Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 188(1): 189-195, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30229511

RESUMEN

The thioredoxin-like (Rdx) family proteins contain four selenoproteins (selenoprotein H, SELENOH; selenoprotein T, SELENOT; selenoprotein V, SELENOV; selenoprotein W, SELENOW) and a nonselenoprotein Rdx12. They share a CxxU or a CxxC (C, cysteine; x, any amino acid; U, selenocysteine) motif and a stretch of eGxFEI(V) sequence. From the evolutionary perspective, SELENOW and SELENOV are clustered together and SELENOH and SELENOT are in another branch. Selenoproteins in the Rdx family exhibit tissue- and organelle-specific distribution and are differentially influenced in response to selenium deficiency. While SELENOH is nucleus-exclusive, SELENOT resides mainly in endoplasmic reticulum and SELENOW in cytosol. SELENOV is expressed essentially only in the testes with unknown cellular localization. SELENOH and SELENOW are more sensitive than SELENOT and SELENOV to selenium deficiency. While physiological functions of the Rdx family of selenoproteins are not fully understand, results from animal models demonstrated that (1) brain-specific SELENOT knockout mice are susceptible to 1-methyl-4-phenylpyridinium-induced Parkinson's disease in association with redox imbalance and (2) adult zebrafishes with heterozygous SELENOH knockout are prone to dimethylbenzanthracene-induced tumorigenesis together with increased DNA damage and oxidative stress. Further animal and human studies are needed to fully understand physiological roles of the Rdx family of selenoproteins in redox regulation, genome maintenance, aging, and age-related degeneration.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Selenio/deficiencia , Selenio/metabolismo , Selenoproteínas/fisiología , Tiorredoxinas/fisiología , Animales , Humanos , Selenoproteínas/genética , Tiorredoxinas/genética
2.
Antioxid Redox Signal ; 24(15): 855-66, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26650895

RESUMEN

AIMS: The sodium-iodide symporter (NIS) mediates the uptake of I(-) by the thyroid follicular cell and is essential for thyroid hormone biosynthesis. Nis expression is stimulated by thyroid-stimulating hormone (TSH) and also requires paired box 8 (Pax8) to bind to its promoter. Pax8 binding activity depends on its redox state by a mechanism involving thioredoxin/thioredoxin reductase-1 (Txn/TxnRd1) reduction of apurinic/apyrimidinic endonuclease 1 (Ape1). In this study, we investigate the role of Se in Nis expression. RESULTS: Selenium increases TSH-induced Nis expression and activity in rat thyroid cells. The stimulatory effect of Se occurs at the transcriptional level and is only observed for Nis promoters containing a Pax8 binding site in the Nis upstream enhancer, suggesting that Pax8 is involved in this effect. In fact, Se increases Pax8 expression and its DNA-binding capacity, and in Pax8-silenced rat thyroid cells, Nis is not Se responsive. By inhibiting Ape1 and TxnRd1 functions, we found that both enzymes are crucial for TSH and TSH plus Se stimulation of Pax8 activity and mediate the Nis response to Se treatment. INNOVATION: We describe that Se increases Nis expression and activity. We demonstrate that this effect is dependent on the redox functions of Ape1 and Txn/TxnRd1 through control of the DNA binding activity of Pax8. CONCLUSION: Nis expression is controlled by Txn/Ape1 through a TSH/Se-dependent mechanism. These findings open a new field of study regarding the regulation of Nis activity in thyroid cells. Antioxid. Redox Signal. 24, 855-866.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Factor de Transcripción PAX8/metabolismo , Selenio/fisiología , Simportadores/genética , Tiorredoxinas/fisiología , Tirotropina/fisiología , Animales , Línea Celular , Glutatión Peroxidasa/metabolismo , Oxidación-Reducción , Unión Proteica , Ratas , Simportadores/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Transcripción Genética , Activación Transcripcional , Glutatión Peroxidasa GPX1
3.
Toxicol Appl Pharmacol ; 262(3): 341-8, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22634334

RESUMEN

The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo.


Asunto(s)
Curcumina/farmacología , Células HeLa/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tiorredoxinas/efectos de los fármacos , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Células HeLa/metabolismo , Células HeLa/fisiología , Humanos , NADP/efectos de los fármacos , NADP/metabolismo , NADP/fisiología , NADPH Oxidasas/efectos de los fármacos , NADPH Oxidasas/metabolismo , NADPH Oxidasas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Reductasa de Tiorredoxina-Disulfuro/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Reductasa de Tiorredoxina-Disulfuro/fisiología , Tiorredoxinas/metabolismo , Tiorredoxinas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA