Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 18(8): e0289984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37590309

RESUMEN

Thrips are a serious pest in many crops. In onion cultivation, Thrips tabaci is the most important, but not the only thrips species causing damage. We investigated which thrips species affects onion and related species worldwide, how much genetic variation there is within T. tabaci populations, and how this evolves. Furthermore, we determined the reproductive mode and the correlation between the genetic and geographic distances. Thrips samples from infested onions or related species were obtained from 14 different locations worldwide. Species and haplotypes were determined through DNA barcoding with the mitochondrial Cytochrome Oxidase subunit I (COI) gene. Thrips tabaci was the most commonly observed species, but Scirtothrips dorsalis, Thrips palmi, Frankliniella intonsa, Frankliniella occidentalis and Frankliniella tenuicornis were also found, especially at the beginning of the growing seasons and depending on the location. The Nei's genetic distance within T. tabaci was less than 5% and the haplotypes were clustered into two phylogenetic groups, each linked to a specific mode of reproduction, thelytokous or arrhenotokous. Thelytokous thrips were more common and more widely distributed than arrhenotokous thrips. A high percentage of heteroplasmy was detected in the arrhenotokous group. Heteroplasmic thrips were only found in populations where thelytokous and arrhenotokous were present in sympatry. Some T. tabaci haplotypes were present in high frequency at several sampled locations. No correlation was found between the genetic and geographic distances, which points to anthropic activities spreading thrips haplotypes throughout the world.


Asunto(s)
Allium , Thysanoptera , Animales , Thysanoptera/genética , Filogenia , Cebollas , Heteroplasmia
2.
J Econ Entomol ; 116(3): 1025-1032, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052543

RESUMEN

Onion thrips (Thrips tabaci Lindeman, Thysanoptera: Thripidae) causes severe damage to many horticultural and agronomic crops worldwide. It also acts as a vector of several plant viruses. T. tabaci is a key pest of Allium cepa in the United States. However, there is limited information available on the genetic variation within and between T. tabaci populations in the United States and its key evolutionary parameters. In the current study, 83 T. tabaci specimens were collected from A. cepa from 15 different locations comprising four states of the United States. A total of 92 mtCOI gene sequences of T. tabaci from A. cepa were analyzed to understand the genetic diversity and structure of T. tabaci collected from onion host. Seven distinct haplotypes of T. tabaci infesting A. cepa were identified from the current collection, while nine T. tabaci sequences retrieved from GenBank comprised 5 haplotypes. Overall, 15 haplotypes of T. tabaci infesting A. cepa were identified in the world that includes the ten haplotypes in the United States. In the phylogenetic analysis, all the populations collected during the study clustered with thelytokous lineage, while T. tabaci sequences retrieved from GenBank corresponded to leek-associated arrhenotokous lineage. The highest genetic variation was found in Elba and Malheur populations with 3 haplotypes identified in each. The results suggest that haplotypes 1 and 7 are more frequently prevailing haplotypes in the north-western United States, with haplotype 1 being the predominant all over the country. The eastern United States appears to have a more diverse group of haplotypes. The populations from Hungary constituted distinct haplotypes and a haplotype from Kingston linked it with the predominant haplotype.


Asunto(s)
Cebollas , Thysanoptera , Estados Unidos , Animales , Cebollas/genética , Thysanoptera/genética , Filogenia , Evolución Biológica , Variación Genética
3.
Arthropod Struct Dev ; 72: 101228, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36427428

RESUMEN

The onion thrips, Thrips tabaci Lindeman, is a cryptic species complex of three distinct lineages: L1, L2, and T, which exhibit considerable variation in their biological and ecological traits. The most accurate method for their identification is based on molecular techniques. This study aimed to investigate the morphometric variation of T. tabaci cryptic species complex and to distinguish characters that may be useful in discriminating the lineages. For this purpose, morphometric measurements were performed on the eggs, newly hatched first instar larvae, and newly emerged adults. Our results revealed significant differences in egg size between the three lineages. Moreover, the PCA analysis conducted on morphometric measurements of the first instar larvae and adults showed that females of the T lineage are very well separated from the females of the L lineages in the adult stage but not in the first instar larval stage. The distinction between the females is partially congruent with the results of genetic studies. Moreover, our results indicate that adult sexual dimorphism with regard to size in L1 and T lineages is not mediated by the size of eggs and first instar larvae, and this may be due to the different growth rates of males and females.


Asunto(s)
Thysanoptera , Femenino , Masculino , Animales , Thysanoptera/genética , Larva , Cebollas
4.
BMC Mol Biol ; 20(1): 6, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30777032

RESUMEN

BACKGROUND: Thrips tabaci is a severe pest of onion and cotton. Due to lack of information on its genome or transcriptome, not much is known about this insect at the molecular level. To initiate molecular studies in this insect, RNA was sequenced; de novo transcriptome assembly and analysis were performed. The RNAseq data was used to identify reference and RNAi pathway genes in this insect. Additionally, feeding RNAi was demonstrated in T. tabaci for the first time. RESULTS: From the assembled transcriptome, 27,836 coding sequence (CDS) with an average size of 1236 bp per CDS were identified. About 85.4% of CDS identified showed positive Blast hits. The homologs of most of the core RNAi machinery genes were identified in this transcriptome. To select reference genes for reverse-transcriptase real-time quantitative PCR (RT-qPCR) experiments, 14 housekeeping genes were identified in the transcriptome and their expression was analyzed by (RT-qPCR). UbiCE in adult, 28s in nymphs and SOD under starvation stress were identified as the most stable reference genes for RT-qPCR. Feeding dsSNF7 and dsAQP caused 16.4- and 14.47-fold reduction in SNF7 and AQP mRNA levels respectively, when compared to their levels in dsGFP fed control insects. Feeding dsSNF7 or dsAQP also caused 62 and 72% mortality in T. tabaci. Interestingly, simultaneous feeding of dsRNAs targeting SNF7 or AQP and one of the RNAi pathway genes (Dicer-2/Aubergine/Staufen) resulted in a significant reduction in RNAi of target genes. These data suggest the existence of robust RNAi machinery in T. tabaci. CONCLUSION: The current research is the first report of the assembled, analyzed and annotated RNAseq resource for T. tabaci, which may be used for future molecular studies in this insect. Reference genes validated across stages and starvation stress provides first-hand information on stable genes in T. tabaci. The information on RNAi machinery genes and significant knockdown of the target gene through dsRNA feeding in synthetic diet confirms the presence of efficient RNAi in this insect. These data provide a solid foundation for further research on developing RNAi as a method to manage this pest.


Asunto(s)
Genes Esenciales/genética , Interferencia de ARN , ARN Mensajero/genética , Thysanoptera , Transcriptoma/genética , Animales , Conducta Alimentaria , Gossypium/parasitología , Cebollas/parasitología , Estándares de Referencia , Análisis de Secuencia de ARN/métodos , Thysanoptera/clasificación , Thysanoptera/genética
5.
PLoS One ; 13(7): e0201583, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30063755

RESUMEN

Tomatoes (Solanum lycopersicum L.) have been bred to exude higher amounts or different types of the specialized plant metabolites, acylsugars, from type IV trichomes. Acylsugars are known to deter several herbivorous insect pests, including the western flower thrips (WFT), Frankliniella occidentalis (Pergande); however, all previous studies investigated the effect of acylsugars on leaves, or acylsugar extracts obtained from leaves. In spite of the WFT predilection for flowers, there is a gap in knowledge about flower defenses against thrips damage. This is especially important in light of their capacity to acquire and inoculate viruses in the genus Orthotospovirus, such as Tomato spotted wilt orthotospovirus (TSWV), in flowers. Therefore, we turned our attention to assessing thrips oviposition differences on flowers of 14 entries, including 8 interspecific hybrids, 5 tomato lines bred for specific acylsugar-related characteristics (type IV trichome densities, acylsugar amount, sugar moiety and fatty acid profile), and a fresh market tomato hybrid, Mt. Spring, which only produces trace amounts of acylsugars. Our results show that the density of the acylsugar droplet bearing type IV trichomes is greatest on sepals, relative to other flower structures, and accordingly, WFT avoids oviposition on sepals in favor of trichome-sparse petals. In concordance with past studies, acylsugar amount was the most important acylsugar-related characteristic suppressing WFT oviposition. Certain acylsugar fatty acids, specifically i-C5, i-C9 and i-C11, were also significantly associated with changes in WFT oviposition. These results support continued breeding efforts to increase acylsugar amounts and explore modifications of fatty acid profile and their roles in deterring thrips oviposition. The finding that acylsugar production occurs and reduces thrips oviposition in tomato flowers will be important in efforts to use acylsugar-mediated resistance to reduce incidence of orthotospoviruses such as TSWV in tomato by deterring virus transmission and development of thrips vector populations in the crop.


Asunto(s)
Quimera/metabolismo , Ácidos Grasos/metabolismo , Flores , Fitomejoramiento , Solanum lycopersicum , Azúcares/metabolismo , Thysanoptera , Animales , Metabolismo de los Hidratos de Carbono/fisiología , Cruzamientos Genéticos , Flores/metabolismo , Herbivoria , Insectos/efectos de los fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oviposición/genética , Control Biológico de Vectores , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Plantas Modificadas Genéticamente , Azúcares/análisis , Azúcares/farmacología , Thysanoptera/genética , Thysanoptera/metabolismo
6.
Plant Dis ; 102(7): 1264-1272, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30673575

RESUMEN

Iris yellow spot virus (IYSV) is an economically significant tospovirus of onion transmitted by onion thrips (Thrips tabaci Lindeman). IYSV epidemics in onion fields are common in New York; however, the role of various habitats contributing to viruliferous onion thrips populations and IYSV epidemics is not known. In a 2-year field study in New York, the abundance of dispersing onion thrips, including those determined to be viruliferous via reverse-transcriptase polymerase chain reaction, was recorded in habitats known to harbor both IYSV and its vector. Results showed that viruliferous thrips were encountered in all habitats; however, transplanted onion sites accounted for 49 to 51% of the total estimated numbers of viruliferous thrips. During early to midseason, transplanted onion sites had 9 to 11 times more viruliferous thrips than the other habitats. These results indicate that transplanted onion fields are the most important habitat for generating IYSV epidemics in all onion fields (transplanted and direct-seeded) in New York. Our findings suggest that onion growers should control onion thrips in transplanted fields early in the season to minimize risk of IYSV epidemics later in the season.


Asunto(s)
Cebollas/parasitología , Thysanoptera/fisiología , Thysanoptera/virología , Tospovirus/fisiología , Animales , Ecosistema , Epidemias , Geografía , Insectos Vectores/genética , Insectos Vectores/fisiología , Insectos Vectores/virología , New York , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Estaciones del Año , Thysanoptera/genética , Tospovirus/genética
7.
PLoS One ; 9(7): e101791, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24992484

RESUMEN

Thrips tabaci is a major pest of high-value vegetable crops and understanding its population genetics will advance our knowledge about its ecology and management. Mitochondrial cytochrome oxidase subunit I (COI) gene sequence was used as a molecular marker to analyze T. tabaci populations from onion and cabbage fields in New York. Eight COI haplotypes were identified in 565 T. tabaci individuals collected from these fields. All T. tabaci were thelytokous and genetically similar to those originating from hosts representing seven plant families spanning five continents. The most dominant haplotype was NY-HT1, accounting for 92 and 88% of the total individuals collected from onion fields in mid-summer in 2005 and 2007, respectively, and 100 and 96% of the total in early fall in 2005 and 2007, respectively. In contrast, T. tabaci collected from cabbage fields showed a dynamic change in population structure from mid-summer to early fall. In mid-summer, haplotype NY-HT2 was highly abundant, accounting for 58 and 52% of the total in 2005 and 2007, respectively, but in early fall it decreased drastically to 15 and 7% of the total in 2005 and 2007, respectively. Haplotype NY-HT1 accounted for 12 and 46% of the total in cabbage fields in mid-summer of 2005 and 2007, respectively, but became the dominant haplotype in early fall accounting for 81 and 66% of the total in 2005 and 2007, respectively. Despite the relative proximity of onion and cabbage fields in the western New York landscape, T. tabaci populations differed seasonally within each cropping system. Differences may have been attributed to better establishment of certain genotypes on specific hosts or differing colonization patterns within these cropping systems. Future studies investigating temporal changes in T. tabaci populations on their major hosts in these ecosystems are needed to better understand host-plant utilization and implications for population management.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Proteínas de Insectos/genética , Thysanoptera/clasificación , Thysanoptera/enzimología , Animales , Brassica/parasitología , Productos Agrícolas/parasitología , Haplotipos , Cebollas/parasitología , Filogenia , Estaciones del Año , Análisis de Secuencia de ADN , Thysanoptera/genética
8.
J Insect Sci ; 13: 30, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23902377

RESUMEN

Thrips tabaci Lindeman (Thysanoptera: Thripidae), a cosmopolitan pest insect, is subdivided into at least three genetic lineages that have different biological characters, such as reproductive mode and resistibility to insecticides. Since the lineages are discriminated only by mitochondrial DNA, there is a possibility of gene flow among lineages at the genomic level. Nine polymorphic microsatellite loci were newly isolated from the taxon. Moderate to high levels of polymorphism were observed, with numbers of alleles ranging from 6 to 12 in 51 individuals. The mean observed and expected heterozygosities ranged from 0.1373 to 0.3725 and 0.5381 to 0.7748, respectively. Contrary to the expectation under Hardy-Weinberg's equilibrium, six of the nine loci exhibited a reduction to homozygosities. However, we confirmed that alleles in all the loci were inherited as Mendeilan characteristics. These new loci will be useful to explore discrimination of lineages and population genetics in this species.


Asunto(s)
Repeticiones de Microsatélite , Thysanoptera/genética , Animales , Femenino , Flujo Génico , Cebollas
9.
Heredity (Edinb) ; 111(3): 210-5, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23632893

RESUMEN

Of eight thelytokous populations of onion thrips (Thrips tabaci) collected from potato (three populations), onion (four) or Chrysanthemum (one) hosts from various regions of Australia, only those from potato were capable of transmitting Tomato spotted wilt virus (TSWV) in controlled transmission experiments. Genetic differentiation of seven of these eight populations, and nine others not tested for TSWV vector competence, was examined by comparison of the DNA sequences of mitochondrial cytochrome oxidase subunit 1 (COI) gene. All Australian populations of T. tabaci grouped within the European 'L2' clade of Brunner et al. (2004). Within this clade the seven populations from potato, the three from onion, and the four from other hosts (Chrysanthemum, Impatiens, lucerne, blackberry nightshade) clustered as three distinct sub-groupings characterised by source host. Geographical source of thrips populations had no influence on genetic diversity. These results link genetic differentiation of thelytokous T. tabaci to source host and to TSWV vector capacity for the first time.


Asunto(s)
Especificidad del Huésped , Insectos Vectores/genética , Enfermedades de las Plantas/virología , Thysanoptera/genética , Tospovirus/fisiología , Animales , Australia , Complejo IV de Transporte de Electrones/genética , Proteínas de Insectos/genética , Insectos Vectores/clasificación , Insectos Vectores/fisiología , Insectos Vectores/virología , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/parasitología , Solanum tuberosum/parasitología , Solanum tuberosum/virología , Thysanoptera/clasificación , Thysanoptera/fisiología , Thysanoptera/virología
10.
J Econ Entomol ; 105(5): 1816-24, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23156182

RESUMEN

Invasion of pests may result in local adaptation and the development of biotypes specialized in different hosts. In this study, we investigated western flower thrips, Frankliniella occidentalis (Pergande), an invasive pest in Europe. Thrips from different commercial glasshouse crops within the Dutch Westland and a lab culture kept on chrysanthemum were compared. Genetic barcoding was applied for the identification of potential western flower thrips cryptic species in the Netherlands revealing that all western flower thrips populations studied belonged to the "glasshouse" strain reported in California as the only existing species in the Netherlands. Feeding and reproduction parameters in leaf disc and whole plant bioassays were scored. We detected significant differences in thrips feeding among host plants and thrips origin. Host plants differed in average thrips damage while thrips from different origins caused similar amounts of damage across host plants. In contrast, reproductive success of thrips on all plant species depended strongly on thrips origin. The thrips lab culture maintained on chrysanthemum obtained the highest levels of reproduction on chrysanthemum. Differences among the other thrips populations were relatively small. Amplified fragment length polymorphisms analyses were used to study genetic differences between western flower thrips populations and confirmed that the lab culture population was also genetically the most different of all studied populations. The results of the amplified fragment length polymorphisms analyses together with the better reproductive performance of thrips on the host plant on which they were maintained demonstrate the evolution of a lab biotype specialized in a particular host. This finding has potential relevance for future crop control and breeding programs.


Asunto(s)
Chrysanthemum , Lactuca , Cebollas , Thysanoptera/fisiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Código de Barras del ADN Taxonómico , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Conducta Alimentaria , Femenino , Genotipo , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Países Bajos , Polimorfismo Genético , Reproducción , Thysanoptera/clasificación , Thysanoptera/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA