Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 688
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Water Sci Technol ; 89(5): 1312-1324, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483500

RESUMEN

Wastewater treatment plants (WWTPs) are under increasing pressure to enhance resource efficiency and reduce emissions into water bodies. The separation of urine within the catchment area may be an alternative to mitigate the need for costly expansions of central WWTPs. While previous investigations assumed a spatially uniform implementation of urine separation across the catchment area, the present study focuses on an adapted stochastic wastewater generation model, which allows the simulation of various wastewater streams (e.g., urine) on a household level. This enables the non-uniform separation of urine across a catchment area. The model is part of a holistic modelling framework to determine the influence of targeted urine separation in catchments on the operation and emissions of central WWTPs, which will be briefly introduced. The wastewater generation model is validated through an extensive sampling and measurement series. Results based on observed and simulated wastewater quantity and quality for a catchment area of 366 residents for two dry weather days indicate the suitability of the model for wastewater generation and transport modelling. Based on this, four scenarios for urine separation were defined. The results indicate a potential influence of spatial distribution on the peaks of total nitrogen and total phosphorus.


Asunto(s)
Nitrógeno , Aguas Residuales , Simulación por Computador , Fósforo , Tiempo (Meteorología)
2.
Sci Total Environ ; 926: 171945, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38531456

RESUMEN

Global climate change involves various aspects of climate, including precipitation changes and declining surface wind speeds, but studies investigating biological responses have often focused on the impacts of rising temperatures. Additionally, related long-term studies on bird reproduction tend to concentrate on breeding onset, even though other aspects of breeding could also be sensitive to the diverse weather aspects. This study aimed to explore how multiple aspects of breeding (breeding onset, hatching delay, breeding season length, clutch size, fledgling number) were associated with different weather components. We used an almost four-decade-long dataset to investigate the various aspects of breeding parameters of a collared flycatcher (Ficedula albicollis) population in the Carpathian Basin. Analyses revealed some considerable associations, for example, breeding seasons lengthened with the amount of daily precipitation, and clutch size increased with the number of cool days. Parallel and opposing changes in the correlated pairs of breeding and weather parameters were also observed. The phenological mismatch between prey availability and breeding time slightly increased, and fledgling number strongly decreased with increasing mistiming. Our results highlighted the intricate interplay between climate change and the reproductive patterns of migratory birds, emphasizing the need for a holistic approach. The results also underscored the potential threats posed by climate change to bird populations and the importance of adaptive responses to changing environmental conditions.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Pájaros Cantores/fisiología , Passeriformes/fisiología , Tiempo (Meteorología) , Estaciones del Año , Cambio Climático , Reproducción , Migración Animal/fisiología
3.
Environ Geochem Health ; 46(3): 87, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367090

RESUMEN

The ecotoxic effect of Zn species arising from the weathering of the marmatite-like sphalerite ((Fe, Zn)S) in Allium cepa systems was herein evaluated in calcareous soils and connected with its sulfide oxidation mechanism to determine the chemical speciation responsible of this outcome. Mineralogical analyses (X-ray diffraction patterns, Raman spectroscopy, scanning electron microscopy and atomic force microscopy), chemical study of leachates (total Fe, Zn, Cd, oxidation-reduction potential, pH, sulfates and total alkalinity) and electrochemical assessments (chronoamperometry, chronopotentiometry, cyclic voltammetry, and electrochemical impedance spectroscopy) were carried out using (Fe, Zn)S samples to elucidate interfacial mechanisms simulating calcareous soil conditions. Results indicate the formation of polysulfides (Sn2-), elemental sulfur (S0), siderite (FeCO3)-like, hematite (Fe2O3)-like with sorbed CO32- species, gunningite (ZnSO4·H2O)-like phase and smithsonite (ZnCO3)-like compounds in altered surface under calcareous conditions. However, the generation of gunningite (ZnSO4·H2O)-like phase was predominant bulk-solution system. Quantification of damage rates ranges from 75 to 90% of bulb cells under non-carbonated conditions after 15-30 days, while 50-75% of damage level is determined under neutral-alkaline carbonated conditions. Damage ratios are 70.08 and 30.26 at the highest level, respectively. These findings revealed lower ecotoxic damage due to ZnCO3-like precipitation, indicating the effect of carbonates on Zn compounds during vegetable up-taking (exposure). Other environmental suggestions of the (Fe, Zn)S weathering and ecotoxic effects under calcareous soil conditions are discussed.


Asunto(s)
Cebollas , Contaminantes del Suelo , Compuestos de Zinc , Suelo/química , Sulfuros/química , Tiempo (Meteorología) , Contaminantes del Suelo/análisis
4.
J Environ Manage ; 353: 120154, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38308992

RESUMEN

Fuel-treatments targeting shrubs and fire-prone exotic annual grasses (EAGs) are increasingly used to mitigate increased wildfire risks in arid and semiarid environments, and understanding their response to natural factors is needed for effective landscape management. Using field-data collected over four years from fuel-break treatments in semiarid sagebrush-steppe, we asked 1) how the outcomes of EAG and sagebrush fuel treatments varied with site biophysical properties, climate, and weather, and 2) how predictions of fire behavior using the Fuel Characteristic Classification System fire model related to land-management objectives of maintaining fire behavior expected of low-load, dry-climate grasslands. Generalized linear mixed effect modeling with build-up model selection was used to determine best-fit models, and marginal effects plots to assess responses for each fuel type. EAG cover decreased as antecedent-fall precipitation increased and increased as antecedent-spring temperatures and surface soil clay contents increased. Herbicides targeting EAGs were less effective where pre-treatment EAG cover was >40 % and antecedent spring temperatures were >9.5 °C. Sagebrush cover was inversely related to soil clay content, especially where clay contents were >17 %. Predicted fire behavior exceeded management objectives under 1) average fire weather conditions when EAG or sagebrush cover was >50 % or >26 %, respectively, or 2) extreme fire weather conditions when EAG or sagebrush cover was >10 % or >8 %, respectively. Consideration of the strong effects of natural variability in site properties and antecedent weather can help in justifying, planning and implementing fuel-treatments.


Asunto(s)
Artemisia , Incendios , Ecosistema , Arcilla , Tiempo (Meteorología) , Suelo , Poaceae
5.
J Sci Food Agric ; 104(7): 3842-3852, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38233738

RESUMEN

BACKGROUND: Potato is the most important non-grain crop worldwide, whose quality characteristics are always affected by temporal and spatial variability. Knowledge of the performance consistency of quality characteristics over long periods could prove very important to identify which quality traits are less variable over time, and therefore provide greater guarantees of stability. In this research, variations in physicochemical and nutritional traits of tubers over five consecutive growing seasons of two potato genotypes (Arizona and Vogue) were monitored in two locations. RESULTS: Although qualitative performances of genotypes fluctuated across the seasons in both locations, two physicochemical traits (pH and dry matter content) and starch content showed less variability throughout the five seasons compared to total soluble solids and most of the nutritional traits (namely reducing sugars, citric acid, vitamin C, total phenolics and antioxidant capacity), which were considerably influenced by weather conditions. CONCLUSION: The results suggest that pH, dry matter content and starch content traits could be used advantageously in studies of temporal stability in potatoes. This approach could prove useful in providing scientific support for the setup of potato protected geographical identifications. © 2024 Society of Chemical Industry.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/química , Almidón/análisis , Fenotipo , Tiempo (Meteorología) , Estaciones del Año , Tubérculos de la Planta/química
6.
Mar Pollut Bull ; 199: 115981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171164

RESUMEN

Remote sensing data and numerical simulation are important tools to rebuild any oil spill accident letting to identify its source and trajectory. Through these tools was identified an oil spill that affected Oaxacan coast in October 2022. The SAR images were processed with a standard method included in SNAP software, and the numerical simulation was made using Lagrangian transport model included in GNOME software. With the combining of these tools was possible to discriminate the look-alikes from true oil slicks; which are the main issue when satellite images are used. Obtained results showed that 4.3m3 of crude oil were released into the ocean from a punctual point of oil pollution. This oil spill was classified such as a small oil spill. The marine currents and weathering processes were the main drivers that controlled the crude oil displacement and its dispersion. It was estimated in GNOME that 1.6 m3 of crude oil was floating on the sea (37.2 %), 2.4 m3 was evaporated into the atmosphere (55.8 %) and 0.3 m3 reached the coast of Oaxaca (7 %). This event affected 82 km of coastline, but the most important touristic areas as well as turtle nesting zones were not affected by this small crude oil spill. Results indicated that the marine-gas-pump number 3 in Salina Cruz, Oaxaca, is a punctual point of oil pollution in the Southern Mexican Pacific Ocean. Further work is needed to assess the economic and ecological damage to Oaxacan coast caused by this small oil spill.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminación por Petróleo/análisis , Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos , Petróleo/análisis , Tiempo (Meteorología)
7.
Int J Biometeorol ; 68(2): 367-380, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38091088

RESUMEN

An accelerated climatotherapy programme was evaluated for use with busy people in mid-mountain and flat lowland areas. A total of 43 urban residents participated in this climatotherapy programme. Participants' blood pressure, pulse rate, peripheral skin temperature and levels of salivary amylase, salivary cortisol and blood lactate were measured, and they completed the Profile of Mood Status questionnaire. In the mid-mountain area, which had a cooler environment and long uphill paths, participants' percentage of maximum pulse rate (70.01%) to estimated maximum heart rate was higher than that (59.67%) of participants in the flat lowland area, suggesting that the mid-mountain area was suitable for endurance training. At both sites, the decrease in peripheral skin temperature during the climatic terrain cure suggested that our programme was properly implemented with a cool body surface in accordance with our purpose. Negative moods improved quickly, suggesting that the forest environment and the fresh-air rest cure may have relaxed participants. In late spring and early autumn, the mood of approximately 25% of participants improved to an Iceberg profile, which is associated with positive mental states and athletic peak performance, after climatotherapy. On the other hand, the weather in early spring and late autumn was more likely to facilitate maintenance of a cool body surface during the climatic terrain cure. With the support of individualized feedback provided after the climatotherapy sessions, three participants developed regular exercise habits, serving as a good example of the effectiveness of our climatotherapy programme to elicit behavioural change.


Asunto(s)
Climatoterapia , Humanos , Estaciones del Año , Frecuencia Cardíaca , Tiempo (Meteorología) , Presión Sanguínea
8.
Sci Total Environ ; 912: 168711, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38007110

RESUMEN

In-stream phosphorus (P) legacies cause lags between upstream remediation and downstream load reductions. However, the length of these lags is largely unknown, especially for long stream distances. As a result, lag time estimates at the large-watershed scale have been abstract and sometimes understated. Here, we leverage a large area watershed model with newly improved in-stream P simulation (SWAT+P.R&R) to evaluate the magnitude, longevity, and spatial cascade of legacy P remobilization in a U.S. corn belt watershed. Our results illustrate the "spiraling recovery" of P loads after a hypothetical point source remediation, where locations further downstream take longer to recover to baseline load levels. At the watershed outlet, in-stream legacy P contributions are equivalent to 30% of the baseline average annual P loads for three years after remediation. In-stream legacies do not approach exhaustion (95% remobilized) until at least 9 years after remediation. In hypothetical weather scenarios beginning with dry years, legacy contributions persist even longer. These findings (1) suggest that in-stream legacies could impact P loads for years to decades in large river basins, (2) support explicit accounting for spatial scale in future studies of in-stream legacies, and (3) provide concerning implications for water quality recovery in large river basins.


Asunto(s)
Fósforo , Calidad del Agua , Fósforo/análisis , Ríos , Simulación por Computador , Tiempo (Meteorología)
9.
Mar Pollut Bull ; 199: 115928, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141581

RESUMEN

Anthropogenic inputs of petroleum hydrocarbons into the marine environment can have long lasting impacts on benthic communities. Sponges form an abundant and diverse component of benthic habitats, contributing a variety of important functional roles; however, their responses to petroleum hydrocarbons are largely unknown. This study combined a traditional ecotoxicological experimental design and endpoint with global gene expression profiling and microbial indicator species analysis to examine the effects of a water accommodated fraction (WAF) of condensate oil on a common Indo-Pacific sponge, Phyllospongia foliascens. A no significant effect concentration (N(S)EC) of 2.1 % WAF was obtained for larval settlement, while gene-specific (N(S)EC) thresholds ranged from 3.4 % to 8.8 % WAF. Significant shifts in global gene expression were identified at WAF treatments ≥20 %, with larvae exposed to 100 % WAF most responsive. Results from this study provide an example on the incorporation of non-conventional molecular and microbiological responses into ecotoxicological studies on petroleum hydrocarbons.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Larva/metabolismo , Hidrocarburos/análisis , Petróleo/análisis , Tiempo (Meteorología) , Agua/análisis , Contaminantes Químicos del Agua/análisis , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
10.
Water Environ Res ; 95(12): e10964, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38124406

RESUMEN

Duckweed species (Lemnaceae) are suitable for remediation and valorization of agri-feed industry wastewaters and therefore can contribute to a more sustainable, circular economy where waste is a resource. Industrial applications will, however, require space efficient cultivation methods that are not affected by prevailing weather conditions. Here, the development and operation of a multi-tiered duckweed bioreactor is described. The developed prototype bioreactor depicted in this paper is composed of four cultivation layers (1 m2 each) with integrated LED lighting (generating up to 150 µmol m-2  s-1 ), a system of pumps and valves to manage the recirculatory flow (2.5 L min-1 ) of wastewater, and an automatic harvesting system. Using a nutrient poor medium, good growth of the duckweed species Lemna minor was achieved in the bioreactor, and this was matched by strong nutrient depletion from the medium, especially for phosphorus (45-mg total phosphorus [TP] removed per m-2  day-1 ). A fully automatic harvesting arm reliably captured similar amounts of duckweed biomass across multiple harvesting cycles, revealing a future scenario whereby labor and interventions by human operators are minimized. Further developments to advance the system towards fully automated operation will include, for example, the use of specific nutrient sensors to monitor and control medium composition. It is envisaged that multi-tiered, indoor bioreactors can be employed in the agri-feed industry where wastewaters are, in many cases, continuously generated throughout the year and need remediating immediately to avoid costly storage. Given the extensive use of automation technology in conventional wastewater treatment plants, multi-tiered duckweed bioreactors can be realistically integrated within the operating environment of such treatment plants. PRACTITIONER POINTS: Duckweed is suitable for remediation and valorization of agri-feed wastewater. Industrial duckweed applications require space efficient cultivation methods. Development and operation of a multi-tiered duckweed bioreactor is detailed. Flow dynamics and automatic harvesting in the bioreactor are optimized. It is concluded that a multi-tiered bioreactor can be used in industry.


Asunto(s)
Araceae , Aguas Residuales , Humanos , Tiempo (Meteorología) , Fósforo
11.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895047

RESUMEN

Giant goldenrod (Solidago gigantea Aiton) is one of the most invasive plant species occurring in Europe. Since little is known about the molecular mechanisms contributing to its invasiveness, we examined the natural dynamics of the content of rhizome compounds, which can be crucial for plant resistance and adaptation to environmental stress. We focused on rhizomes because they are the main vector of giant goldenrod dispersion in invaded lands. Water-soluble sugars, proline, and abscisic acid (ABA) were quantified in rhizomes, as well as ABA in the rhizosphere from three different but geographically close natural locations in Poland (50°04'11.3″ N, 19°50'40.2″ E) under extreme light, thermal, and soil conditions, in early spring, late summer, and late autumn. The genetic diversity of plants between locations was checked using the random amplified polymorphic DNA (RAPD) markers. Sugar and proline content was assayed spectrophotometrically, and abscisic acid (ABA) with the ELISA immunomethod. It can be assumed that the accumulation of sugars in giant goldenrod rhizomes facilitated the process of plant adaptation to adverse environmental conditions (high temperature and/or water scarcity) caused by extreme weather in summer and autumn. The same was true for high levels of proline and ABA in summer. On the other hand, the lowering of proline and ABA in autumn did not confirm the previous assumptions about their synthesis in rhizomes during the acquisition of frost resistance by giant goldenrod. However, in the location with intensive sunlight and most extreme soil conditions, a constant amount of ABA in rhizomes was noticed as well as its exudation into the rhizosphere. This research indicates that soluble sugars, proline, and ABA alterations in rhizomes can participate in the mechanism of acclimation of S. gigantea to specific soil and meteorological conditions in the country of invasion irrespective of plant genetic variation.


Asunto(s)
Ácido Abscísico , Solidago , Rizoma , Azúcares , Prolina , Suelo , Técnica del ADN Polimorfo Amplificado Aleatorio , Tiempo (Meteorología) , Aclimatación
12.
Ther Adv Respir Dis ; 17: 17534666231186726, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646293

RESUMEN

BACKGROUND: There have been 26 epidemic thunderstorm asthma (ETSA) events worldwide, with Melbourne at the epicentre of ETSA with 7 recorded events, and in 2016 experienced the deadliest ETSA event ever recorded. Health services and emergency departments were overwhelmed with thousands requiring medical care for acute asthma and 10 people died. OBJECTIVES: This multidisciplinary study was conducted across various health and science departments with the aim of improving our collective understanding of the mechanism behind ETSA. DESIGN: This study involved time-resolved analysis of atmospheric sampling of the air for pollen and fungal spores, and intact and ruptured pollen compared with different weather parameters, pollution levels and clinical asthma presentations. METHODS: Time-resolved pollen and fungal spore data collected by Deakin AirWATCH Burwood, underwent 3-h analysis, to better reflect the 'before', 'during' and 'after' ETSA time points, on the days leading up to and following the Melbourne 2016 event. Linear correlations were conducted with atmospheric pollution data provided by the Environment Protection Authority (EPA) of Victoria, weather data sourced from Bureau of Meteorology (BOM) and clinical asthma presentation data from the Victorian Agency for Health Information (VAHI) of Department of Health. RESULTS: Counts of ruptured grass pollen grains increased 250% when the thunderstorm outflow reached Burwood. Increased PM10, high relative humidity, decreased temperature and low ozone concentrations observed in the storm outflow were correlated with increased levels of ruptured grass pollen. In particular, high ozone levels observed 6 h prior to this ETSA event may be a critical early indicator of impending ETSA event, since high ozone levels have been linked to increasing pollen allergen content and reducing pollen integrity, which may in turn contribute to enhanced pollen rupture. CONCLUSION: The findings presented in this article highlight the importance of including ruptured pollen and time-resolved analysis to forecast ETSA events and thus save lives.


Asunto(s)
Asma , Ozono , Humanos , Alérgenos , Polen , Asma/epidemiología , Asma/etiología , Tiempo (Meteorología) , Ozono/efectos adversos
13.
Environ Sci Pollut Res Int ; 30(44): 99561-99569, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37615916

RESUMEN

Crude oils are highly complex mixtures containing many toxic compounds for organisms. While their level of toxicity in a marine environment depends on many parameters, one of the main factors is their composition. After oil spills, their compositions are significantly changed, so it changes the toxicity. In this study, different weathering processes such as evaporation, photooxidation, and biodegradation were applied to crude oil to understand how composition changed over time and how this affects its toxicity on phytoplankton. In laboratory settings, three distinct water-accommodated fraction samples of crude oil were prepared, unweathered, evaporated, and weathered and were exposed to phytoplankton communities at different dilution levels. After 3 days, evaporation reduced the crude oil concentration by 47%, and the concentration of the crude oil affected by photooxidation, biodegradation, and evaporation reduced by 81%. This study also showed that even though the weathering reduced the overall amount of crude oil substantially, its toxicity increased significantly. In the microcosm experiments, 7-day EC50 values of the unweathered oil, the evaporated oil and the weathered oil were 49.07, 21.09, and 7.16 µg/L, respectively. Different processes altered the crude oil composition, and weathered crude oil ended up with a higher fraction of high molecular weight (HMW) polycyclic aromatic hydrocarbons (PAHs). A promising relation between the increasing toxicity and HMW PAH fraction indicates that increasing the fraction of HMW PAHs might be one of the main reasons for the weathering process to cause higher crude oil toxicity. These results could be used as a diagnostic tool to estimate the extent of weathering and toxicity of crude oil after spills.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Petróleo/toxicidad , Petróleo/análisis , Tiempo (Meteorología) , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Pollut Res Int ; 30(42): 95738-95757, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37556063

RESUMEN

Multiple studies have focused on the effect of long-term weathering processes on oils after spill events, without considering the chemical compositional changes occurring shortly after the release of oil into the environment. Therefore, the present study provides a broad chemical characterization for understanding of the changes occurring in the chemical compositions of intermediate (°API = 27.0) and heavy (°API = 20.9) oils from the Sergipe-Alagoas basin submitted to two simulated situations, one under marine conditions and the other in a riverine environment. Samples of the oils were collected during the first 72 h of contact with the simulated environments, followed by evaluation of their chemical compositions. SARA fractionation was used to isolate the resins, which were characterized at the molecular level by UHRMS. The evaporation process was highlighted, with the GC-FID chromatographic profiles showing the disappearance of compounds from n-C10 until n-C16, as well as changes in the weathering indexes and pristane + n-C17/phytane + n-C18 ratios for the crude oils submitted to the riverine conditions. Analysis of the resins fraction showed that basic polar compounds underwent little or no alterations during the early stages of weathering. The marine environment was shown to be much less oxidative than the riverine environment. For both environments, a feature highlighted was an increase of acidic oxygenated compounds with the increase of weathering, especially for the crude oil with °API = 27.0.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Petróleo/análisis , Aceites/química , Cromatografía de Gases , Tiempo (Meteorología) , Contaminación por Petróleo/análisis , Contaminantes Químicos del Agua/análisis
15.
Environ Sci Pollut Res Int ; 30(42): 95438-95448, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544949

RESUMEN

The intensity of birch pollen season is expressed by seasonal pollen integral (SPIn, the sum of the mean daily pollen concentration during the birch pollination period) and the amount of Bet v 1 allergen released per birch pollen grain expressed by pollen allergen potency (PAP). Betula pollen and Bet v 1 allergen were simultaneously measured in the air of Bratislava from 2019 to 2022 by using two Burkard traps (Hirst-type and cyclone) in order to evaluate the causes of the seasonal variation in the SPIn and PAP levels. The highest SPIn (19,975 pollen/m3) was observed in 2022 and the lowest one (1484 pollen/m3) in 2021. The average daily PAP level (4.0 pg Bet v 1/pollen) was highest in 2019 and lowest (2.5 pg Bet v 1/pollen) in 2020. We found that seasonal variation in SPIn was associated mainly with the changes in environmental conditions during the pre-season period, whereas the year-to-year variation in PAP levels was attributed to environmental conditions during both pre- and in-season periods. Our results indicate that rainy weather in June 2020 and cold overcast weather in January‒February 2021 resulted in low SPIn in 2021. On the other hand, dry weather in June 2021 and warm weather in January‒February 2022 resulted in high SPIn in 2022. The low average daily PAP level in 2020 was associated with (1) low levels of gaseous air pollutants in March, when the ripening of pollen takes place; (2) an earlier start of the birch main pollen season (MPS); and (3) dry weather during the MPS. On the other hand, high PAP level in 2019 was associated with higher levels of air pollutants in March and during the MPS.


Asunto(s)
Contaminantes Atmosféricos , Alérgenos , Alérgenos/análisis , Betula , Polen/química , Tiempo (Meteorología)
16.
Infect Dis Poverty ; 12(1): 76, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596648

RESUMEN

BACKGROUND: The climate of southern Africa is expected to become hotter and drier with more frequent severe droughts and the incidence of diarrhoea to increase. From 2015 to 2018, Cape Town, South Africa, experienced a severe drought which resulted in extreme water conservation efforts. We aimed to gain a more holistic understanding of the relationship between diarrhoea in young children and climate variability in a system stressed by water scarcity. METHODS: Using a mixed-methods approach, we explored diarrhoeal disease incidence in children under 5 years between 2010 to 2019 in Cape Town, primarily in the public health system through routinely collected diarrhoeal incidence and weather station data. We developed a negative binomial regression model to understand the relationship between temperature, precipitation, and relative humidity on incidence of diarrhoea with dehydration. We conducted in-depth interviews with stakeholders in the fields of health, environment, and human development on perceptions around diarrhoea and health-related interventions both prior to and over the drought, and analysed them through the framework method. RESULTS: From diarrhoeal incidence data, the diarrhoea with dehydration incidence decreased over the decade studied, e.g. reduction of 64.7% in 2019 [95% confidence interval (CI): 5.5-7.2%] compared to 2010, with no increase during the severe drought period. Over the hot dry diarrhoeal season (November to May), the monthly diarrhoea with dehydration incidence increased by 7.4% (95% CI: 4.5-10.3%) per 1 °C increase in temperature and 2.6% (95% CI: 1.7-3.5%) per 1% increase in relative humidity in the unlagged model. Stakeholder interviews found that extensive and sustained diarrhoeal interventions were perceived to be responsible for the overall reduction in diarrhoeal incidence and mortality over the prior decade. During the drought, as diarrhoeal interventions were maintained, the expected increase in incidence in the public health sector did not occur. CONCLUSIONS: We found that that diarrhoeal incidence has decreased over the last decade and that incidence is strongly influenced by local temperature and humidity, particularly over the hot dry season. While climate change and extreme weather events especially stress systems supporting vulnerable populations such as young children, maintaining strong and consistent public health interventions helps to reduce negative health impacts.


Asunto(s)
Deshidratación , Sequías , Niño , Humanos , Preescolar , Sudáfrica/epidemiología , Diarrea/epidemiología , Tiempo (Meteorología)
17.
Int J Biometeorol ; 67(10): 1591-1605, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37479848

RESUMEN

Climatic variables can have localized variations within a region and these localized climate patterns can have significant effect on production of climate-sensitive crops such as tea. Even though tea cultivation and industries significantly contribute to employment generation and foreign earnings of several South Asian nations including India, sub-regional differences in the effects of climatic and soil variables on tea yield have remained unexplored since past studies focused on a tea-producing region as a whole and did not account for local agro-climatic conditions. Here, using a garden-level panel dataset based on tea gardens of Dooars region, a prominent tea-producing region in India, we explored how sub-regional variations in climatic and land variables might differently affect tea yield within a tea-producing region. Our analysis showed that the Dooars region harboured significant spatial variability for different climatic (temperature, precipitation, surface solar radiation) and soil temperature variables. Using graph-based Louvain clustering of tea gardens, we identified four spatial sub-regions which varied in terms of topography, annual and seasonal distribution of climatic and land variables and tea yield. Our sub-region-specific panel regression analyses revealed differential effects of climatic and land variables on tea yield of different sub-regions. Finally, for different emission scenario, we also projected future (2025-2100) tea yield in each sub-region based on predictions of climatic variables from three GCMs (MIROC5, CCSM4 and CESM1(CAM5)). A large variation in future seasonal production changes was projected across sub-regions (-23.4-35.7% changes in premonsoon, -4.2-3.1% changes in monsoon and -10.9-10.7% changes in postmonsoon tea production, respectively).


Asunto(s)
Producción de Cultivos , Microclima , Suelo , , Tiempo (Meteorología) , Análisis por Conglomerados , India , Clima , Análisis Espacial , Jardines
18.
Environ Sci Technol ; 57(32): 11988-11998, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37515555

RESUMEN

Photochemical weathering transforms petroleum oil and changes its bulk physical properties, as well as its partitioning into seawater. This transformation process is likely to occur in a cold water marine oil spill, but little is known about the behavior of photochemically weathered oil in cold water. We quantified the effect of photochemical weathering on oil properties and partitioning across temperatures. Compared to weathering in the dark, photochemical weathering increases oil viscosity and water-soluble content, decreases oil-seawater interfacial tension, and slightly increases density. Many of these photochemical changes are much larger than changes caused by evaporative weathering. Further, the viscosity and water-soluble content of photochemically weathered oil are more temperature-sensitive compared to evaporatively weathered oil, which changes the importance of key fate processes in warm versus cold environments. Compared to at 30 °C, photochemically weathered oil at 5 °C would have a 16× higher viscosity and a 7× lower water-soluble content, resulting in lower entrainment and dissolution. Collectively, the physical properties and thus fate of photochemically weathered oil in a cold water spill may be substantially different from those in a warm water spill. These differences could affect the choice of oil spill response options in cold, high-light environments.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Temperatura , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología) , Agua de Mar/química , Agua
19.
Sci Total Environ ; 890: 164377, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37230357

RESUMEN

Long-term weathering enhances the stability of ecosystem services and alters the microbiome, however, its influences on the relationship between microbial diversity and multifunctionality are still poorly understood. Hereby, 156 samples (0-20 cm) from five artificially divided functional zones including central bauxite residue zone (BR), the zone near residential area (RA), the zone near dry farming area (DR), the zone near natural forest area (NF), and the zone near grassland and forest area (GF) were collected in a typical disposal area to determine the heterogeneity and development of biotic and abiotic properties of bauxite residue. Residues in BR and RA exhibited higher values of pH, EC, heavy metals, and exchangeable sodium percentage compared to those in NF and GF. Our results showed a positive correlation between multifunctionality and soil-like quality during long-term weathering. Microbial diversity and microbial network complexity responded positively to multifunctionality within the microbial community, which was parallel with ecosystem functioning. Long-term weathering promoted oligotrophs-dominated bacterial assemblages (mostly Acidobacteria and Chloroflexi) and suppressed copiotrophs (including Proteobacteria and Bacteroidota), while the response of fungal communities was lower. Rare taxa from bacterial oligotrophs were particularly important at the current stage for maintaining ecosystem services and ensuring microbial network complexity. Our results underscore the significance of microbial ecophysiological strategies in response to changes in multifunctionality during long-term weathering, and highlight the necessity of conserving and augmenting the abundance of rare taxa to ensure the stable provision of ecosystem functions in bauxite residue disposal areas.


Asunto(s)
Microbiota , Microbiología del Suelo , Suelo/química , Óxido de Aluminio/química , Tiempo (Meteorología) , Bacterias
20.
Int J Biol Macromol ; 242(Pt 3): 124895, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196710

RESUMEN

The remediation of heavy crude oil spills is a global challenge because frequent crude oil spills cause long-term damage to local living beings and marine ecosystems. Herein, a solar-driven and Joule-driven self-heated aerogel were developed as an all-weather adsorbent to efficiently absorb crude oil by obviously decreasing the viscosity of crude oil. The cellulose nanofiber (CNF)/MXene/luffa (CML) aerogel was fabricated via a simple freeze-drying method using CNF, MXene, and luffa as raw materials, and then coated with a layer of polydimethylsiloxane (PDMS) to make it hydrophobic and further increase oil-water selectivity. The aerogel can quickly reach 98 °C under 1 sun (1.0 kW/m2), which remains saturated temperature after 5 times photothermal heating/cooling cycles, indicating that the aerogel has great photothermal conversation capability and stability. Meanwhile, the aerogel can also rapidly rise to 110.8 °C with a voltage of 12 V. More importantly, the aerogel achieved the highest temperature of 87.2 °C under outdoor natural sunlight, providing a possibility for promising applications in practical situations. The remarkable heating capability enables the aerogel to decrease the viscosity of crude oil substantially and increase the absorption rate of crude oil by the physical capillary action. The proposed all-weather aerogel design provides a sustainable and promising solution for cleaning up crude oil spills.


Asunto(s)
Luffa , Nanofibras , Petróleo , Nanofibras/química , Celulosa/química , Ecosistema , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA