Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 235(5): 1853-1867, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35653609

RESUMEN

Thiamine pyrophosphate (TPP), an essential co-factor for all species, is biosynthesised through a metabolically expensive pathway regulated by TPP riboswitches in bacteria, fungi, plants and green algae. Diatoms are microalgae responsible for c. 20% of global primary production. They have been predicted to contain TPP aptamers in the 3'UTR of some thiamine metabolism-related genes, but little information is known about their function and regulation. We used bioinformatics, antimetabolite growth assays, RT-qPCR, targeted mutagenesis and reporter constructs to test whether the predicted TPP riboswitches respond to thiamine supplementation in diatoms. Gene editing was used to investigate the functions of the genes with associated TPP riboswitches in Phaeodactylum tricornutum. We found that thiamine-related genes with putative TPP aptamers are not responsive to supplementation with thiamine or its precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), and targeted mutation of the TPP aptamer in the THIC gene encoding HMP-P synthase does not deregulate thiamine biosynthesis in P. tricornutum. Through genome editing we established that PtTHIC is essential for thiamine biosynthesis and another gene, PtSSSP, is necessary for thiamine uptake. Our results highlight the importance of experimentally testing bioinformatic aptamer predictions and provide new insights into the thiamine metabolism shaping the structure of marine microbial communities with global biogeochemical importance.


Asunto(s)
Diatomeas , Riboswitch , Diatomeas/genética , Diatomeas/metabolismo , Hongos/genética , Riboswitch/genética , Tiamina/química , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
2.
PLoS One ; 15(7): e0235431, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32726320

RESUMEN

The oil palm (Elaeis guineensis) is an important crop in Malaysia but its productivity is hampered by various biotic and abiotic stresses. Recent studies suggest the importance of signalling molecules in plants in coping against stresses, which includes thiamine (vitamin B1). Thiamine is an essential microelement that is synthesized de novo by plants and microorganisms. The active form of thiamine, thiamine pyrophosphate (TPP), plays a prominent role in metabolic activities particularly as an enzymatic cofactor. Recently, thiamine biosynthesis pathways in oil palm have been characterised but the search of novel regulatory element known as riboswitch is yet to be done. Previous studies showed that thiamine biosynthesis pathway is regulated by an RNA element known as riboswitch. Riboswitch binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. TPP binds specifically to TPP riboswitch to regulate thiamine biosynthesis through a variety of mechanisms found in archaea, bacteria and eukaryotes. This study was carried out to hunt for TPP riboswitch in oil palm thiamine biosynthesis gene. Riboswitch detection software like RiboSW, RibEx, Riboswitch Scanner and Denison Riboswitch Detector were utilised in order to locate putative TPP riboswitch in oil palm ThiC gene sequence that encodes for the first enzyme in the pyrimidine branch of the pathway. The analysis revealed a 192 bp putative TPP riboswitch located at the 3' untranslated region (UTR) of the mRNA. Further comparative gene analysis showed that the 92-nucleotide aptamer region, where the metabolite binds was conserved inter-species. The secondary structure analysis was also carried out using Mfold Web server and it showed a stem-loop structure manifested with stems (P1-P5) with minimum free energy of -12.26 kcal/mol. Besides that, the interaction of riboswitch and its ligand was determined using isothermal titration calorimetry (ITC) and it yielded an exothermic reaction with 1:1 stoichiometry interaction with binding affinities of 0.178 nM, at 30°C. To further evaluate the ability of riboswitch to control the pathway, exogenous thiamine was applied to four months old of oil palm seedlings and sampling of spear leaves tissue was carried out at days 0, 1, 2 and 3 post-treatment for expression analysis of ThiC gene fragment via quantitative polymerase chain reaction (qPCR). Results showed an approximately 5-fold decrease in ThiC gene expression upon application of exogenous thiamine. Quantification of thiamine and its derivatives was carried out via HPLC and the results showed that it was correlated to the down regulation of ThiC gene expression. The application of exogenous thiamine to oil palm affected ThiC gene expression, which supported the prediction of the presence of TPP riboswitch in the gene. Overall, this study provides the first evidence on the presence, binding and the functionality of TPP riboswitch in oil palm. This study is hoped to pave a way for better understanding on the regulation of thiamine biosynthesis pathway in oil palm, which can later be exploited for various purposes especially in manipulation of thiamine biosynthesis pathways in combating stresses in oil palm.


Asunto(s)
Arecaceae/genética , Riboswitch/genética , Tiamina Pirofosfato/genética , Tiamina/genética , Arecaceae/crecimiento & desarrollo , Ligandos , Malasia , Aceite de Palma/química , Unión Proteica
3.
Mol Genet Genomics ; 294(2): 409-416, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30483896

RESUMEN

Thiamine pyrophosphokinase (TPK) converts thiamine (vitamin B1) into thiamine pyrophosphate (TPP), an essential cofactor for many important enzymes. TPK1 mutations lead to a rare disorder: episodic encephalopathy type thiamine metabolism dysfunction. Yet, the molecular mechanism of the disease is not entirely clear. Here we report an individual case of episodic encephalopathy, with familial history carrying a novel homozygous TPK1 mutation (p.L28S). The L28S mutation leads to reduced enzymatic activity, both in vitro and in vivo, without impairing thiamine binding and protein stability. Thiamine supplementation averted encephalopathic episodes and restored the patient's developmental progression. Biochemical characterization of reported TPK1 missense mutations suggested reduced thiamine binding as a new disease mechanism. Importantly, many disease mutants are directly or indirectly involved in thiamine binding. Thus, our study provided a novel rationale for thiamine supplementation, so far the major therapeutic intervention in TPK deficiency.


Asunto(s)
Encefalopatías/genética , Tiamina Pirofosfoquinasa/deficiencia , Tiamina Pirofosfoquinasa/genética , Tiamina/genética , Secuencia de Aminoácidos/genética , Encefalopatías/fisiopatología , Preescolar , China , Femenino , Homocigoto , Humanos , Masculino , Mutación Missense/genética , Linaje , Unión Proteica , Estabilidad Proteica , Tiamina Pirofosfoquinasa/química , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
4.
J Biol Chem ; 289(7): 4405-16, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379411

RESUMEN

Colonic microbiota synthesize a considerable amount of thiamine in the form of thiamine pyrophosphate (TPP). Recent functional studies from our laboratory have shown the existence of a specific, high-affinity, and regulated carrier-mediated uptake system for TPP in human colonocytes. Nothing, however, is known about the molecular identity of this system. Here we report on the molecular identification of the colonic TPP uptake system as the product of the SLC44A4 gene. We cloned the cDNA of SLC44A4 from human colonic epithelial NCM460 cells, which, upon expression in ARPE19 cells, led to a significant (p < 0.01, >5-fold) induction in [(3)H]TPP uptake. Uptake by the induced system was also found to be temperature- and energy-dependent; Na(+)-independent, slightly higher at acidic buffer pH, and highly sensitive to protonophores; saturable as a function of TPP concentration, with an apparent Km of 0.17 ± 0.064 µM; and highly specific for TPP and not affected by free thiamine, thiamine monophosphate, or choline. Expression of the human TPP transporter was found to be high in the colon and negligible in the small intestine. A cell surface biotinylation assay and live cell confocal imaging studies showed the human TPP transporter protein to be expressed at the apical membrane domain of polarized epithelia. These results show, for the first time, the molecular identification and characterization of a specific and high-affinity TPP uptake system in human colonocytes. The findings further support the hypothesis that the microbiota-generated TPP is absorbable and could contribute toward host thiamine homeostasis, especially toward cellular nutrition of colonocytes.


Asunto(s)
Colon/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Transporte de Membrana/biosíntesis , Tiamina Pirofosfato/biosíntesis , Animales , Transporte Biológico Activo/fisiología , Clonación Molecular , Colon/citología , ADN Complementario , Perros , Humanos , Concentración de Iones de Hidrógeno , Intestino Delgado/citología , Intestino Delgado/metabolismo , Células de Riñón Canino Madin Darby , Proteínas de Transporte de Membrana/genética , Especificidad de Órganos/fisiología , Tiamina Pirofosfato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA