño de la Partícula , Fantasmas de Imagen , Terapia de Protones/instrumentación , Dosificación Radioterapéutica , Agua
4.
Phys Med Biol ; 59(9): 2325-40, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24732052

RESUMEN

Recent studies have suggested that the characteristics of prompt gammas (PGs) emitted from excited nuclei during proton therapy are advantageous for determining beam range during treatment delivery. Since PGs are only emitted while the beam is on, the feasibility of using PGs for online treatment verification depends greatly on the design of highly efficient detectors. The purpose of this work is to characterize how PG detection changes as a function of distance from the patient as a means of guiding the design and usage of clinical PG imaging detectors. Using a Monte Carlo model (GEANT4.9.4) we studied the detection rate (PGs per incident proton) of a high purity germanium detector for both the total PG emission and the characteristic 6.13 MeV PG emission from (16)O emitted during proton irradiation. The PG detection rate was calculated as a function of distance from the isocenter of the proton treatment nozzle for: (1) a water phantom irradiated with a proton pencil beam and (2) a prostate patient irradiated with a scanning beam proton therapy treatment field (lateral field size: ∼6 cm × 6 cm, beam range: 23.5 cm). An analytical expression of the PG detection rate as a function of distance from isocenter, detector size, and proton beam energy was then developed. The detection rates were found to be 1.3 × 10(-6) for oxygen and 3.9 × 10(-4) for the total PG emission, respectively, with the detector placed 11 cm from isocenter for a 40 MeV pencil beam irradiating a water phantom. The total PG detection rate increased by ∼85 ± 3% for beam energies greater than 150 MeV. The detection rate was found to be approximately 2.1 × 10(-6) and 1.7 × 10(-3) for oxygen and total PG emission, respectively, during delivery of a single pencil beam during a scanning beam treatment for prostate cancer. The PG detection rate as a function of distance from isocenter during irradiation of a water phantom with a single proton pencil beam was described well by the model of a point source irradiating a cylindrical detector of a known diameter over the range of beam energies commonly used for proton therapy. For the patient studies, it was necessary to divide the point source equation by an exponential factor in order to correctly predict the falloff of the PG detection rate as a function of distance from isocenter.


Asunto(s)
Rayos gamma/uso terapéutico , Terapia de Protones/métodos , Humanos , Masculino , Método de Montecarlo , Fantasmas de Imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Terapia de Protones/instrumentación , Tomografía Computarizada por Rayos X , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA